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Artificial intelligence and machine learning in
design of mechanical materials

Kai Guo, a Zhenze Yang, ab Chi-Hua Yu ac and Markus J. Buehler *ade

Artificial intelligence, especially machine learning (ML) and deep learning (DL) algorithms, is becoming an

important tool in the fields of materials and mechanical engineering, attributed to its power to predict

materials properties, design de novo materials and discover new mechanisms beyond intuitions. As the

structural complexity of novel materials soars, the material design problem to optimize mechanical

behaviors can involve massive design spaces that are intractable for conventional methods. Addressing

this challenge, ML models trained from large material datasets that relate structure, properties and

function at multiple hierarchical levels have offered new avenues for fast exploration of the design

spaces. The performance of a ML-based materials design approach relies on the collection or

generation of a large dataset that is properly preprocessed using the domain knowledge of materials

science underlying chemical and physical concepts, and a suitable selection of the applied ML model.

Recent breakthroughs in ML techniques have created vast opportunities for not only overcoming long-

standing mechanics problems but also for developing unprecedented materials design strategies. In this

review, we first present a brief introduction of state-of-the-art ML models, algorithms and structures.

Then, we discuss the importance of data collection, generation and preprocessing. The applications in

mechanical property prediction, materials design and computational methods using ML-based

approaches are summarized, followed by perspectives on opportunities and open challenges in this

emerging and exciting field.
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Introduction

Materials are of significant importance to us as they are the

building blocks of the tools to develop our civilization. Numerous

effective methods to find new materials have been invented owing

to the discovery of the intimate connection between the structure

of materials and their various properties, which can be tentatively

classified into mechanical, thermal, optical, electrical, chemical,

nuclear, and others.1 Among those properties, mechanical pro-

perties of materials are of particular interest owing to their

intimate relationship with the integrity of structures, which

ensures that the materials can consistently work as designed

without mechanical failures like material degradation, cracking,

buckling and delamination. Design of mechanical materials is

the process of tailoring the composition and structure of materi-

als to achieve desired or even unprecedented mechanical proper-

ties, which are of great importance to many families of advanced

materials. For instance, synthetic composites can be engineered

in terms of the composition of each constituent material and the

structure of the composites.2 Bio-inspired materials mimic the

excellent multifunctionality including mechanical and biological

properties of natural biomaterials, while difficult to design due

to the complexity of hierarchical and heterogeneous structures of

the mimicked biomaterials.3–8 Another emerging category of

composites that are rationally designed, called metamaterials,

have attracted great interest due to their unprecedented properties

compared to conventional materials, attributed to the break-

throughs in experimental techniques and computer-aided optimi-

zation tools to design complex material structures.9,10 Architected

materials, as a class of new metamaterials, have demonstrated

superior mechanical properties, such as high stiffness/strength-to-

weight ratios, recoverability under suppression, and damage

resistance.11–14 The complexity of compositional and topological

structures of advanced materials, however, can easily lead to

massive design spaces that exceed the computational limit of

brute force approaches and other conventional design algorithms,

implying the need for new design approaches.

Over the past a few decades, it has been found that artificial

intelligence (AI), a study of computations which perceive,

reason, and act like human beings, has the potential to address

these challenges.15 Specifically, the most promising one is an

approach to AI called machine learning (ML), which can dis-

cover the mapping from high-throughput input data to output

that is used to make decisions. In simple ML algorithms, the

representation of input data is hand-designed by researchers,

and each piece in the representation is referred to as a feature.

Yet, it was extremely challenging to manually extract appropriate

features from some sort of raw data that are easy to understand

for human but difficult for machines, i.e., photographs of streets

where cars are supposed to be recognized, until the emerge of

deep learning (DL), a specific type of ML that can not only learn

the representation of the input data but also parse the repre-

sentation into multiple levels—from simple features to abstract

ones—attributed to complex neural network structures.16 ML,

especially DL, has achieved many exciting breakthroughs in

algorithms and led to great success in computer vision, natural

language processing and autonomous driving.17 Materials and

mechanics communities are aware of the great opportunities of

leveraging ML as a potential new paradigm. Several general

reviews of materials design using ML have been published

during the past few years.18–21 In the meantime, numerous

research articles in this topic are coming out, and so do reviews

of ML in specific materials or mechanics branches, involving

energy materials,22,23 glasses,24 composites,25 polymers,26 bio-

inspired materials,27 additive manufacturing,28,29 continuum

materials mechanics,30 and so on.

In this review, we focus on reviewing the growth and state of

the art of research efforts on mechanical materials design using

ML, and also attempt to depict a general methodology for perform-

ing ML-based mechanical materials researches. As schematically

shown in Fig. 1, a typical workflow for combining ML and

materials research consists of three key components: (i) a well-

organized material dataset either collected from literature and
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existing databases or generated from experiments and simulations;

(ii) a ML model that is capable to learn and parse the representa-

tion for certain tasks; and (iii) a well-defined research problem of

mechanical materials that has not been addressed by conventional

methods, or has been solved but can be outperformed by

ML-based approaches. A ML-based material research needs to glue

all of these three components together, and a crucial step is the

preprocessing of the raw material database into an appropriate

numerical representation, also referred to as a descriptor. The

preprocessed data should match the input data structure required

by the selected ML model, and consist of essential material

features to ensure high accuracy and training efficiency. A high-

quality preprocessing requires not only expertise in mechanics and

materials science, but also domain knowledge in related ML

models. The former tells how to identify a challenging mechanical

materials problem, acquire a database, and devise data preproces-

sing. The latter helps to select a suitable ML model to leverage

and maximize its strength in given tasks, from prediction of

mechanical behaviors of target materials, design of de novo

mechanical materials, to development of new computational

approaches.

To further discuss the foregoing methodology with the aid of

present works in the literature, the paper is organized as

follows. We begin with a brief summary of state-of-the-art ML

models, algorithms and architectures. Readers can skip the

description of the methods if they have already been familiar

with them. To learn more about the methods of interest, we

refer to the research articles and reviews cited in this section in

which more details about the algorithms and examples are

presented. Then we move on to a discussion of approaches to

collect or generate datasets that are amenable to the ML

models, followed by a review of existing applications of ML

methods to various mechanical materials design problems.

In these sections, inspiring strategies for data preparation,

preprocessing, materials problem and ML model selection are

highlighted. The paper is concluded with a few perspectives on

the new computational paradigm that integrates mechanics

and materials science with ML techniques.

A Brief summary of ML models,
algorithms and structures

General ML approaches can be classified into three categories

known as supervised learning, unsupervised learning and

reinforcement learning (Fig. 2). Supervised learning is a task-

driven approach to map inputs to outputs with data being

labeled (known as the ground truth) during training, while

unsupervised learning are data-driven methods trained with

unlabeled data to search for undetected patterns of the given

dataset. Reinforcement learning is fairly different compared to

supervised learning and unsupervised learning which can be

distinguished by the presence of labels. Reinforcement learning

focuses on interaction between agents such as Go player with the

environment such as chessboard. Both supervised learning and

unsupervised learning evaluates the model’s performance by

minimizing a loss function or objective function. By contrast,

the objective of reinforcement learning is to maximize the notion

of cumulative reward. There is another category of ML approaches

called semi-supervised learning. As the name implies, it lies between

supervised and unsupervised learning due to the use of both labeled

and unlabeled data (generally mostly unlabeled) during training. In

the current field of mechanical materials designs, supervised learn-

ing approaches are most widely used as supervised tools are more

accurate and mature to implement compared to the tools in other

categories. Due to rapid and constant development of ML, the

methods listed in the section, which cannot claim to be an

exhaustive enumeration of existing ML approaches, briefly

summarizes some of them that are feasible for designs of

mechanical materials to the best of our knowledge.

Within this context, the simplest forms of ML without

complex multilayer structures are classical ML algorithms.

Fig. 1 Schematic of a typical workflow for design of mechanical materials using ML. With a material problem in mind, researchers encode their domain

knowledge into the preprocessing of the data collected or generated from the literature, existing databases, high-throughput experiments and

simulations, resulting in input data with appropriate representation that can be learned by the selected ML model, which is able to predict mechanical

behaviors and/or provide novel designs of the mechanical materials of interest after training.
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Linear regression (LIR)31 is one of the simplest algorithms aimed to

find a linear relation between the input features and continuous

output. Least Absolute Shrinkage and Selection Operator (LASSO)32

is a modification of LIR with additional absolute value penalization

added to the loss function. Another reasonable extension of LIR is

polynomial regression (PR)31 which includes polynomial terms in

finding linear solutions. To further support non linearity, regres-

sion algorithms such as support vector regression (SVR)33 and

random forest (RF)34 are introduced. These nonlinear models

usually handle outliers better and show higher accuracy than linear

models. Apart from regression, the other major category of ML

tasks is classification. Instead of predicting specific values such as

housing prices, the classification algorithms classify input into

predefined categories. An example of classification algorithms is

logistic regression (LOR),35 which is a classification algorithm

with a loss function in logistic form despite it is named with

‘‘regression’’. There are many other classical ML algorithms

which can handle both regression and classification problems

such as decision tree (DT)36 and gradient boosting.37,38

Beyond classical ML techniques, scientists have developed

artificial neural networks (ANNs), loosely inspired by the

interconnected neurons in human brains, for deep data

mining. The original idea is derived from perceptron, a simple

precursor formulation dating back to 1958.39 By stacking multi-

ple layers of neurons, a network structure is developed to learn

nonlinear relation between input and output or delicate data

distribution. As the depth of layer-by-layer networks increases,

the resulting DL models offer tremendous impacts in computer

science and various related interdisciplinary areas.

Feedforward neural networks (FFNNs) or multilayer percep-

tron (MLP)40,41 are probably the simplest and quintessential DL

models. As the names indicate, the information passes through

the network in a unidirectional manner for FFNNs. More

specifically, each layer which consists of multiple neurons

computes the output to the next layer based on the input from

the previous layer. The weights or trainable parameters used for

calculation for each neuron are optimized to minimize the loss

function. In order to approach the minimum of the loss

function during the training process, back propagation (BP),

a widely used technique in ANNs training, is implemented

together with gradient descent (GD) algorithm.42 BP functions

as similar as calculating derivatives and GD algorithms deter-

mine the direction to jump down to the minimum. The process

iterates until the loss function is close to its minimum.

Besides general FFNNs, two types of DL architectures are

gaining vast attention due to their applications in computer vision

and natural language processing (NLP), known as convolutional

neural networks and recurrent neural networks.

Convolutional neural networks (CNNs) were first introduced in

1980,43 and reformulated in 1999.44 CNNs are image-based DL

architecture by calculating mathematical operation ‘‘convolution’’

to extract features of images. Convolution preserves the spatial

relationship between pixels and is calculated by multiplying the

image matrix with the filter matrix. Filters contain trainable

weights which are optimized during training for feature extraction.

With different filters, separate operations such as edge detection

can be performed to one image. By stacking the convolutional

layers, simple features will be gradually assembled to intact and

complicated ones.45 The CNNs are applied to and show exciting

performances in face recognition, images classification and object

detection.40 In materials design problems, with the capacity of

capturing features at different hierarchical levels, CNNs are well

suited to describe the properties of materials (which innately have

hierarchical levels), especially biomaterials. These hierarchical

features are not just found in materials, but in many other

representations of matter, sound and language, and hence

universal to the description of key societal systems.46,47

Recurrent neural networks (RNNs) also gain popularity due to

their capability of dealing with sequential data. In CNNs, inputs

and outputs are supposed to be independent of each other,

which might not be suitable for some tasks that emphasize the

sequence of the data. For instance, given an incomplete sentence, it

would be difficult to predict the next word if the sequential structure

of the sentence is omitted. Instead, RNNs act on the sequential data

with the output being depended on the previous and later sequence

and utilize ‘‘memories’’ in determining output of each layer or state.

For RNNs with large depth, the gradient calculated by BP easily

Fig. 2 A brief overview of ML approaches, including three major categories

known as supervised learning, unsupervised learning and reinforcement learning.

ML approaches such as linear regression (LIR), support vector regression

(SVR), feedforward neural networks (FFNNs), multilayer perceptron (MLP), con-

volutional neural networks (CNNs) and recurrent neural networks (RNNs) are

generally used for supervised learning. Typical approaches to unsupervised

learning include k-means clustering, autoencoder and generative adversarial

networks (GANs). Reinforcement learning follows a general interactive loop

between the agent and the environment. The difference between supervised

and unsupervised learning is determined by whether training data is labeled or

unlabeled, and there is a category of tasks between them called semi-supervised

learning, which combines labeled and unlabeled data (generally mostly

unlabeled) during training. It is worth pointing out that some of the afore-

mentioned ML methods are not merely limited to the tasks illustrated in this

schematic. For instance, graph neural networks (GNNs) have been widely used

for semi-supervised learning tasks, but they are also applicable to supervised

and unsupervised learning tasks involving graph representation.
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vanishes or explodes.48,49 To address this issue, plenty of mechan-

isms including Long short-term memory (LSTM),50 Gated recurrent

unit (GRU),51 ResNet52 and Attention53,54 have been developed,

increasing the impact of RNNs in NLP tasks such as language

translation and speech processing. RNNs also shed light on scientific

problems such as protein folding and de novo protein design.55–57

Generative models have been established to generate new

data points based on the distribution of existing data. An

intriguing and successful category of architectures among them

are generative adversarial networks (GANs),58 which consist of

two neural networks, the generator and the discriminator. The

generator proposes new data instances and the discriminator

compares the generated data with the real data. These two

components contest with each other during the training as the

generator aims to ‘‘fool’’ the discriminator by producing more

genuine images while the discriminator attempts to distinguish

real images from false images as accurately as possible. GANs

reach convergence when the generator and the discriminator

are at Nash equilibrium. The process of balancing the performances

of the generator and the discriminator is somewhat similar to

equilibrating a physical system with both attractive and repulsive

forces which indicates that GANs can potentially shed light on

describing physical phenomena. Furthermore, with the objective of

generating fake data with restricted conditions or characteristics, a

subtype of GANs named conditional GANs (cGANs)59 have been

developed which include labels as a control variable. One of the

applications of cGANs is image-to-image translation60,61 in which an

image is used as the constrain of the generator. Unlike GANs,

variational autoencoder (VAE)62 is another type of generativemodels

that uses one neural network which first encodes the input data into

an inexplainable code named as latent code and then decodes the

latent code to reconstruct the output.

ML methods can also be used to evaluate and improve the

performance of other applied ML models. Bayesian learning

(BL)40 is an approach used for parameter estimation and

probability comparison to evaluate a given algorithm. Gaussian

process regression (GPR)63 is a nonparametric approach which

can provide uncertainty measurements of predictions and

build reduced-order models based on Bayesian learning. These

approaches are potentially useful for mechanical materials

designs problems as they are suitable for relatively small

datasets and are working well without prior knowledge of

model forms. Moreover, active learning is a learning algorithm

that interactively inquires the user and selects data to be

labeled.64 Training data would be augmented in an active

learning loop with post-hoc experiments or simulations. For

further discussion on the application of active learning in

materials science, we refer to a recent review paper.65

Reinforcement learning (RL) is an area of ML in which the

agent takes action based on the variation of the environment to

maximum long-term gains.66 The training process is aiming at

finding a balance between exploration (of uncharted territory)

and exploitation (of current knowledge).66 From 2014 to 2017, the

presence of AlphaGo,67 a RL-based AI was able to beat top-notch

Go players, showing the power of RL and its potential applica-

tions to materials problems such as interactive materials design.

Graph neural networks (GNNs), unlike standard neural net-

works operating on Euclidean data, operate on graphs that have

non-Euclidean data structures consisting of nodes connected

by edges without natural orders.68 Recent breakthroughs in GNNs,

such as graph convolutional networks (GCNs),69 have demon-

strated the capability of GNNs to learn graph embeddings through

message passing between the nodes and its outstanding perfor-

mance on semi-supervised classification tasks, which are poten-

tially applicable to many materials and mechanics problems that

inherently consist of graph structures.

Popular ML models and algorithms used in the design of

mechanical materials, along with example applications, are

tabulated in Table 1.

Data collection, generation and
preprocessing

If ML models are the engines to tackle various tasks, then data

is the fuel to power the models. Sufficient amount of data is a

prerequisite to make the models work, and high-quality data

enable the models to run efficiently. Nevertheless, there arise

several vital and difficult questions: how much data is suffi-

cient? How to obtain those data? What is the quality of the

input data? And how to improve it? These questions are crucial

for the ML-based design of mechanical materials since the data

relate the mechanics problems of interest to the applied ML

models. Researchers can either collect data from the literature

or existing databases, or generate their own databases via high-

throughput experiments or simulations (Fig. 1). Feeding the

raw data into the ML model is usually accompanied with the

following issue: when the data is either too easy or too hard to

be obtained, it would be unnecessary or difficult to implement

ML-based methods for solving the problem. For instance, there

is no need to use ML if the existing method can travel through

the entire design space at an acceptable cost, and a more

common scenario is that the obtained datasets only cover a

small portion of the design space. It is also possible that the

collected databases of images or texts are understandable for

human but uninterpretable for machines. In those cases, the

raw data are, in general, required to be preprocessed before fed

into the ML model, emphasizing the importance of leveraging

the domain knowledge of the researchers to obtain representa-

tive data and perform data preprocessing in a proper manner

for better results from the ML model. In this section, we briefly

review and discuss some methods for data collection, genera-

tion and preprocessing in the literature that might shed light

on the study of mechanical materials design problems using

ML, including several pioneering approaches developed for

data-driven computational mechanics,70–73 and data-driven

frameworks of materials analysis and design.74–81

Data collection from existing databases or literature

The advent of high-throughput computational materials design

leads to the construction of many materials databases,82 such

as AFLOW,83 Materials Project (MP),84 MATDAT,85 MatWeb,86
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MatMatch,87 MakeItForm,88 and MatNavi.89 These databases

consist of enormous materials properties obtained from experi-

mental measurements and first-principles calculations, includ-

ing mechanical properties like elastic constants, tensile/

flexural/shear/fatigue strengths, fracture toughness, hardness,

and so on. Detailed mechanical features of these databases are

listed in Table 2. According to the mechanical problems of

interest, sub-datasets of specific properties or material classes

can be filtered and collected effectively through the online plat-

forms of those databases. For instance, mechanical properties of

inorganic compounds from the MP database have been system-

atically explored.90 In a separate study, more than one hundred

vanadium oxide materials along with various unique composi-

tions have been found in the MP database.91 In order to train DL

models, this dataset has been significantly enlarged via a virtual

substitution of existing binary materials. As an inspiring example,

Raccuglia et al. have leveraged the unreported entries about failed

experiments from their archived laboratory notebooks to build a

database for use in training and testing the applied ML model.92

Labeled datasets can be obtained from surveying the literature

as well, such as datasets of copper alloys with different tensile

strengths and electrical conductivities,93 ABO3 compounds,94

high-temperature ferroelectric perovskites,95 and single-molecule

magnets.96 In addition, a glass dataset of experimental data was

Table 1 Popular ML methods in design of mechanical materials

ML method Characteristics Example applications in mechanical materials design

Linear regression;
polynomial regression

Model the linear or polynomial relationship
between input and output variables

Modulus112 or strength123 prediction

Support vector machine;
SVR

Separate high-dimensional data space with
one or a set of hyperplanes

Strength123 or hardness125 prediction; structural topology
optimization159

Random forest Construct multiple decision trees for
classification or prediction

Modulus112 or toughness130 prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Prediction of modulus,97,112 strength,93 toughness130 or
hardness;97 prediction of hyperelastic or plastic behaviors;143,145

identification of collision load conditions;147 design of spinodoid
metamaterials163

CNNs Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Prediction of strain fields104,105 or elastic properties102,103 of
high-contrast composites, modulus of unidirectional
composites,136 stress fields in cantilevered structures,137 or yield
strength of additive-manufactured metals;121 prediction of
fatigue crack propagation in polycrystalline alloys;140 prediction
of crystal plasticity;120 design of tessellate composites;107–109

design of stretchable graphene kirigami;155

structural topology optimization156–158

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Prediction of fracture patterns in crystalline solids;114 prediction
of plastic behaviors in
heterogeneous materials;142,144 multi-scale
modeling of porous media173

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Prediction of modulus distribution by solving inverse
elasticity problems;138 prediction of strain or stress fields in
composites;139 composite design;164 structural topology
optimization;165–167 architected materials design115

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Modulus122 or strength123,124 prediction; design of
supercompressible and recoverable metamaterials110

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Strength prediction124

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Hardness prediction;126 designs of active
materials;160,161 design of modular metamaterials162

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Deriving microstructure-based traction-separation laws174

Graph neural networks
(GNNs)

Operate on non-Euclidean data structures;
applicable tasks include link prediction,
node classification and graph classification

Hardness prediction;127 architected materials design168
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collected from both literature and existing databases.97 The size of

the collected dataset relies heavily on the amount of accumulated

literatures in the corresponding field. Relatively small datasets

with tens to hundreds data points are acceptable for optimization

approaches if equipped with an active learning loop.95,98

Furthermore, text processing techniques can be utilized to

replace manual labor in the extraction of features from research

articles. With NLP techniques adopted, an automated workflow

of article retrieval, text extraction and database construction was

developed. to build a dataset of synthesis parameters across 30

different oxide systems, which is autonomously compiled and

tabulated by training the text processing approach using over

640 000 materials synthesis journal articles.99 The materials

synthesis databases obtained from this approach enable a

broader applications of ML methods than before, such as the

prediction of materials synthesis conditions100 and candidate

precursors for target materials.101

Data generation

When performing high-throughput experiments or simula-

tions, researchers have more freedom to design the features

and control the size and distribution of the datasets to be

generated. Nevertheless, a major challenge is to balance the

expense of data generation and the resulting performance of

the applied ML model. Existing works in the literature have

shown that leveraging domain knowledge in materials science,

solid mechanics and other related fields results in datasets that

are more representative of the design spaces and thus display

better results from the applied models.

Computational methods can be used to simulate materials of

interest and relate the mechanical properties to the representative

structures of the materials at different scales, from continuum to

atomistic levels. For example, finite element method (FEM) was

implemented to generate datasets of three-dimensional (3-D)micro-

structures of high-contrast composites,102–106 two-dimensional (2-D)

tessellate composites,107–109 and metamaterials.110 Yang et al. cre-

ated a dataset of synthetic microstructure images of materials with

various compositional and dispersive patterns using Gaussian

random field (GRF) method.111 High-throughput molecular

dynamics (MD) can be utilized as a design space sampling method

for the atomistic structures and behaviors of materials like silicate

glasses,112 metal–organic frameworks (MOFs),113 as well as brittle

materials with different crystal orientations.114

A framework for data-driven analysis of materials has been

built to avoid unacceptable computational expense of data gen-

eration from high-fidelity analyses, such as FEM simulations

involving plasticity and damage, and reduced order methods were

utilized to generate large databases suitable for ML.77,78,81 It is also

possible to reduce the scale of design spaces by considering the

symmetries in the materials problems to be investigated. The

design spaces of 2-D tessellate composites under symmetric

loadings can be truncated by half,107–109 and the generated

topologies of architected materials were classified into 17 datasets

according to the crystallographic symmetry groups in 2-D space.115

Benchmark databases, such as MNIST,116 are particularly useful

for comparing the accuracy and efficiency of various ML techniques

on specific tasks. Recently, a benchmark dataset namedMechanical

MNIST was constructed by converting the MNIST bitmap images

into heterogeneous blocks of materials.117 This dataset, labeled by

different forms of mechanical responses calculated from FEM

simulations, can be used to evaluate the performance of meta-

models of heterogeneous materials under large deformation.

Performing experiments to create sufficient large datasets for

training DL models is currently difficult due to the extremely

high cost. However, high-throughput experiments are applicable

to the validation of trained ML models,118 and relatively small

training sets can be augmented via post-hoc experiments in an

active learning loop.95,98 Recently, an autonomous research

system has been built to enable not only automated experimen-

tation but also the selection of subsequent experiments under a

framework of Bayesian optimization, which can be utilized to

mechanical materials design problems such as optimization of

additive manufacturing structures.119

Data preprocessing

ML models expect certain data structures (i.e., images, texts,

graphs) as input and thus the datasets need to be preprocessed

before fed into the applied model. During preprocessing, data

Table 2 High-throughput materials databases with mechanical features

Database name Material categories Mechanical features URL

AFLOW83 Alloys; inorganic compounds Elastic properties http://www.aflowlib.org/
Materials Project (MP)84 Inorganic compounds; nanoporous

materials
Elastic properties https://materialsproject.org/

MATDAT85 Steels; aluminum and titanium
alloys; weld metals; etc.

Static properties; nonlinear
stress-strain
behaviors; cyclic stress–strain
behaviors; fatigue behaviors

https://www.matdat.com

MatWeb86 Polymers; metals; ceramics;
semiconductors; fibers; etc.

Elastic properties; strength;
toughness; hardness; etc.

http://www.matweb.com

MatMatch87 Metals; composites; ceramics;
polymers; glasses; etc.

Elastic properties; strength;
toughness; hardness; etc.

https://matmatch.com

MakeItForm88 Metals; polymers; ceramics Elastic properties; strength;
toughness; hardness; etc.

https://www.makeitfrom.com

NIMS materials database (MatNavi)89 Polymers; inorganic materials; metals Elastic properties; strength;
hardness; etc.

https://mits.nims.go.jp/en/
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augmentation techniques can be implemented to enlarge the

datasets, and irrelevant data points that would deteriorate the

performance of the model should be removed.

In a recent work on the prediction of fracture patterns in

brittle materials, the discrete atoms in a triangular lattice,

which is adopted from the MD simulations to generate the

datasets of crack patterns, were mapped into ordered pixels in

an image that can not only be treated as input to the first

convolutional layer of the applied LSTM model but also eliminate

the irrelevant information in the atomic structure other than the

spatial features of the crack.114 In another example, least angle

regression (LARS) was utilized as a feature selection algorithm for a

large glass dataset taken from the literature and online

databases.97 Image processing techniques, such as rescaling and

cropping, were utilized to augment the initial dataset that might be

insufficiently large to train a DL model.120 It has been demon-

strated that less efforts on preprocessing are required to design

features for DL than conventional MLmethods due to the ability of

the DL models to parse the representation from simple to abstract

features through the training process.121 The techniques used to

develop data-driven solvers might also inspire efficient methods to

process sparse and noisy data of materials responses.70,71

Applications
Prediction of mechanical behaviors

The ML models, trained on the datasets containing materials

information, are supposed to give fast and accurate predictions

of target mechanical properties or behaviors, or to discover

compositions or structures that outperform the training data in

the design space.

Materials with complex and disordered microstructures,

such as glasses and alloys, typically have large databases

obtained from experiments or simulations focusing on

composition-property relationships. Thus, the selected features

like concentrations of components are usually arranged as

feature vectors, and ML methods good at processing input

vectors are particularly suitable for the property prediction

tasks of these materials. For instance, different ML algorithms

(PR, LASSO, RF and MLP) were adopted to predict the Young’s

modulus of silicate glasses.112 Among those methods, MLP gives

the highest accuracy, and the LASSO algorithm offers a slightly

lower accuracy but higher simplicity and interpretability of the

model. It is subsequently shown that using GPR instead of

neural networks can avoid overfitting for a sparse dataset.122

Recently, a large dataset obtained from the literature and glass

datasets was preprocessed to train deep FFNNs that allow the

design of eight essential properties of oxide glasses, including

Young’s modulus, shear modulus and hardness.97 Wang et al.

developed a design system based on neural networks for copper

alloys that can rapidly screen the composition design space and

provide the compositional design of new copper alloys with a

target ultimate tensile strength and electrical conductivity.93 To

discover strong and conductive copper alloys, Zhao et al. recently

reported a systematic study of the selection of ML models (LIR,

SVR, regression tree andGPR), dimensionality reduction techniques

(principal component analysis, correlation-based and genetic algo-

rithm) and additional features.123 For gradient nanostructured

metals, Gaussian process based active learning surrogate models

were developed to study the structural gradient effects on strength

and deformation mechanisms.124 Furthermore, new superhard

materials were proposed with the aid of ML techniques such as

SVR,125 evolutionary algorithms,126 and GNNs.127 In a study by Wen

et al., high entropy alloys predicted by the applied ML models were

synthesized, showing higher hardness values than any other sample

in the training dataset.128MLmodels can also be trained to capture

the relationship between salient structural features and

mechanical properties. For example, deep neural networks that

were trained to learn the relationship between the geometric

patterns and mechanical responses of non-uniform cellular

materials are capable of solving both forward and inverse

problems.129 Liu et al. have achieved the fracture toughness

prediction of polycrystalline silicon specimens using two dif-

ferent ML algorithms, RFs and FFNNs.130 In a recent study, the

strength and toughness of spider webs were predicted by using

a neural network trained with fiber lengths and orientations, as

well as web connectivity and density.131

ML-based prediction of mechanical properties can also be

achieved using atomistic descriptors. For example, local pro-

perties (bond length, angle and dihedrals), global properties

(density or ring sizes distribution) and porosity-related properties

were fed as entries into a gradient boosting regressor to predict

mechanical properties of zeolite frameworks.132,133 Given the

system temperature, strain rate, vacancy defect and chirality,

mechanical properties of single-layer graphene were predicted

using different ML algorithms (stochastic gradient descent,

k-nearest neighbors, SVR, DT, ANN).134 In a separate work by

Moghadam et al., the relationship between the structure and

mechanical stability of thousands of MOF materials has been

established to predict the bulk modulus of MOF materials using

an ANN that inputs structural or topological descriptors.113

For materials that can be represented as tessellated spatial grids

of multi-phase voxels, CNNs are advantageous over conventional

ML methods in learning embeddings at different length scales

ranging from voxels to representative volume elements (RVEs). The

elastic deformation fields and effective elastic properties of high-

contrast two-phase composites were predicted using 3-D CNN and

datasets of 3-D volume elements with different microstructures

(Fig. 3).102–105 Convolutional networks with different architectures

were used to predict the mechanical properties of polymer nano-

composites based on microstructure images,135 thermo and

mechanical properties of unidirectional composites,136 and stress

fields in cantilevered structures.137 In particular, Herriott and Spear

implemented two conventional MLmethods (Ridge regression and

gradient boosting) and a CNN model to predict the effective yield

strength of additive-manufactured metals.121 When 3D images of

the microstructures represented by crystal orientation are input to

the CNN model, it outperforms the other two methods fed with

microstructural features, demonstrating the strengths of CNN in

learning higher-level features directly from image data and

reducing the efforts on preprocessing and feature extraction.
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The capability of generative models to deal with image-to-

image translation tasks can be harnessed to achieve fast con-

version between material distribution and mechanical fields.

Ni and Gao developed a cGAN model to address the inverse

elasticity problem of calculating elastic modulus distribution

from observed displacement or strain fields in inclusion systems,

mimicking an application scenario for real-time elastography and

high-throughput non-destructive evaluation techniques.138 Recently,

Yang et al. introduced a deep learning approach which predicts

complex strain or stress fields of hierarchical composites directly

from geometric information.139 Image-to-image translation using

GANs has been implemented to investigate mechanical systems

and exhibited astonishing performances in reproducing mechanical

fields, extracting secondary information and extending to various

loading conditions, component shapes and hierarchies. This frame-

work could be further applicable to fast prediction of other physical

fields with geometric information in image-based representation.

Mechanical problems involving nonlinearities such as plasti-

city, fracture and dynamic impact are known to be difficult and

computationally expensive for conventional numerical simula-

tion schemes. ML-based approaches have created new oppor-

tunities for addressing these long-standing problems.

For fracture problems, Pierson et al. developed a CNN-based

methodology to predict the microstructure-sensitive propaga-

tion of a 3-D fatigue crack in a polycrystalline alloy based on the

past crack surface.140 Guilleminot and Dolbow reported a data-

driven framework that can generate new crack patterns in

random heterogeneous microstructures through the combi-

nation of a manifold learning approach and a crack path

reconstruction procedure.141 Moreover, Hsu et al. presented a

ML-based approach combining convolutional layers and LSTM

for predicting fracture patterns in crystalline solids based on

atomistic molecular simulations (Fig. 4a).114 The proposed

approach not only captures complex fracture processes but also

Fig. 3 Predicting elastic behaviors of high-contrast composites using convolutional neural network (CNN). (a) An example microscale volume element,

and (b) a comparison of strain field prediction from FEM and statistical models. (Licensed under CC-BY).104 (c) The compositional structures (top) and

spatial statistics (bottom) of three example generated microstructure volume elements, (d) a schematic of the applied 3-D CNN architecture, and

(e) a selection of three learned filters that help to distinguish microstructures similar to the three examples shown in (c), respectively (Reproduced with

permission.103 Copyright 2017 Elsevier).
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shows good agreement regarding fracture toughness and crack

length (Fig. 4b). The work further examined the crack propaga-

tion in more complicated crystal structures including bicrystal-

line materials and graded microstructures (Fig. 4c). The strong

predictive power of their approach can be potentially applied to

design materials with enhanced crack resistance.

For nonlinear deformation problems, Mozaffar et al.

recently established a data-driven framework consisting of

RNNs to learn history-dependent behaviors of heterogeneous

RVEs loaded along different deformation paths, and it has

enabled the prediction of plasticity-constitutive laws in an

efficient and accurate manner without adopting the widely-

used assumptions in existing plasticity theories (Fig. 5).142

Huang et al. developed a hyperelastic model using FFNNs

and a plasticity framework via a combination of FFNNs and

Proper Orthogonal Decomposition (POD).143 Yang et al. trained

a deep residual network that can predict crystal plasticity using

high-throughput discrete dislocation simulations.120 Wu et al.

designed a RNN based on GRU to predict the stress–strain

evolutions of elasto-plastic composite RVEs subjected to random

loading paths.144 Yang et al. utilized ANNs to construct

constitutive laws for isotropic hardening elastoplastic materials

with complex microstructures.145 In a study by Zhou et al., a

discrete dislocation dynamics model of straight dislocations on

two parallel slip planes was self-consistently transformed into a

continuum model via the integration of asymptotic analysis and

ML methods.146 Chen et al. utilized DL models to find the inverse

solution to collision load conditions with the post-collision plastic

deformation of shell structures given.147 Stern et al. reported a

framework for supervised learning in thin creased sheets which

can not only accurately classify the patterns of training forces but

also generalize to unseen test force patterns, demonstrating how

learning can be achieved from plasticity and nonlinearities in

materials.148 In order to solve both forward and inverse indenta-

tion problems, many efforts have been made using neural

networks.149–153 Recently, Lu et al. demonstrated a general frame-

work for extracting elastoplastic properties of materials from

instrumented indentation results with significantly elevated

accuracy and training efficiency, which have been furtherly

improved by considering known physical and scaling laws and

by utilizing transfer learning techniques when additional new

experimental data are available.154

Fig. 4 Predicting dynamical fracture using a deep learning approach, dependent on microstructural details. (a) Workflow of fracture patterns prediction.

(b) Comparison of crack path, length and energy release between molecular simulations and the ML approach. (c) Prediction of crack patterns in

bicrystalline and gradient materials (Reproduced with permission.114 Copyright 2020 Elsevier).
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Topological design

Designing topological structures of multi-phase materials such

as composites or architected materials is intractable in some

aspects for conventional optimization methods due to the

dauntingly large design spaces, while ML-based models have

the capability to explore the design spaces more efficiently and

to find unprecedented designs with better performance than

the structures in training sets.

2-D structures of materials can be represented as pixel

images, fed as input to image processing models like CNNs

and GANs. These models can significantly enlarge the design

spaces to be explored for the optimal design, and the design

process can be furtherly accelerated through the integration of

appropriate optimization algorithms in the workflow. For

instance, Gu et al. used CNN to design tessellate composites

with optimized strength and fracture toughness (Fig. 6a–d).107,108

CNN was applied to extract local patterns of the composite

around the crack tip in the framework. In these problems, the

scale of the design space increases exponentially with the

number of grid elements in the composites, and finding the

optimal design can be easily intractable for brute-force

approaches by elevating the grid resolution. In order to address

this issue, Yu et al. integrated the CNN model with a genetic

algorithm to accelerate the search process using the ML predic-

tion as the fitness function for the optimization algorithm

(Fig. 6e and f).109 In a study by Hanakata et al., a CNN-based

search algorithm was developed to find optimal arrangements of

kirigami cuts in graphenes to maximize stretchability.155

Encoder and decoder frameworks based on convolutional

layers can be employed to accelerate the process of topology

optimization of mechanical structures.156–158 Since the models

were trained with the structures that have already been optimized

by standard optimization methods, direct evaluation of

mechanical properties (e.g., compliance) in loss functions can

be avoided. As a trade-off, designs predicted by ML models may

have mechanical incompatibility such as structural discontinu-

ity, but these issues can be refined by connecting a cGAN model

to the trained encoder and decoder network.156 Different from

a pixel-based representation, a structural topology optimization

method has been achieved through the movement of morph-

able components as basic building blocks, and both SVR and

the k-nearest neighbors algorithm were adopted to extract the

mapping between the external load and design parameters.159

Even though this approach shrinks the design space, it can

Fig. 5 Learning history-dependent plasticity using recurrent neural networks. (a) Schematic of sampling temporally deformation paths. (b) A deformed

heterogeneous representative volume element (RVE) with distributed circular fillers in the generated database. (c) Comparison of the results predicted by

recurrent neural networks and calculated from FEM analyses for two different RVEs under different loading conditions (Licensed under CC-BY).142
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avoid mesh dependency and model complexity issues induced

by preprocessing structures into pixel images.

Topological design approaches using other ML techniques

have also been widely reported in the literature. For example,

structural designs of active composite beams and hard-

magnetic soft active materials with target deflected shapes were

obtained using evolutionary algorithms.160,161 Recently, Wu

et al. reported an approach to design modular metamaterials

using genetic algorithm and neural networks.162 They applied

the method to the design problems of phononic metamaterials

and optimization problems of interconnect for stretchable

electronics. Kumar et al. built an inverse design framework of

spinodoid metamaterials using deep neural networks that can

provide optimal topologies for desired properties.163

Leveraging the strengths of advanced ML techniques usually

offers new pathways for the design of mechanical materials.

Bayesian machine learning is a powerful approach for handling

noisy data and can quantify the uncertainty of model predic-

tions, which are particularly useful for design of metamaterials

that are often sensitive to manufacturing imperfections. Bessa

et al. demonstrated that data-driven designs of supercompres-

sible and recoverable metamaterials made of brittle polymeric

base materials can be found with the aid of Bayesian machine

learning methods (Fig. 7).110 Generative methods have the

ability to create plenty of new designs with different structures

and even better mechanical performance compared to those in

the training set, suitable for not only composite design,164 but

also topology optimization.165–167 Mao et al. harnessed GANs to

acquire hundreds of designs of 2D periodic units in architected

materials that approach the Hashin-Shtrikman upper bounds

and at the same time attain desired crystallographic symme-

tries and porosities.115 Other work reported the development of

Fig. 6 ML-based tessellate composites design for optimal strength and fracture toughness. (a) Workflow of the ML approach for the prediction of

mechanical properties of composites. (b) Ranking comparison between the results from the ML approach and FEM simulations. (c) Optimal designs

regarding strength and toughness in mode I test at various resolutions (Reproduced with permission.107 Copyright 2017 Elsevier). (d) Extended

implementation to composites consisting of anisotropic building blocks (Licensed under CC-BY).108 (e) Framework embedded with genetic algorithm to

accelerate the design process and (f) optimal designs in mode II test validated by MD simulations (Reproduced with permission.109 Copyright 2019 IOP

Publishing Ltd).
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a semi-supervised approach to design architected materials

using GNNs and the analogy between architected materials

and graphs, that is, truss elements to edges, and truss pin

joints to nodes.168 Graph connectivity and the load levels of a

small fraction of nodes are fed as input to the GNNs that can

predict the distribution of the load levels of the remaining

nodes, and then the GNN model is integrated with a design

algorithm to engineer the topological structures of the archi-

tected materials.

Development of new computational methods

Data-driven approaches, developed for computational

mechanics and materials analysis, are aimed to solve mechanics

problems in which large datasets of material behaviors are

Fig. 7 Data-driven design of supercompressible and recoverable metamaterials using Bayesian machine learning. (a) Workflow of the data-driven design

approach of supercompressible metamaterials. (b and c) Mechanical testing of the obtained designs of (b) a recoverable and highly compressible

metamaterial produced by fused filament fabrication using polylactic acid, and (c) a monolithic metamaterial manufactured by two-photon

nanolithography (scale bars, 50 mm) (Licensed under CC-BY).110

Materials Horizons Review

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f


1166 |  Mater. Horiz., 2021, 8, 1153–1172 This journal is © The Royal Society of Chemistry 2021

available while governing equations or parameters for standard

computational methods are elusive.70–73,77,78 Recently, the integra-

tion of data-driven frameworks with ML algorithms have offered

new perspectives for computational approaches for modeling

mechanical phenomena of materials at multi-level scales.

For instance, in order to solve nonlinear heterogeneous

structure problems, neural networks have been used in a

decoupled computational homogenization method where the

effective strain-energy density is first computed at discrete

points in a macroscopic strain space and then interpolated on

RVEs.76 Inspired by the previous method, a data-driven frame-

work aiming to model and design new composite material

systems and structures has been built, accompanied with a

method called self-consistent clustering analysis that make the

framework applicable to materials problems involving irrever-

sible deformation.78 Moreover, Liu et al. reported a data-driven

method called deep material network, which is developed for

structure–property predictions of heterogeneous materials under

the effects of nonlinear, failure and interfacial behaviors.169–172

Wang and Sun leveraged RNNs and the concept of directed

graph to address the issues on the linkages between multi-scale

models of porous media using a recursive data-driven approach,

where the databases generated from smaller-scale simulations are

used to train RNN models at larger scales (Fig. 8).173 They

also implemented reinforcement learning to generate traction–

separation laws for materials with heterogeneous microstructures.174

Capuano and Rimoli developed a new type of finite elements called

‘‘smart elements’’ in which ML models provide force predictions

based on the elements’ states, circumventing the computation of

internal displacement field and the need for numerical iterations.175

Chan et al. reported an unsupervised approach that combines

techniques such as topology classification, image processing, and

clustering algorithms to promptly identify and characterize micro-

structures, including grains in polycrystalline solids, voids in porous

materials, and micellar distribution in complex solutions (Fig. 9).176

In a recent work by Samaniego et al., deep neural networks based on

the variational form of the boundary value problems were imple-

mented as solvers for partial differential equations (PDEs) in various

solid mechanics problems, using a fundamental idea that the

energy of the system to be minimized can be naturally treated as

a loss function for the neural networks.177

Perspectives

A straightforward benefit ML brings to materials and mechanics

researches is promoting the efficiency of materials designs via

experiments and simulations. Exploring a massive design space

of novel materials is often intractable for brute force approaches

and too complicated to achieve using physical intuition. Instead,

ML-based design approaches can incorporate materials and

mechanical features during the preprocessing of input data,

Fig. 8 A multi-scale multi-physics framework for poromechanics problems driven by directed graph representation and recurrent neural networks

(Reproduced with permission.173 Copyright 2018 Elsevier).
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learn the relationship between materials structures and mechanical

behaviors during training, and provide targeted designs using the

trained models. It should be pointed out that ML algorithms may

not necessarily be beneficial when dealing with material problems

in which the overall cost of training and design procedures is more

expensive than standard approaches. A promising way to elevate the

performance of ML-based methods in those problems is to encode

scientific knowledge not only in data preprocessing but also in

Fig. 9 An unsupervised approach for the identification and characterization of microstructures in 3-D samples of various material systems.

(a) A workflow for autonomous microstructural characterization of 3-D polycrystalline solids. (b and c) Results of the ML-based microstructural analysis

method on the analysis of (b) voids in porous materials and (c) micellar distribution in complex solutions (Licensed under CC-BY).176

Materials Horizons Review

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f


1168 |  Mater. Horiz., 2021, 8, 1153–1172 This journal is © The Royal Society of Chemistry 2021

neural networks architectures. In this regard, recent development in

physics-guided ML frameworks, such as physics-informed neural

networks (PINNs) in which governing equations in the form of

PDEs are incorporated into loss functions,178 offers new perspec-

tives for the integration of ML and mechanical materials design.

ML approaches that can discover new physics may have a

broad application in materials and mechanics researches. It has

shown that ML can be trained to learn symbolic expression of

physical laws.Well-known physics concepts including Hamiltonian,

Lagrangian are predicted by symbolic regression.179 Brunton et al.

revealed governing equations underlying a dynamical system with

ML algorithms.180 Recent ML work using GNN has shown that the

algorithms are capable to discover new analytical solutions for dark

matter mass distribution.181 These works derived governing equa-

tions in a unique way and may offer a potential new direction for

understanding the mechanisms and mechanical behaviors of

various materials.

As summarized in this review, most of current researches focus

on applying ML algorithms to solve materials and mechanics

problems. Yet, it is worth pointing out that mechanical insights

also have the potential to facilitate the development of ML. Geiger

et al. showed that loss landscape of deep neural networks can be

interpreted with a paradigm based on jamming transition.182

Inspired by information process in natural neural networks,

spike neural networks (SNNs) transmit sparse and asynchronous

binary signals between neurons which incorporates time into

deep learning networks. As a consequence, SNNs have exhibited

favorable properties including low power consumption, fast

inference, and event-driven information processing.183 Despite

the popularity of ML systems, they are arguably treated as ‘‘black

boxes’’ due to the difficulty of inspecting how and why those

algorithms can make accomplishments. The known knowledge

in mechanics and materials science may help us understand the

mechanisms behind ML algorithms and develop new learning

techniques that can tackle challenging problems in materials

design, such as design of hierarchical structures or multifunc-

tional materials with desired overall performance of a set of

material properties.

So far, the potential of using ML in design of mechanical

materials has not been fully exploited yet with opportunities

and challenges lying ahead to be explored and overcome. It is

promising that ML-based approaches will revolutionize the way

we understand and design materials.
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T. Green, C. Qin, A. Žı́dek, A. W. R. Nelson, A. Bridgland,

H. Penedones, S. Petersen, K. Simonyan, S. Crossan,

P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu and

D. Hassabis, Nature, 2020, 577, 706–710.

Materials Horizons Review

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

https://arxiv.org/abs/1409.0473
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f


1170 |  Mater. Horiz., 2021, 8, 1153–1172 This journal is © The Royal Society of Chemistry 2021

56 C.-H. Yu, Z. Qin, F. J. Martin-Martinez and M. J. Buehler,

ACS Nano, 2019, 13, 7471–7482.

57 C.-H. Yu and M. J. Buehler, APL Bioeng., 2020, 4, 016108.

58 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville and Y. Bengio, Generative

Adversarial Nets, Advances in Neural Information Processing

Systems 27 (NIPS 2014), 2014, pp. 2672–2680.

59 M. Mirza and S. Osindero, 2014, arXiv:1411.1784, arXiv

preprint, https://arxiv.org/abs/1411.1784.

60 J. Zhu, T. Park, P. Isola and A. A. Efros, Unpaired Image-to-

Image Translation Using Cycle-Consistent Adversarial Net-

works, 2017 IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2242–2251.

61 P. Isola, J. Y. Zhu, T. Zhou and A. A. Efros, Image-to-image

translation with conditional adversarial networks, Proceedings

of the IEEE conference on computer vision and pattern

recognition (CVPR), 2017, pp. 5967–5976.

62 D. P. Kingma and M. Welling, 2013, arXiv:1312.6114, arXiv

preprint, https://arxiv.org/abs/1312.6114.

63 C. E. Rasmussen and C. K. I. Williams, Gaussian Processes

for Machine Learning (Adaptive Computation and Machine

Learning), The MIT Press, 2005.

64 B. Settles, Active learning literature survey, Univeristy of

Wiconsin Madison, 2009, vol. 52.

65 T. Lookman, P. V. Balachandran, D. Xue and R. Yuan, npj

Comput. Mater., 2019, 5, 21.

66 L. Pack Kaelbling, M. L. Littman, A. W. Moore and S. Hall,

Reinforcement Learning: A Survey, 1996, vol. 4.

67 D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis,

Nature, 2016, 529, 484–489.

68 J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li

and M. Sun, 2018, arXiv:1812.08434, arXiv preprint, https://

arxiv.org/abs/1812.08434.

69 T. N. Kipf and M. Welling, Semi-Supervised Classification with

Graph Convolutional Networks, 5th International Conference on

Learning Representations (ICLR 2017), 2017.

70 T. Kirchdoerfer and M. Ortiz, Comput. Methods Appl. Mech.

Eng., 2016, 304, 81–101.

71 T. Kirchdoerfer and M. Ortiz, Comput. Methods Appl. Mech.

Eng., 2017, 326, 622–641.

72 T. Kirchdoerfer and M. Ortiz, Int. J. Numer. Methods Eng.,

2018, 113, 1697–1710.

73 L. Stainier, A. Leygue and M. Ortiz, Comput. Mech., 2019,

64, 381–393.

74 J. Yvonnet, D. Gonzalez and Q. C. He, Comput. Methods

Appl. Mech. Eng., 2009, 198, 2723–2737.

75 A. Clément, C. Soize and J. Yvonnet, Int. J. Numer. Methods

Eng., 2012, 91, 799–824.

76 B. A. Le, J. Yvonnet and Q.-C. He, Int. J. Numer. Methods

Eng., 2015, 104, 1061–1084.

77 Z. Liu, M. A. Bessa and W. K. Liu, Comput. Methods Appl.

Mech. Eng., 2016, 306, 319–341.

78 M. A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley,

C. Brinson, W. Chen and W. K. Liu, Comput. Methods Appl.

Mech. Eng., 2017, 320, 633–667.

79 W. Yan, S. Lin, O. L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan,

S. Wolff, H. Wu, E. Ndip-Agbor, M. Mozaffar, K. Ehmann,

J. Cao, G. J. Wagner and W. K. Liu, Comput. Mech., 2018,

61, 521–541.

80 Z. Liu, M. Fleming and W. K. Liu, Comput. Methods Appl.

Mech. Eng., 2018, 330, 547–577.

81 H. Li, O. L. Kafka, J. Gao, C. Yu, Y. Nie, L. Zhang,

M. Tajdari, S. Tang, X. Guo, G. Li, S. Tang, G. Cheng and

W. K. Liu, Comput. Mech., 2019, 64, 281–305.

82 S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo,

S. Sanvito and O. Levy, Nat. Mater., 2013, 12, 191–201.

83 S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang,

R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito,

M. Buongiorno-Nardelli, N. Mingo and O. Levy, Comput.

Mater. Sci., 2012, 58, 227–235.

84 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,

S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and

K. A. Persson, APL Mater., 2013, 1, 011002.

85 MATDAT, https://www.matdat.com, accessed 21 October

2020.

86 MatWeb, http://www.matweb.com, accessed 21 October

2020.

87 MatMatch, https://matmatch.com, accessed 21 October

2020.

88 MakeItForm, https://www.makeitfrom.com, accessed 21

October 2020.

89 MatNavi, https://mits.nims.go.jp/en/, accessed 21 October

2020.

90 S. Chibani and F. X. Coudert, Chem. Sci., 2019, 10,

8589–8599.

91 J. Noh, J. Kim, H. S. Stein, B. Sanchez-Lengeling,

J. M. Gregoire, A. Aspuru-Guzik and Y. Jung, Matter,

2019, 1, 1370–1384.

92 P. Raccuglia, K. C. Elbert, P. D. F. Adler, C. Falk,

M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier

and A. J. Norquist, Nature, 2016, 533, 73–76.

93 C. Wang, H. Fu, L. Jiang, D. Xue and J. Xie, npj Comput.

Mater., 2019, 5, 87.

94 P. V. Balachandran, A. A. Emery, J. E. Gubernatis,

T. Lookman, C. Wolverton and A. Zunger, Phys. Rev. Mater.,

2018, 2, 043802.

95 P. V. Balachandran, B. Kowalski, A. Sehirlioglu and

T. Lookman, Nat. Commun., 2018, 9, 1668.

96 L. Holleis, B. S. Shivaram and P. V. Balachandran, Appl.

Phys. Lett., 2019, 114, 222404.

97 R. Ravinder, K. H. Sridhara, S. Bishnoi, H. S. Grover, M. Bauchy,

Jayadeva, H. Kodamana and N. M. A. Krishnan, Mater. Horiz.,

2020, 7, 1819–1827.

98 R. Yuan, Z. Liu, P. V. Balachandran, D. Xue, Y. Zhou, X. Ding,

J. Sun, D. Xue and T. Lookman, Adv. Mater., 2018, 30, 1702884.

99 E. Kim, K. Huang, A. Tomala, S. Matthews, E. Strubell,

A. Saunders, A. McCallum and E. Olivetti, Sci. Data, 2017,

4, 170127.

Review Materials Horizons

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://www.matdat.com
http://www.matweb.com
https://matmatch.com
https://www.makeitfrom.com
https://mits.nims.go.jp/en/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f


This journal is © The Royal Society of Chemistry 2021 Mater. Horiz., 2021, 8, 1153–1172 |  1171

100 E. Kim, K. Huang, A. Saunders, A. McCallum, G. Ceder and

E. Olivetti, Chem. Mater., 2017, 29, 9436–9444.

101 E. Kim, Z. Jensen, A. van Grootel, K. Huang, M. Staib,

S. Mysore, H. S. Chang, E. Strubell, A. McCallum, S. Jegelka

and E. Olivetti, J. Chem. Inf. Model., 2020, 60, 1194–1201.

102 Z. Yang, Y. C. Yabansu, R. Al-Bahrani, W. Liao,

A. N. Choudhary, S. R. Kalidindi and A. Agrawal, Comput.

Mater. Sci., 2018, 151, 278–287.

103 A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi and

L. Song, Acta Mater., 2018, 146, 76–84.

104 R. Liu, Y. C. Yabansu, A. Agrawal, S. R. Kalidindi and

A. N. Choudhary, Integr. Mater. Manuf. Innov., 2015, 4,

192–208.

105 R. Liu, Y. C. Yabansu, Z. Yang, A. N. Choudhary,

S. R. Kalidindi and A. Agrawal, Integr. Mater. Manuf. Innov.,

2017, 6, 160–171.

106 Z. Yang, Y. C. Yabansu, D. Jha, W. Liao, A. N. Choudhary,

S. R. Kalidindi and A. Agrawal, Acta Mater., 2019, 166,

335–345.

107 G. X. Gu, C. T. Chen and M. J. Buehler, Extrem. Mech. Lett.,

2018, 18, 19–28.

108 G. X. Gu, C. T. Chen, D. J. Richmond and M. J. Buehler,

Mater. Horiz., 2018, 5, 939–945.

109 C.-H. Yu, Z. Qin and M. J. Buehler, Nano Futur., 2019,

3, 035001.

110 M. A. Bessa, P. Glowacki and M. Houlder, Adv. Mater.,

2019, 31, 1904845.

111 Z. Yang, X. Li, L. C. Brinson, A. N. Choudhary, W. Chen and

A. Agrawal, J. Mech. Des., 2018, 140, 111416.

112 K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos,

N. M. A. Krishnan, M. M. Smedskjaer, C. Hoover and

M. Bauchy, Sci. Rep., 2019, 9, 8739.

113 P. Z. Moghadam, S. M. J. Rogge, A. Li, C.-M. Chow,

J. Wieme, N. Moharrami, M. Aragones-Anglada,

G. Conduit, D. A. Gomez-Gualdron, V. Van Speybroeck

and D. Fairen-Jimenez, Matter, 2019, 1, 219–234.

114 Y.-C. Hsu, C.-H. Yu and M. J. Buehler, Matter, 2020, 3,

197–211.

115 Y. Mao, Q. He and X. Zhao, Sci. Adv., 2020, 6, eaaz4169.

116 Y. Lecun and C. Cortes, The MNIST database of hand-

written digits, http://yann.lecun.com/exdb/mnist/.

117 E. Lejeune, Extrem. Mech. Lett., 2020, 36, 100659.

118 F. Ren, L. Ward, T. Williams, K. J. Laws, C. Wolverton,

J. Hattrick-Simpers and A. Mehta, Sci. Adv., 2018,

4, eaaq1566.

119 A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley,

K. G. Reyes, E. F. Morgan and K. A. Brown, Sci. Adv.,

2020, 6, eaaz1708.

120 Z. Yang, S. Papanikolaou, A. C. E. Reid, W. Liao,

A. N. Choudhary, C. Campbell and A. Agrawal, Sci. Rep.,

2020, 10, 8262.

121 C. Herriott and A. D. Spear, Comput. Mater. Sci., 2020,

175, 109599.

122 S. Bishnoi, S. Singh, R. Ravinder, M. Bauchy,

N. N. Gosvami, H. Kodamana and N. M. A. Krishnan,

J. Non. Cryst. Solids, 2019, 524, 119643.

123 Q. Zhao, H. Yang, J. Liu, H. Zhou, H. Wang and W. Yang,

Mater. Des., 2021, 197, 109248.

124 X. Chen, H. Zhou and Y. Li, Mater. Des., 2019, 183, 108085.

125 A. Mansouri Tehrani, A. O. Oliynyk, M. Parry, Z. Rizvi,

S. Couper, F. Lin, L. Miyagi, T. D. Sparks and J. Brgoch,

J. Am. Chem. Soc., 2018, 140, 9844–9853.

126 P. Avery, X. Wang, C. Oses, E. Gossett, D. M. Proserpio,

C. Toher, S. Curtarolo and E. Zurek, npj Comput. Mater.,

2019, 5, 89.

127 E. Mazhnik and A. R. Oganov, J. Appl. Phys., 2020,

128, 075102.

128 C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai,

T. Lookman and Y. Su, Acta Mater., 2019, 170, 109–117.

129 C. Ma, Z. Zhang, B. Luce, S. Pusateri, B. Xie, M. H. Rafiei

and N. Hu, npj Comput. Mater., 2020, 6, 40.

130 X. Liu, C. E. Athanasiou, N. P. Padture, B. W. Sheldon and

H. Gao, Acta Mater., 2020, 190, 105–112.

131 E. L. Buehler, I. Su and M. J. Buehler, Extrem. Mech. Lett.,

2021, 42, 101034.

132 J. D. Evans and F. O.-X. Coudert, Chem. Mater., 2017, 29,

7833–7839.

133 R. Gaillac, S. Chibani and F. X. Coudert, Chem. Mater.,

2020, 32, 2653–2663.

134 Z. Zhang, Y. Hong, B. Hou, Z. Zhang, M. Negahban and

J. Zhang, Carbon, 2019, 148, 115–123.

135 Y. Wang, M. Zhang, A. Lin, A. Iyer, A. S. Prasad, X. Li,

Y. Zhang, L. S. Schadler, W. Chen and L. C. Brinson, Mol.

Syst. Des. Eng., 2020, 5, 962–975.

136 Q. Chen, W. Tu and M. Ma, J. Appl. Phys., 2020,

127, 175101.

137 Z. Nie, H. Jiang and L. B. Kara, J. Comput. Inf. Sci. Eng.,

2020, 20, 011002.

138 B. Ni and H. Gao, MRS Bull., 2020, DOI: 10.1557/

mrs.2020.231.

139 Z. Yang, C.-H. Yu and M. J. Buehler, Deep Learning Model

to Predict Complex Stress and Strain Fields in Hierarchical

Composites, Sci. Adv., in revision.

140 K. Pierson, A. Rahman and A. D. Spear, JOM, 2019, 71,

2680–2694.

141 J. Guilleminot and J. E. Dolbow,Mech. Res. Commun., 2020,

103, 103443.

142 M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao

and M. A. Bessa, Proc. Natl. Acad. Sci. U. S. A., 2019, 116,

26414–26420.

143 D. Huang, J. N. Fuhg, C. Weißenfels and P. Wriggers,

Comput. Methods Appl. Mech. Eng., 2020, 365, 113008.

144 L. Wu, V. D. Nguyen, N. G. Kilingar and L. Noels, Comput.

Methods Appl. Mech. Eng., 2020, 369, 113234.

145 H. Yang, H. Qiu, S. Tang, Q. Xiang and X. Guo, J. Appl.

Mech, 2020, 87, 091005.

146 Z. Zhou, Y. Zhu, J. Luo, X. Yang and X. Guo, Int. J. Solids

Struct., 2020, 198, 57–71.

147 G. Chen, T. Li, Q. Chen, S. Ren, C. Wang and S. Li, Comput.

Mech., 2019, 64, 435–449.

148 M. Stern, C. Arinze, L. Perez, S. E. Palmer and A. Murugan,

Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 14843–14850.

Materials Horizons Review

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://yann.lecun.com/exdb/mnist/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f


1172 |  Mater. Horiz., 2021, 8, 1153–1172 This journal is © The Royal Society of Chemistry 2021

149 N. Huber, A. Konstantinidis and C. Tsakmakis, J. Appl.

Mech. Trans. ASME, 2001, 68, 218–223.

150 N. Huber and C. Tsakmakis, J. Appl. Mech. Trans. ASME,

2001, 68, 224–229.

151 E. Tyulyukovskiy and N. Huber, J. Mater. Res., 2006, 21,

664–676.

152 R. Haj-Ali, H. K. Kim, S. W. Koh, A. Saxena and

R. Tummala, Int. J. Plast., 2008, 24, 371–396.

153 H. Li, L. Gutierrez, H. Toda, O. Kuwazuru, W. Liu,

Y. Hangai, M. Kobayashi and R. Batres, Int. J. Solids Struct.,

2016, 81, 151–159.

154 L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. E. Karniadakis

and S. Suresh, Proc. Natl. Acad. Sci. U. S. A., 2020, 117,

7052–7062.

155 P. Z. Hanakata, E. D. Cubuk, D. K. Campbell and

H. S. Park, Phys. Rev. Lett., 2018, 121, 255304.

156 Y. Yu, T. Hur, J. Jung and I. G. Jang, Struct. Multidiscip.

Optim., 2019, 59, 787–799.

157 I. Sosnovik and I. Oseledets, Russ. J. Numer. Anal. Math.

Model, 2019, 34, 215–223.

158 D. W. Abueidda, S. Koric and N. A. Sobh, Comput. Struct.,

2020, 237, 106283.

159 X. Lei, C. Liu, Z. Du, W. Zhang and X. Guo, J. Appl. Mech.

Trans. ASME, 2019, 86, 011004.

160 C. M. Hamel, D. J. Roach, K. N. Long, F. Demoly,

M. L. Dunn and H. J. Qi, Smart Mater. Struct., 2019,

28, 065005.

161 S. Wu, C. M. Hamel, Q. Ze, F. Yang, H. J. Qi and R. Zhao,

Adv. Intell. Syst., 2020, 2, 2000060.

162 L. Wu, L. Liu, Y. Wang, Z. Zhai, H. Zhuang, D. Krishnaraju,

Q. Wang and H. Jiang, Extrem. Mech. Lett., 2020,

36, 100657.

163 S. Kumar, S. Tan, L. Zheng and D. M. Kochmann, npj

Comput. Mater., 2020, 6, 73.

164 C. Chen and G. X. Gu, Adv. Sci., 2020, 7, 1902607.

165 S. Oh, Y. Jung, I. Lee and N. Kang, Design automation by

integrating generative adversarial networks and topology

optimization, Proceedings of the ASME 2018 International

Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (IDETC/CIE

2018), 2018.

166 S. Oh, Y. Jung, S. Kim, I. Lee and N. Kang, J. Mech. Des.

Trans. ASME, 2019, 141, 111405.

167 C. Sharpe and C. C. Seepersad, Topology design with condi-

tional generative adversarial networks, Proceedings of the

ASME 2019 International Design Engineering Technical

Conferences and Computers and Information in Engineering

Conference (IDETC/CIE 2019), 2019.

168 K. Guo and M. J. Buehler, Extrem. Mech. Lett., 2020,

41, 101029.

169 Z. Liu and C. T. Wu, J. Mech. Phys. Solids, 2019, 127, 20–46.

170 Z. Liu, Comput. Methods Appl. Mech. Eng., 2020,

363, 112913.

171 Z. Liu, C. T. Wu and M. Koishi, Comput. Methods Appl.

Mech. Eng., 2019, 345, 1138–1168.

172 Z. Liu, C. T. Wu and M. Koishi, Comput. Mech., 2019, 64,

451–465.

173 K. Wang and W. C. Sun, Comput. Methods Appl. Mech. Eng.,

2018, 334, 337–380.

174 K. Wang and W. Sun, Comput. Methods Appl. Mech. Eng.,

2019, 346, 216–241.

175 G. Capuano and J. J. Rimoli, Comput. Methods Appl. Mech.

Eng., 2019, 345, 363–381.

176 H. Chan, M. Cherukara, T. D. Loeffler, B. Narayanan and

S. K. R. S. Sankaranarayanan, npj Comput. Mater., 2020,

6, 1.

177 E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh,

H. Guo, K. Hamdia, X. Zhuang and T. Rabczuk, Comput.

Methods Appl. Mech. Eng., 2020, 362, 112790.

178 M. Raissi, P. Perdikaris and G. E. Karniadakis, J. Comput.

Phys., 2019, 378, 686–707.

179 M. Schmidt and H. Lipson, Science, 2009, 324, 81–85.

180 S. L. Brunton, J. L. Proctor and J. N. Kutz, Proc. Natl. Acad.

Sci. U. S. A., 2016, 113, 3932–3937.

181 M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu,

K. Cranmer, D. Spergel and S. Ho, Discovering Symbolic

Models from Deep Learning with Inductive Biases, Advances

in Neural Information Processing Systems 33 pre-proceedings

(NeurIPS 2020), 2020.

182 M. Geiger, S. Spigler, S. D’Ascoli, L. Sagun, M. Baity-Jesi,

G. Biroli and M. Wyart, Phys. Rev. E, 2019, 100, 012115.

183 M. Pfeiffer and T. Pfeil, Front. Neurosci., 2018, 12, 774.

Review Materials Horizons

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 D

ec
em

b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/4
/2

0
2
2
 6

:2
2
:4

9
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0mh01451f

