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Artificial Intelligence and Machine Learning
in Pathology: The Present Landscape
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Elham Vali Betts, MD, FASCP'®, Lydia P. Howell, MD, FASCP, FCAP',
and Ralph Green, MD, PhD, FASCP, FCAP, FRCPath'

Abstract

Increased interest in the opportunities provided by artificial intelligence and machine learning has spawned a new field of health-
care research. The new tools under development are targeting many aspects of medical practice, including changes to the practice
of pathology and laboratory medicine. Optimal design in these powerful tools requires cross-disciplinary literacy, including basic
knowledge and understanding of critical concepts that have traditionally been unfamiliar to pathologists and laboratorians. This
review provides definitions and basic knowledge of machine learning categories (supervised, unsupervised, and reinforcement
learning), introduces the underlying concept of the bias-variance trade-off as an important foundation in supervised machine
learning, and discusses approaches to the supervised machine learning study design along with an overview and description of
common supervised machine learning algorithms (linear regression, logistic regression, Naive Bayes, k-nearest neighbor, support
vector machine, random forest, convolutional neural networks).
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only in the realm of science fiction, advancements in comput-
ing power and accessibility has prompted a technological rev-
olution involving Al and ML that is already impacting many
domains of our everyday lives, including credit decisions,
travel, personalized suggestions for movies, books, and other
products as well as temperature control in our own homes.

Introduction

Medical data are reported to be growing by as much as 48%
each year." This explosion of data and the associated chal-
lenges of its optimal use to improve patient care are driving
development of a myriad of new tools that utilize artificial
intelligence (Al) and machine learning (ML). Artificial intelli-
gence is the capability for machines to imitate intelligent
human behavior, while ML is an application of Al that allows
computer systems to automatically learn from experience with-
out explicit programming. Paraphrasing Arthur Samuel and
others, ML models are constructed by a set of data points and
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These tools are being increasingly incorporated into a broad
range of clinical practice in many different medical disciplines
and have become an area of intense investigation. Reflecting
the growing role of AI/ML in medicine, the Food and Drug
Administration recently issued a white paper” to safely guide
Al development, which underscores the promise that Al and
ML are believed to hold for improving medical practice and
patient care.

The field of pathology and laboratory medicine is important
to the development and ongoing improvement in many medical
AI/ML tools and will likely play an even larger and more
pivotal role as Al and ML applications expand across health-
care settings. Perhaps as many as 70% of all medical decisions
are based on laboratory tests.” Additionally, the bulk of data in
the electronic medical record is from the clinical laboratory.
Test results from pathology and the clinical laboratory fre-
quently serve as the gold standard for clinical outcomes studies,
clinical trials, and quality improvement. This massive amount
of data requires enormous capacity for storage and sophisti-
cated methods for handling and retrieval of information, neces-
sitating the application of certain data science disciplines such
as AI/ML.

Pathologists and laboratorians are therefore excited about
the promise that AI/ML can bring to their ability to impact
health care; however, even those interested in pursuing Al/
ML as an area of clinical investigation or quality improvement
are largely unfamiliar with the field and the processes involved
with utilizing the tools it has to offer. The variable quality of
medical and laboratory data available for use as well as the
sheer diversity and complexity of ML algorithms creates a
cornucopia of choices as well as challenges for investigators
seeking to develop the best AI/ML predictive model. Once a
quality data set has been established, an optimal ML model
needs to be identified which means fully vetting the algorithms
by building and testing multiple models for their appropriate-
ness to the task at hand.

The most successful AI/ML models arise from multidisci-
plinary teams with expertise in ML, clinical medicine, pathol-
ogy and laboratory medicine, biostatistics, and other relevant
skillsets. Such a multidisciplinary team will be best equipped to
address the following queries that are fundamental to success-
ful project design:

1) Does the project address a need?

2) Is there sufficient data and is it the “right” kind of data
that is both readily available and vetted by clinical
experts in the field?

3) Which ML approach to use?

4) Are the optimized ML models applicable and general-
izable when applied to a novel data set?

The purpose of this article is to facilitate cross-disciplinary
literacy among pathologists, laboratorians, biomedical scien-
tists, and individuals from other medical disciplines seeking
to work in multidisciplinary teams to develop or facilitate the
early adoption of AI/ML tools in health care. We define cross-

disciplinary literacy as having sufficient content knowledge
(including strengths and limitations of availability tools and
the concepts behind them) as well as a working understanding
of the field’s unique vocabulary that interested individuals
from other disciplines can understand written and spoken com-
munications, think critically, and use this knowledge and skill
in a meaningful way for their own discipline. To accomplish
this goal, we describe the current landscape for AI/ML in
pathology and laboratory medicine by defining the elements
and numerous available options necessary to address the 4
queries essential to design of AI/ML tools in health care out-
lined above: defining the purpose, data curation and quality,
choosing the most appropriate ML algorithm, and testing/vali-
dation. Table 1 is the glossary of commonly encountered ML
terminology within the scope of this article which provides
definitions and examples for each term.

Current Landscape and Approach to
Developing Machine Learning tools

1) Would the AI/ML tool address a real health-care
need (defining the purpose)?

There is clearly a need to apply rational and systems-based data
science principles for handling the ever-growing body of both
qualitative and quantitative aspects of medical laboratory infor-
mation and classification. Faced with the limitations of human
processing of rapid, accurate, and precise retrieval of data in
real time, the heuristic provided and amplified by ML offers an
attractive approach to substantially improve the delivery of
health care. Current health problems that are deemed suitable
to ML include, but are not limited to, integrating multiple
variables to mimic human clinical decision-making skills (eg,
multiparameter disease diagnosis), automation of testing and
treatment algorithms (eg, reflex testing) and workflows, pattern
recognition using imaging data (eg, radiology, histology slides,
and vital sign waveforms), and/or test utilization trends. How-
ever, although one could use AI/ML, it may not always be
necessary to apply such tools for every situation since simple
statistical approaches may sometimes suffice.

2) Is there sufficient data and is it the “right” kind of
data that is both readily available and its quality
verified?

The familiar concept of “garbage-in/garbage-out™ highlights
the critical importance of having high-quality data for AI/ML
applications, since incomplete and/or erroneous values may
inappropriately train an algorithm in the wrong direction. Like-
wise, highly controlled data may not represent real-world con-
ditions. “Quality data” for AI/ML training applications must
include accurate, precise, complete, and generalizable informa-
tion.® Laboratory data are often assumed to be sufficiently
accurate and precise by both health-care providers and
researchers. Unfortunately, it is a truism that not all laboratory
tests are created equal, and poor analytical bias and imprecision
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degrade the performance of AI/ML algorithms. Additionally,
both providers and researchers are often not aware that test
methods may lack standardization. For instance, a cardiac tro-
ponin I assay from one manufacturer may not be the same when
compared to another due to differences in epitopes for
antibody-based capture and detection.” The concept of impre-
cision reported as coefficient of variation is also poorly under-
stood by most bedside providers with many assuming any
change in numerical values reflecting a true biological change
without taking into account sources of variability.

Data completeness and generalizability are other important
considerations when developing and training AI/ML algorithms.®
Unfortunately, despite the convenience of collecting real-world
information from electronic health records, the retrieved medical
data are often incomplete. This is attributed to the several incon-
sistencies in test ordering and resulting. Ordered laboratory tests
may be cancelled due to patients not showing up for a visit, or
samples were found to be not acceptable upon receipt by the
laboratory. Incomplete data create significant challenges for Al/
ML developers, where the predictive power of algorithms may be
severely diminished. The limitation of real-world evidence has
thus prompted investigators to gravitate toward more complete
and rigorous data derived from clinical trials. However, caution is
advised when using data that are “too complete” or “too con-
trolled,” since it may not represent the real-world population and
contribute to overfitting, discussed later in this article.’

Ultimately, the best and most balanced approach is to pilot
AI/ML algorithms using more controlled data during the initial
stages and later refining these algorithms using real-world data
to confirm generalizability.

3) Which ML approach to use?

Choosing the right ML approach for a given task requires a
basic understanding of the general categories of ML algorithms
as well as a basic understanding of these algorithms’ inner
workings, strengths, and limitations. These are outlined below.

Machine Learning General Categories: The
Big Picture

Within the various ML platforms, there are a multitude of
algorithms to choose from.'®!'" The choice of an algorithm
depends on a variety of factors that include, but are not limited
to, data type/learning approach (supervised or unsupervised
learning), the need for & (clustering), the importance of accu-
racy in the chosen model, the need for speed in data analysis,
the data analyzed, the size of the data set, the need for hier-
archical output, and the need for categorical variables (Fig-
ure 1). Machine learning methods and algorithms belong to
one of the following 3 categories: (1) supervised learning,
including classification and regression approaches; (2) unsu-
pervised learning'?; and (3) reinforcement learning (Figure 1).

A supervised ML algorithm makes use of the training data to
learn a function (f) by mapping certain input variables/features
(X) from the training data into some output/target (Y). In

general, supervised ML platforms employ “labeled” training
data sets to yield a qualitative or quantitative output. The
labeled nature of the data evaluated in the training phase is a
key feature of this method, since it allows the ML model to
ultimately emulate the expert’s input data. As a result, the ML
model can distinguish an unknown input based on its prior
training parameters. In the “classification” approach of super-
vised learning, the labeled data/variables (which can be num-
bers, text, or unstructured data such as images) yield a discrete
(qualitative) “class” output. An example of a classification
approach is the breast cancer histology image identification
model in which a supervised ML platform is used to yield a
qualitative answer/identification based on labeled histologic
image training data sets that are then used to predict future
unknown histologic images. In contrast, the “regression”
approach of supervised learning involves the cumulative acqui-
sition of data variables to yield a continuous (quantitative)
numerical output (Figure 1). Notably, most reproducible super-
vised studies follow the Cross Industry Standard Process for
Data Mining or some modification thereof.'*'*

Unsupervised ML methods involve agnostic aggregation of
unlabeled data sets yielding groups or clusters of entities with
shared similarities that may be unknown to the user prior to the
analysis step. These are also sometimes referred to as clustering
algorithms. Some of the most common methods employed in
this approach include k-means clustering, anomaly detection,
or certain statistical methods such as principal component anal-
ysis.!>"'7 These approaches usually utilize discrete or continu-
ous data as their input parameter for identifying input
regularities (eg, k-means clustering) or for lowering dimen-
sional representations (eg, principal component analysis). An
example is the use of ML to cluster unorganized/unlabeled
laboratory data with no obvious commonalities into something
new and meaningful for the user. Notably, the outcomes of
various unsupervised ML methods (eg, results of a principal
component analysis) can often also complement and thus
enhance the performance of certain supervised learning ML
methodologies.

Reinforcement learning platforms may share features of
both a supervised and an unsupervised process and usually
function through a policy-based platform. An example of rein-
forcement learning is International Business Machine (IBM)’s
Deep Blue (Armonk, New York) and Google’s Go (Alphabet,
Mountain View, California) that were able to beat champion
chess'® and Go players,'? respectively. However, currently
reinforcement learning approaches are rarely employed in
pathology. This may change in the future.

“Supervised” Machine Learning Algorithms
(General Overview)

As noted earlier, in medicine and in pathology in particular,
ML models employed are chiefly based on supervised
approaches. Based on the amount of data and data type (eg,
image vs numerical values vs text), the type of algorithm
employed could drastically alter the ML model’s predictive
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Supervised Learning
(Labeled)

Unsupervised Learning
(Unlabeled)

Machine |
Learning (ML) '

Policy |
Reinforcement Learning (Markov)

Classification
(Discrete & Qualitative)

Input Data—-> Output is a
Class |

' Regression

Input Data —> Output is a
| (continuous & Quantitative) |

Number

Clustering
(Discrete)

Input Data > to find
Input regularities

Input Data —> to find the best
lower dimensional
representation

Dimensionality Reduction
(Continuous)

Agent -> Action ->
Environment -> Reward (or
penalty)-> Agent Learns

Figure |. Overview diagram of machine learning algorithms. Machine learning is a subset of artificial intelligence. This figure illustrates the
hierarchy of different machine learning algorithms including supervised versus unsupervised versus reinforcement learning techniques. The
2 major categories of supervised learning are classification and regression which lead to discrete/qualitative and continuous/quantitative targets,

respectively.

capabilities. In the sections below, the various supervised algo-
rithms within ML are discussed with an emphasis on the clas-
sification approach within the supervised learning category.
The advantages and limitations of each are also provided since
these provide insight into the approach to such studies.

The type of the input data can alter the approach to the
analysis step and the type of algorithm that needs to be
employed. Although similar algorithms may be applied to dif-
ferent data types, commonly used data types in the health
sciences include image and text which have made use of visual
recognition platforms and natural language processing frame-
works, respectively. In both of these settings, deep learning
neural network algorithms are now commonly employed. Deep
neural networks have become the gold standard for image clas-
sification. However, neural networks are not the only algo-
rithms within ML and may not always be the most suitable
method when using nonimage data (eg, numerical laboratory
data).

Commonly used supervised learning algorithms encompass
both convolutional neural networks (CNNs; eg, deep learning)
and various non-neural network algorithms (Table 2). Some of
the most common non-neural network algorithms employed
include linear regression, logistic regression, naive Bayes,
decision tree, k-nearest neighbor (k-NN), support vector
machine (SVM), and the ensemble decision tree algorithm ran-
dom forest (RF).

In supervised classification platforms, if accuracy is not the
ultimate goal, algorithms such as logistic regression or naive
Bayes may suffice. However, if accuracy is the primary objec-
tive in these classification tasks, then the algorithms of choice
currently include kernel SVM, k-NN, boosted tree, RF, and
CNNs s (especially deep learning). As noted earlier, the method
of choice for most image classification tasks is now deep neural
networks, which are typically CNNs with a large number of

artificial neural connections within their hidden layers. More
importantly, these CNNs are not routinely built from scratch
but rather retrained based on a transfer learning approach from
preestablished neural networks. In transfer learning, unrelated
images (eg, cancer vs benign histology) are retrained into a
preestablished CNN (eg, ResNet-50) that is usually devoid of
such data.* This approach is currently very popular and can be
used to build accurate ML models that can distinguish histolo-
gic variants of disease in a relatively rapid pace.

On the other hand, in supervised regression (nonclassifica-
tion) platforms, if accuracy is not the ultimate goal, algorithms
such as the linear regression and decision tree may suffice. In
contrast, if accuracy is the primary objective, then the algo-
rithms of choice currently include RF and CNNs (Table 2).

Bias-Variance Trade-Off in ‘“Supervised”
Machine Learning: A Fundamental Concept

The concept of bias and variance and their relationship with
each other is fundamental to the true performance of supervised
ML models. To identify the most optimized supervised ML
model, the trade-off between bias and variance must be
addressed. Briefly, bias gives the algorithm its rigidity while
variance gives it its flexibility.?'* A high bias causes under-
fitting; simply stated, this means missing real relationships
between the features of the data set and the target. In contrast,
a high variance causes overfitting which may be thought of as
introducing false relationships due to increased noise between
the data set features and the target.>* Thus, overfitting gives
rise to the model appearing as a good predictor on the training
data while underperforming on future new and previously
unseen data (ie, not generalizable). In the end, the ultimate goal
of any ML algorithm is to find the right balance between bias
and variance (bias-variance trade-off). This balance is key in
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finding the most generalizable model (Figure 2). Within many
supervised ML approaches, with the appropriate test sets, this
balance can be intrinsically automated and sometimes incorpo-
rated into the platform to ultimately identify the most suitable
model. Being aware of such limitations and knowing how to
appropriately approach these platforms for building the most
suitable model is key to good ML practice.

Supervised Machine Learning Algorithms:
(Common Algorithms and Their Inner
Workings)

In addition to the abovementioned categorizations, the algo-
rithms can be further divided into either parametric or nonpara-
metric groups.?” The set of parameters in a parametric
algorithm is fixed which confines the function to a known form.
In nonparametric methods, the algorithm does not make any
assumptions about the function to which it will map its vari-
ables. In general, the assumption within parametric algorithms
is that the function is linear or assumes a normal distribution,
while nonparametric methods do not make such assumptions.
The most commonly encountered parametric algorithms
include linear regression, logistic regression, and naive Bayes,
while some of the most common nonparametric algorithms
include A-NN, SVM, CNN, and decision trees including RF
(Figure 3). A small description of the inner workings of these
algorithms along with highlights and limitations for each are
discussed below and also included in Table 2.

Linear Regression Algorithm

One of the oldest and simplest parametric statistical approaches
is least squares linear regression. This technique has been reg-
ularly used for various correlational studies.”® Linear regres-
sion models allow us to find the target variable (usually a
numerical value) by finding the best-fitted straight line that is
also known as the “least squares regression line” (the best
dotted line with the lowest error sum) between the independent
variables (the cause or features) and the dependent variables
(the effect or target). The ultimate goal of this technique is to fit
a straight line to the data set in question (Figure 3). The advan-
tage of such an approach is its simplicity and transparency for
finding linear relationship that can ultimately be very efficient
(rapid). However, its major limitation is not being generally
useful when relationships between the independent variable
(the cause or features) and the dependent variables (the effect
or target) are nonlinear.

Logistic Regression Algorithm

The term regression is somewhat of a misnomer since in gen-
eral this is a classification method that uses a logistic function
for predicting a dichotomous dependent variable (target). A
variation of this method (multinomial logistic regression) can
also be used to classify more than 2 targets.?”*® In the binary
approach, the function yields a value of 0 or 1 which represents

Most Accurate Model
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Low Variance High Variance
Underfitting Overfitting
Most .
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Figure 2. Bias-variance trade-off in machine learning. This figure
illustrates the trade-off between bias and variance. Training data
(green line) often do not completely represent results from the testing
phase. Underfitting data are less variable but exhibit a high error rate
and high bias (blue box). In contrast, overfitting data result in low bias
and high variance (yellow box). The ideal zone lies between over-
versus underfitting of data and may not be optimal until several
attempts at testing have been made (red line).

the negative (0) and the positive (1) case (Figure 3). This may
be accomplished by calculating an odds ratio probability for
assigning a value as positive (1) or negative (0) based on the
relationships between the independent input variables (fea-
tures) and the dependent variables (target). This algorithm is
relatively popular and has been regularly used in both indus-
try?® and medicine.>® The use of a logistic regression method
may become limiting if there are large number of features/
variables present or if the variables are highly correlated. Addi-
tionally, this approach assumes that the relationship between
the independent variables (features) and the dependent vari-
ables (target) are uniform which may limit the model’s
performance.'2

Naive Bayes

Naive Bayes classifiers use a probabilistic approach that is
based on the Bayes theorem. This approach is a subset of the
Bayesian logic that assumes the naive notion that the features
being evaluated are independent of each other.>*=> Although
this basic assumption may seem to be a disadvantage of this
method, in reality, naive Bayes classifiers can sometimes
yield reasonable results,>* especially for simple tasks. How-
ever, their performance has been shown to be inferior to some
of the other well-established algorithms such as boosted trees
and RF.'°
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Figure 3. Comparison of popular supervised learning methodologies. This figure illustrates a variety of popular supervised machine learning
(ML) methodologies. In the top row, linear regression, logistic regression, and Naive Bayes Classifier (via TensorFlow) are shown. In the second
row, k-nearest neighbor (k-NN), the ensemble decision tree algorithm random forest (RF), and support vector machine (SVM) are compared.
Finally, the bottom row illustrates a convoluted neural network evaluating an image. Each image pixel is evaluated (input layer). The network
contains several “hidden layers” (yellow circles) which is then processed and sent to the output layer (green circles).

Decision Tree and Boosted Tree (Gradient Boosting
Machine)

A decision tree uses a flowchart structure that typically con-
tains a root, internal nodes, branches, and leaves. The internal
node is where the attribute in question (eg, creatinine >1 or
creatine <1) is tested, while the branch is where the outcome of
this tested question is then delegated. The leaves are where the
final class label is assigned which, in short, represents the final

decision after it has incorporated the results of all the attri-
butes.>*>? The end result of the decision tree is a set of rules
that governs the path from the root to the leaves. Simple deci-
sion trees are not commonly used in ML. However, variations
such as the Gradient boosting machine is used for both classi-
fication and regression tasks.***! Gradient boosting machine is
an ensemble method that uses weak predictors (eg, decision
trees) that can ultimately be boosted and lead to a better per-
forming model (ie, the boosted tree). This method can
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sometimes yield very reasonable models, especially with unba-
lanced data sets. However, their limited number of tuning para-
meters may make them more prone to overfitting compared to
RF that contains a larger number of parameters for tuning and
finding the optimized model.

k-Nearest Neighbor

k-nearest neighbor (k-NN) is a nonparametric clustering algo-
rithm used for data classification and regression. Classification
is based on the number of & neighbors, where & is equal to the
square root of the number of instances and its distance (eg,
Euclidean) from a predefined point**#® (Figure 3). An ideal
set of k-values may be identified that best predicts a desired
outcome.'' The use of k&-NNs are relatively intuitive and as a
nonparametric approach makes no assumptions when data
points are assigned to a respective class. Additionally, they can
be applied to both classification and regression tasks. However,
they work best with a smaller number of input variables, they
require feature scaling/normalization (since they are distance
based), and they are sensitive to outliers within the data set.

Support Vector Machine

Support vector machine classifies data by defining a hyper-
plane that best differentiates 2 groups. This differentiation is
maximized by increasing the margin (the distance) on either
side of this hyperplane. In the end, the hyperplane-bounded
region with the largest possible margin is used for analysis.*’
One of the key highlights of the SVM method is its ability to
find nonlinear relationships through the use of a kernel function
(kernel trick). In short, the kernel trick allows the data to be
transformed into another dimension which ultimately enhances
the dividing margin between the classes of interest*® (Figure 3).
The limitation of this method is its tendency for overfitting.

Random Forest

Random forest uses a network of decision trees for ensemble
learning. Bootstrap technique is commonly employed in this
method to generate the randomly generated data sets that can
then be used to train the data for the ensemble of decision
trees.*” Ultimately, each decision tree will determine an out-
come, and a majority “vote” approach is used to classify the
data (Figure 3). Appropriately, this is called RF, since a large
number of randomly generated decision trees are used to con-
struct the final model.’*>* This random sampling generally
enhances the generalizability of this ML process by minimizing
the overfitting phenomena. The number of trees and various
other internal parameters within this process may hinder its
performance. Additionally, the number of variables evaluated
may be more time-consuming using this approach compared
with the other nonparametric (eg, SVM and k-NN) and para-
metric methods (eg, logistic regression).

Convolutional Neural Network

Neural networks attempt to emulate the neuron and for that
matter the human brain. The artificial neuron within neural
networks uses certain input features/variables to find and
assign appropriate mathematical weights that are ultimately
able to predict some output target (Figure 3). A deep neural
network usually refers to a neural network with a large number
of nodal connections within its hidden layer, and the CNNs are
typically the deep neural networks that are most suitable for
more complex data analyses such as imagery. As noted, in most
CNN studies, a transfer learning approach is employed which
allows the training data of interest to be incorporated into a
retrained preestablished CNN.?%>° The CNNs with the transfer
learning approach are the method of choice for most image
analysis studies. However, they are also prone to overfitting
similar to the aforementioned algorithms.

4) Are the optimized ML models applicable and gen-
eralizable when applied to a novel data set?

Selecting the appropriate algorithm is essential in finding
the most suitable model for a given task. Hence, to enhance the
algorithm’s predictive capability (most importantly its ability
to generalize), an optimal study design along with an iterative
validation process is required.

Supervised Machine Learning Study Design
and Validation

After data are collected, cleaned, and preprocessed, and the
correct ML approach has been chosen, the next step is model
building and validation studies which ultimately yields the
deployed model (Figure 4). The supervised ML model building
phase usually includes splitting the data into an initial training
and testing set that allows training of the model followed by
testing for its initial validation phase. To minimize overfitting
of the models, certain model adjustments and incorporating
cross-validation (CV) processes allows the empirical build of
a large number of models whose performances can be subse-
quently assessed with the goal of finding the most generaliz-
able model. It is well known that assessment based on the initial
validation test set does not always yield a generalizable model
as we have shown in our recent studies.?® Hence, it is essential
to include secondary and sometimes tertiary external test sets
(previously unseen by the model) to assess its true
generalizability.

In brief, the model is initially trained and preliminarily vali-
dated on its train-test split data set. An example of this is where
an “80-20 train-test” split initially trains the model using 80%
of the data, followed by the remaining 20% which is used for
testing and its initial validation (Figure 4). However, this
approach alone for building a single ML model is prone to
overfitting. Hence, to minimize the overfitting phenomena as
noted earlier, good practice demands that one build large num-
ber of models with variable parameters through one or more
CV platforms. Some of the most commonly employed CV
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Figure 4. Supervised (labeled) machine learning model study design overview. Steps for the deployment of a supervised machine learning
model. From left to right, the figure shows the initial team of multidisciplinary experts defining a study design to address a need. Data are then

collected, processed, trained tested, validated, and ultimately deployed.

studies include the “k-fold” CV, “leave-one-out” CV, and boot-
strapping. In k-fold CV, the train test data set is split k times.
For instance, if the & is 10, the data are split into 10 train-test
splits to assure proper sampling of the training set and more
importantly the testing data. This approach assures a better
sampling for the test sets and minimizes selection bias which
ideally leads to a more generalizable model as we have demon-
strated in a recent study.'' Leave-one-out CV is a similar con-
cept but is the extreme version of the k-fold approach in which
k will equal to n (eg, total number patients being studied).
Instead of train-test splitting them into k-folds of 5 or 10, as
the name implies, k& will equal the total number of individual
data entries n (eg, n of 100 could be the individual sets of data
in 100 patients). In each train-test run, one (eg, one patient data
set) is left out for testing phase which leads to a complete
sampling of the data set, but this approach may not always
enhance the model dramatically and can also be computation-
ally very demanding. In contrast to k-fold and leave-one-out
CV, in bootstrapping one creates a new data set with the same
size as the original data set by randomly pulling samples from
the original data set. As is evident, this method may result in
duplicate data being used in the new bootstrapped data set. This
method is commonly employed in certain ensemble tree algo-
rithms such as RF in which a random subset of the bootstrapped
data set is used in creating the decision trees. A bootstrapped
data set that uses the aggregated data to make a decision is
called “Bagging” which stands for bootstrapping aggregation.

In this approach, a proportion of data within this randomly
selected bootstrapped data set is not present (Out of Bag) which
can be subsequently used to test the trained model within the
bootstrapped data set to assess the accuracy of the model. The
use of such CV approaches within the algorithm’s building
phase can ultimately help in finding suitable models that can
then be secondarily tested on a separate data set to assess their
true generalizability potential.

Summary

Artificial intelligence and ML have the potential to transform
health care in the coming years. To ensure that pathologists and
laboratorians are equipped to play important roles in the multi-
disciplinary teams, we have provided definitions, descriptions,
and an outline of 4 of the essential steps for developing AI/ML
applications. The need for high-quality data (Figure 5) illus-
trates the role of pathologists and laboratorians in appropriately
curating, interpreting, and providing results for AI/ML appli-
cations. We encourage a balanced approach utilizing clinical
trial data, when available, combined with real-world data to
optimize AI/ML training. The approach and technique chosen
should be tailored to the data available and the problem to be
solved. Since many AI/ML techniques are available and not all
are the same, pathologists and laboratorians must be suffi-
ciently familiar and literate with these options so that they can
communicate effectively and make meaningful contributions
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Figure 5. Stepwise considerations for development and validation of the machine learning (ML) model. The figure describes a very general
stepwise approach for development and validation of an ML model. Common metrics used in each step are shown on the right. Step | involves
assessing the quality and accessibility of the data, followed by step 2 that requires method validation to identify optimal ML model(s). Once
optimal ML models have been identified, step 3 involves determining their ability to work with other data sets to assess generalizability. Finally,
step 4 involves evaluating the data in more “real-world” conditions to further assess performance and generalizability along with further
refinement (go back to step 2) to improve the performance and desirable outcomes.

within the Al development team. Determining the overall gen-
eralizability of AI/ML models for real-world populations is
critical to most successful development and implementation
strategies. Researchers in this area are encouraged to be aware
of their data limitations and develop cross-disciplinary literacy
in AI/ML methods to effectively harness their optimal imple-
mentation plan, thus maximizing its impact.
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