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Abstract
Sixteen artificial intelligence (AI) and machine learning (ML) approaches were reported at the 2018 annual congresses of the
American Society for Reproductive Biology (9) and European Society for Human Reproduction and Embryology (7). Nearly
every aspect of patient care was investigated, including sperm morphology, sperm identification, identification of empty or
oocyte containing follicles, predicting embryo cell stages, predicting blastocyst formation from oocytes, assessing human
blastocyst quality, predicting live birth from blastocysts, improving embryo selection, and for developing optimal IVF stimula-
tion protocols. This represents a substantial increase in reports over 2017, where just one abstract each was reported at ASRM
(AI) and ESHRE (ML). Our analysis reveals wide variability in how AI and ML methods are described (from not at all or very
generic to fully describing the architectural framework) and large variability on accepted dataset sizes (from just 3 patients with
16 follicles in the smallest dataset to 661,060 images of 11,898 human embryos in one of the largest). AI and ML are clearly
burgeoning methodologies in human reproduction and embryology and would benefit from early application of reporting
standards.
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Introduction

Artificial intelligence (AI) and machine learning (ML) are
quickly gaining traction in human reproduction and embryol-
ogy. In just 1 year, published abstracts at the annual proceed-
ings of the American Society of Reproduction [1, 2] and
European Society of Human Reproduction and Embryology
[3, 4] increased seven-fold (Table 1).

Despite advances in personalized ovarian stimulation, ex-
tended embryo culture, pre-implantation genetic testing, and
embryo selection, on average, only one-third of all IVF cycles
result in a pregnancy [5]. This represents a significant problem
that AI and ML can be leveraged against, as we bear down on
the holy grail of our industry: short time to pregnancy through
improved IVF cycle efficiency (reduction of failed retrievals or

transfers and miscarriages), from replacement of a single,
euploid embryo resulting in a healthy, live-birth.

Machine learning is based on the idea that we can build
machines to process data and learn on their own, without our
constant supervision. Machine learning is a way of achieving
artificial intelligence. ML algorithms use statistics to find pat-
terns in massive amounts of data. They then use those patterns
to make predictions for example, Internet search engines, so-
cial media news feeds, digital assistants like Siri and Alexa,
Spotify, Netflix, Amazon, and YouTube, GPS navigation, and
much more are all powered by AI technology. A simple way
to think of AI is in terms of the senses: can it recognize what it
sees, respond (sensibly) to what it hears or reads, move in
response to what it sees or hears, or Breason^, i.e., make de-
cisions based on data? Then, most likely, it is powered by
machine learning AI systems.

Over 20 years ago, Kaufmann et al. proposed IVF for in-
fertility care using Cortex Pro neural network software
consisting of just four inputs (yes/no freezing, age, number
of eggs recovered, number of embryos transferred), one hid-
den layer of four nodes and one output. Total predictive power
as was limited to 59% [6]. Progress toward this advancement
of an IVF AI has been slow. Complex (and diverse) datasets,
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such as patient demographics and medical history, individ-
ualized hormone regimes, follicular growth patterns, endo-
metrial window of implantation, pre-implantation genetic
screening and diagnosis, and clinical pregnancy outcomes,
are managed by incompatible systems.

Several Bone-size fits all^ aspects of infertility care could
potentially benefit from a hyper-personalized AI or ML ap-
proach, including luteal phase progesterone supplementa-
tion and embryo transfer timing to the individual window
of implantation, among others. One caveat exists though:
we do not know what we do not know, and human experts
have to Btrain^ AIs, leading to potential amplification of
bias, or completely over-looking certain types of data.

We do not yet know the feature or set of features that are
most predictive of a successful IVF cycle. The most impor-
tant variable(s) could be unknown-to-science and elucidated
through use of AI. AI and ML methodologies seek to tran-
scend the narrow focus on individual variables and uncover
new epistemologies hidden in Bbig data.^

Deep (artificial) neural networks (ANN) or convolutional
neural networks (CNN) combine hardware and software to
approximate the web of neurons in the human brain (AI/ML
terms are defined in Table 2). The availability of high-tech
central and graphics processing units (CPUs and GPUs),
enormous data sets (i.e., big data), and developments in
Bmachine learning^ algorithms have lead to a stunning in-
crease in the use of AI generally, across all fields, but it has
been robustly adopted to medical imaging [7].

The learning part of Bdeep learning^ is achieved during
the training phase. Hundreds, or better yet millions, of 2D or
3D data points are fed into a model, so that future outputs
can be predicted. Input values can be text, sound, signals,
and most importantly for embryology, images. The funda-
mentals of deep learning methods for medical applications
in general, image registration, anatomical/cell structure de-
tection, tissue segmentation, computer-aided disease diag-
nosis, or prognosis have been reviewed extensively [8, 9].

Deep learning methods are most effective when large,
unbiased datasets prevent Boverfitting^ (i.e., bias) of the
model; however, massive datasets and massively parallel
computing power are a bottleneck. Therefore, it is the
large tech companies and institutions that are driving
AI in-roads into healthcare. For example, IBM devel-
oped a computational model that predicts heart failure
[10] and lent the Watson supercomputer to Memorial
Sloan-Kettering for cancer diagnosis and selection of
treatment. Watson for Genomics ingests approximately
10,000 scientific articles and 100 new clinical trials ev-
ery month [11]. Stanford University reported a deep
learning algorithm that predicts the safety of drug com-
pounds and another to predict lung cancer type and pa-
tient survival, and Intel, who announced a competition to
find an algorithm for early detection of lung cancer.T
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Given an infinite number of data points, time, and comput-
ing power, any continuous function can be approximated and
predicted—even one as complex as an IVF cycle. Learning
vector quantization networks [12] combined with computing

in the Bcloud^ seem to suggest that AI for IVF could be right
around the corner. However, the first step to implementing an
AI is access to Bbig data^ and many clinics have not yet imple-
mented robust electronic medical record (EMR) systems.

Table 2 Abbreviations and
definitions N/A Algorithm A set of defined step-by-step instructions. Can be very simple or very

complex.

AI Artificial intelligence Not well defined. Broadly described as making a machine behave in ways
that would be called “intelligent” if seen by a human.

ANN Artificial neural
network

A highly abstracted and simplified model compared to the human brain,
used in machine learning. A set of units receives input data, performs
computations on them, and passes them to the next layer of units. The
final layer represents the answer to the problem.

N/A Black box The calculations performed by some deep learning systems between input
and output are not easy (and potentially impossible) for humans to
understand.

CNN Convolutional neural
network

In deep learning, a convolutional neural network (CNN, or ConvNet) is a
class of deep neural networks, most commonly applied to analyzing
visual imagery.

CPU Central processing unit The part of a computer in which operations are controlled and executed.

DL Deep learning A specific sub-field of deep learning. It is a process by which a neural
network becomes sensitive to progressively more abstract patterns.
Hundreds of successive layers of data representations are learned
automatically through exposure to training data.

EMR Electronic medical
record

An electronic record of health-related information on an individual that
can be created, gathered, managed, and consulted by authorized
clinicians and staff within one health care organization.

ESA Embryo selection
algorithm

Any number of morphokinetic parameters that have been linked to an
embryo’s viability are combined, for example; the appearance and
disappearance of pronuclei and nuclei at each cell stage, the length of
time between early cytokinesis and initiation of blastulation,
reabsorption of fragments, direct cleavage of cells within embryos from
one to three cells, and reverse cleavage.

GPU Graphics processing
unit

A specialized electronic circuit designed to rapidly manipulate and alter
memory to accelerate the creation of images in a frame buffer intended
for output to a display device.

ML Machine learning Algorithms that find patterns in data without explicit instructions. ML is a
single contributing entity for AI technology.

PGT-A Pre-implantation
testing-aneuploidy

A set of techniques used on the embryo prior to transfer to the mother’s
uterus with the aim of studying any possible chromosomal and/or
genetic abnormalities.

PPV Positive predictive
value

The post-test probability of being affected after a positive test.

SL Supervised learning A type of machine learning where the algorithm compares its outputs with
the correct outputs during training.

N/A Test dataset The sample of data used to provide an unbiased evaluation of a final model
fit on the training dataset.

N/A Training dataset The sample of data used to fit the model.

The actual dataset that we use to train the model (weights and biases in the
case of Neural Network). The model sees and learns from this data.

TL Transfer learning A technique in machine learning where the algorithm learns one task, and
build on that knowledge while learning a different, but related, task.
Transfer learning is an alternative approach to help mitigate the large,
manually annotated data sets needed for training an AI.

N/A Validation dataset The sample of data used to provide an unbiased evaluation of a model fit
on the training dataset while tuning model hyperparameters. The
evaluation becomes more biased as skill on the validation dataset is
incorporated into the model configuration.
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There have been several types of machine-learning architec-
tures proposed [13–16] for the IVF lab and infertility care. The
goal is to integrate thousands (thousands or millions) of data
points from electronic medical records, doctor’s notes, and
medical images, to uncover hidden clues that can diagnose
infertility and predict the best course of treatment. Abstract 12
(Table 1) demonstrated that an AI was 81% accurate at
predicting the number of MII oocytes obtained from a stimula-
tion cycle, by considering pre-treatment characteristics and
comparing them to a large database of known cycles’ charac-
teristics, stimulation protocols, and stimulation outcomes.

Although many people are participating in AI projects, few
in human reproduction and embryology have been trained and
educated on minimum acceptance standards. Although this
proposed initiative may add an extra step to the abstract sub-
mission process, such a quality control has considerable value
to reviewers, authors, and readers.

Consensus technical criteria have been established for
reporting: authentication of human cell lines [17] (definitive
standard ASN-0002 specifies methodology for DNA extrac-
tion, STR profiling, data analyses, and more), antibodies [18]
(peptide/protein target, antigen sequence, name of antibody,
manufacturer, catalog number or name of source, species
raised in, monoclonal or polyclonal, and dilution used),
next-generation sequencing-based cancer testing [19] (classi-
fication, annotation, interpretation, and reporting conventions
for somatic sequence variants). Machine learning reporting
standards have been proposed for biomedical applications
(Table 1, Luo et al.) [20]. For abstracts, along with background
and objective, the authors of the opinion suggest that abstracts
should be structured to include Bdata sources, performance
metrics of the predictive model or models in both point esti-
mates and confidence intervals, and conclusion including the
practical value of the developed predictive model or models.^

In our survey of abstracts presented during the 2018 annual
congresses of ASRM and ESHRE, we noted wide variation in
reporting conventions.

Training, validation, and test data sets

By convention, 70% of any available data set is typically
allocated for training. The remaining 30% are equally
partitioned and referred to as Bvalidation^ and Btest^ data sets.
With less training data, parameter estimates have greater var-
iance. With less testing data, the performance statistic will
have greater variance. Broadly speaking, the ideal division
of data is such that neither variance is too high. Each of these
data set size choices are equally as important.

A wide range of sample sizes were reported (Table 1): 3
patients with 16 follicles, 118 embryos, 160 blastocysts, 223
embryo images, 303 embryo with an associated 386 images,
34 with 773 oocytes, 50,392 images from 10,148 embryos,
463,669 cycles, and so on. Nearly all abstracts were missing

an explanation for the choice of the size of training, validation,
and test data set size for readers to know if the study was
sufficiently powered to answer the problem. In other words,
the number of parameters examined in the majority of
problems was absent, as well as an explanation for us to
confidentially make sure that enough information was ex-
amined to specify all the network’s connections. The gen-
eral rule of thumb in computer science is Bthe more data
the better^ but is there a minimum acceptable size for a
training data set? Learning curves show model perfor-
mance as a function of the training sample size and can
help to determine the sample size needed to train, but they
are not the only or final answer [21].

Data types

Additionally, the data types were variably reported as number
of images, oocytes, embryos, patients, and cycles. Of course,
not all studies will use more than one type of data. However,
abstract #4 (Table 1) reported number of embryos (n = 118),
images (n = 2000), but did not report on the number of pa-
tients. As a field, we may benefit from early adoption of stan-
dard reporting conventions so that Bapples to apples^ compar-
isons can be made confidentially across future studies.

Architecture and algorithms

In some cases, very general descriptions were reported, for
example Ba convolutional neural network^ or Ban artificial
neural network (ANN) architecture associated with a genetic
algorithm.^ In other abstracts, the architecture was fully de-
scribed, for example Ba stand-alone framework with a deep
convolutional neural network (CNN) as the core for cell-stage
image analysis on both datasets. The networks included
Google’s Inception architecture (V3) with and without transfer
learning.^ In the machine learning abstracts, often no expla-
nation was provided for why certain algorithms were selected,
to help the reader determine the appropriateness of the tests or
the comparisons.

Evaluating results

Some questions to consider in evaluating results are

& Were enough data points used to achieve a desired level of
performance?

& Did the training set achieve a sufficient estimate of model
performance?

& Was enough data analyzed to demonstrate that one model
is better than another?

& Was an inflection point reached, where providing
more training data to the system no longer yields im-
proved accuracy?
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Automated embryo selection by AI

Embryo development and selection is the natural starting point
for the application of AI in the IVF lab, due to the availability
of high-quality image data and importance of embryo selec-
tion [22] to success of an IVF cycle.

Embryo selection is based on subjective developmental
and morphological characteristics. The necessary and suffi-
cient quality or set of qualities to judge an embryo on has been
explored ad infinitum; thickness of zona, granularity of cyto-
plasm, roundness of oolema, color of cytoplasm,
multinucleation, number of blastomeres, degree of fragmenta-
t ion, s ize of blastocoel , t iming of cleavage and
morphokinetics, and more.

Numerous experimental methods have been developed to
parse the implantation potential and live birth rate of IVF
embryos from images or video, including morphometric anal-
ysis by time-lapse imaging [23–26], mathematical and statis-
tical tools [27, 28], and computer-assisted scoring [29, 30]. In
2008, the first commercially available time-lapse system
(TLS) was sold for use in human in vitro fertilization (IVF)
(Primo Vision™, Vitrolife, Göteborg, Sweden) when it was
introduced at the European Society of Human Reproduction
meeting. Incubator integrated TLSs currently available in-
clude the FDA-approved EmbryoScope®, Vitrolife; Miri®,
ESCO (Egaa, Denmark); Geri, Genea Biomedx (Sydney,
Australia).

Advancements in time-lapse imaging technologies have
led to the development of embryo selection algorithms
(ESAs). However, none of the proposed ESAs have surpassed
a positive predictive value (PPV) of 45% (~ 38–44%) in
selecting good quality embryos with relatively poor clinical
outcomes [24, 31].

The FDA-approved Eeva Test [32] is one such ESA, driven
by an Xtend algorithm (a standard multi-dimensional, static
algorithm). Eeva uses time-lapse imaging (videos of embryo
development) to predict which embryo has the best chance of
progressing to a blastocyst, based not only on its appearance
but when it hits certain developmental milestones (cell divi-
sion timings P2 (time between first and second mitosis) and
P3 (time between second and third mitosis).

Despite multiple lines of evidence for embryo selection,
several excellent reviews [33–35] demonstrate that there is
insufficient evidence in live birth, miscarriage, stillbirth, or
clinical pregnancy to choose between TLS and conventional
incubation.

AI has been shown to be better suited to some subjective
tasks than trained embryologists. In one recent study, 482
seven-day-old bovine embryos were used to train an artificial
intelligence system [36]. This analysis identified 36 assess-
ment variables, 24 of which formed the input of the artificial
network architecture. Overall, the artificial intelligence system
had a 76% accuracy rate.

In human infertility, AI start-ups and products are already
claiming significant results. For example, detection of chro-
mosome 21 aneuploidy (Life Whisperer and Ovation
Fertility), and CooperGenomicsSM PGTaiSM technology
platform that improves the accuracy of PGT-A calling, inter-
pretation and reporting while Bremoving subjectivity^ in in-
terpretation, and avoiding reporting transcription errors.
Companies have no mandate to publish their results for peer-
review, so it is difficult to evaluate any of these claims.

In 2017, we reported that the simultaneous evaluation of
patients’ entire embryo cohort at a single time-point could
improve the identification of embryos with the highest poten-
tial to form a blastocyst [37]. We observed a higher overall
blastocyst formation prediction rate with the cohort selection
method (CM), compared to standard morphology grading by
expert embryologists and time-lapse scoring (95% vs. 86%
and 89%; p = 0.06 and p = 0.21, respectively).

Similarly, predicting high-quality blastocyst formation (ex-
panded blastocysts with good inner cell mass and
trophectoderm) was higher with the cohort method, compared
to both standard morphology grading and time-lapse scoring
(75% vs. 66% and 67%; p = 0.21 and 0.33, respectively). The
prediction rate for overall and high-quality blastocyst forma-
tion was similar between standard morphology and time-lapse
scoring. This small study was limited by a single time point,
and retrospective data collection from a single, high-
performing center.

To this end, we trained GoogleNet Inception v3 CNN ar-
chitecture, replacing the final classification layer with an an-
notated dataset of embryo images captured with an
EmbryoScope (submitted, under review 2018). This allowed
us to prospectively interrogate data captured at multiple cen-
ters, using multiple time points to improve statistical signifi-
cance, automatically detect patterns in image data, and utilize
the uncovered patterns to identify the top quality embryowith-
in a patient’s cohort.

Further, we used the same architecture to report automated
sperm morphology testing (Table 1, abstract 6) with transfer
learning after replacing the final classification layer and
retraining it with a dataset of sperm images.

Several other groups have also reported using AI for sub-
jective problems, such as blastocyst morphology evaluation
(Table 1, abstracts 2 and 10), and embryo selection (Table 1,
abstracts 3, 5, and 8.)

Which brings us to our last point: true AI services essen-
tially program themselves, and they do it in ways we do not
fully understand. This is referred to in computer science as the
BBlackBox^ problem. Even the engineers who build AIs can-
not fully explain their behavior. The potential for unintentional
bias is enormous.

Notable examples of bias in AI applications include
Google’s AI algorithm labeling images of black people as
gorillas, image searches for BCEO^ returned only pictures of
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white men with fewer ads for high-paying executive jobs
displayed to women. A LinkedIn advertising program showed
a preference for male names in searches, and there are many
more examples. Private companies are racing to provide their
products and services directly to the market, often without
peer review. This is in contrast to academic AI projects, which
have undergone extensive peer review and have (often) pro-
vided the source code itself to the reviewers for examination.

AI for embryo selection is being positioned on the market
as a tool to prescreen for and identify viable embryos with a
low likelihood of genetic defects before proceeding to PGT.
This has the potential to result in significant cost savings for
couples with many more embryos available to test than the
standard B8 embryos^ that are included in a typical PGT pack-
age. The availability of more than 8 good quality blastocysts is
common with egg donor recipient cycles, but these are the
cycles less likely to need PGT in the first place. The potential
to discard large numbers of perfectly normal embryos with
normal pregnancy potential in autologous IVF cycles is a sig-
nificant concern. In this approach, AI for embryo selection
seems to be predicated on PGT-A, the clinical utility of which
is, in and of itself, a scalding hot topic [38–40].

A more pragmatic approach for the IVF laboratory who is
interested in incorporating AI into their workflow may be to
use it as a QC tool, for example, after embryo thawing, or to
monitor embryo culture systems as a whole throughout the
year.

With so much at stake in choosing embryos capable of
producing a healthy child, it is our opinion that fully transpar-
ent, peer-reviewed projects should be prioritized over AI ser-
vices where the source code, training data set, and validation
data sets have not been examined closely for potential bias
with respect to culture methodologies, patient populations,
disease progressions, stimulation protocols, or dozens of other
variables.

Conclusion

A clear cause cannot be identified in the majority of IVF
failures [41]. Many studies are performed every year focused
on individual variables. The field’s focus has shifted from
embryo selection, Bfreeze all^ policies that allow for the uter-
ine environment to be synchronized with embryo’s develop-
ment, to pre-implantation genetic testing. It is clear now that
we are at the dawn of another step-change: using AI and ML
to integrate all IVF cycle data, from the clinical unit that treats
the primary infertility, to ovarian response to stimulation, to
the IVF laboratory unit’s embryo selection criteria, to the mo-
lecular diagnostic information for both PGTembryos and uter-
ine receptivity, to obstetric and gynecological outcomes to
achieve better outcomes for patients.

AI technology may become routine in clinical IVF settings
within the next 5 years. The sweeping speed and promise is
reminiscent of the application of PGT-A as an adjuvant treat-
ment in IVF, which to this day remains controversial, because
the weight of evidence in support of improving delivery rates
is considered questionable [42].

If AI can differentiate Bnormal^ embryos from those that
are chromosomally abnormal with higher accuracy than other
types of pre-implantation genetic testing, it promises to reduce
costs, miscarriage, and stillbirth rate. Pragmatically, this tech-
nology could be valuable for patients, who do not wish to
subject their embryos to biopsy, cannot afford PGT-A, and
so on. An immediate and obvious application of AI in any
IVF laboratory would be to adapt it for routine quality control
and monitoring of culture systems.

We hope this perspective article stimulates a larger discus-
sion toward supporting and progressing AI andML for IVF. A
committee opinion is needed to consider standardized
reporting and minimal acceptance criteria for AI andML stud-
ies, and the use of fully transparent peer-reviewed AI services,
where the source code, training data, and validation data have
been examined for potential bias.

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.
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