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Model Identification in Wavelet Neural 

Networks Framework 
 

 

A. Zapranis1, A. Alexandridis2 

 

Department of Accounting and Finance, University of Macedonia of Econom-

ics and Social Studies, 156 Egnatia St., P.O. 54006, Thessaloniki, Greece. 

 

Abstract � The scope of this study is to present a complete statistical framework 

for model identification of wavelet neural networks (WN). In each step in WN 

construction we test various methods already proposed in literature. In the first 

part we compare four different methods for the initialization and construction of 

the WN. Next various information criteria as well as sampling techniques pro-

posed in previous works were compared in order to derive an algorithm for select-

ing the correct topology of a WN. Finally, In variable significance testing the per-

formance of various sensitivity and model-fitness criteria were examined and an 

algorithm for selecting the significant explanatory variables is presented.  

 1. Introduction 

This study presents a complete statistical wavelet neural network (WN) model 

identification framework. Model identification can be separated in two parts, 

model selection and variable significance testing. Wavelet analysis (WA) has 

proved to be a valuable tool for analyzing a wide range of time-series and has al-

ready been used with success in image processing, signal de-noising, density esti-

mation, signal and image compression and time-scale decomposition.  

In [1] have demonstrated that it is possible to construct a theoretical description 

of feedforward NN in terms of wavelet decompositions. WN were proposed by [2] 

as an alternative to feedforward NN hoping to elevate the weakness of each me-

thod. The WN is a generalization of radial bases function networks (RBFN).WNs 

are one hidden layer networks that use a wavelet as an activation function instead 

of the classic sigmoid function. The families of multidimensional wavelets pre-

serve the universal approximation property that characterizes neural networks. In 
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[3] various reasons presented in why wavelets should be used instead of other 

transfer functions.  

Wavelet networks have been used in a variety of applications so far. Wavelet 

networks were used with great success in short term load forecasting, [4], in time 

series prediction, [5], signal classification and compression, [6], static, dynamic 

[1] and nonlinear modeling [7], nonlinear static function approximation, [8]. Fi-

nally, [9] proposed WN as a multivariate calibration method for simultaneous de-

termination of test samples of copper, iron, and aluminum. 

In contrast to sigmoid neural networks, wavelet networks allow constructive 

procedures that efficiently initialize the parameters of the network. Using wavelet 

decomposition a wavelet library can be constructed. Each wavelon can be con-

structed using the best wavelet of the wavelet library. These procedures allow the 

wavelet network to converge to a global minimum of the cost function. Also start-

ing the network training very close to the solution leads to smaller training times. 

Finally, wavelet networks provide information of the participation of each wave-

lon to the approximation and the dynamics of the generating process.
 

The rest of the paper is organized as follows. In section 2 we present the WN, 

we describe the structure of a WN and we compare different initialization me-

thods. In section 3 we present a statistical framework in WN model selection and 

different methods are compared. Various sensitivity criteria of the input variables 

are presented in section 4 and a variable selection scheme is presented. Finally, in 

section 5 we conclude. 

2. Wavelet Neural Networks for Multivariate Process Modeling 

In [10] and [11] we give a concise treatment of wavelet theory. Here the emphasis 

is in presenting the theory and mathematics of wavelet neural networks.                                                      

So far in literature various structures of a WN have been proposed [5] [8] [9] [7] 

[12] [13]. In this study we use a multidimensional wavelet neural network with a 

linear connection of the wavelons to the output. Moreover in order for the model 

to perform well in linear cases we use direct connections from the input layer to 

the output layer. A network with zero hidden units (HU) is the linear model. 

The network output is given by the following expression: 
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In that expression, Ȍj(x) is a multidimensional wavelet which is constructed by 

the product of m scalar wavelets, x is the input vector, m is the number of network 

inputs, Ȝ is the number of hidden units and w stands for a network weight. Follow-

ing [14] we use as a mother wavelet the Mexican Hat function. The multidimen-

sional wavelets are computed as follows: 
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where ȥ is the mother wavelet and 

 

In the above expression, i = 1, �, m,  j = 1, �, Ȝ+1 and the weights w corres-

pond to the translation  ( ) and the dilation ( ) factors. The complete vec-

tor of the network parameters comprises: 
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There are several approaches to train a WN. In our implementation we have 

used ordinary back-propagation which is less fast but also less prone to sensitivity 

to initial conditions than higher order alternatives. The weights , i jw

[1]w [1]w

[0]w
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 and pa-

rameters  and  are trained for approximating the target function. ( )ijξ ( )ijζ

In WN, in contrast to NN that use sigmoid functions, selecting initial values of 

the dilation and translation parameters randomly may not be suitable, [15]. A 

wavelet is a waveform of effectively limited duration that has an average value of 

zero and localized properties hence a random initialization may lead to wavelons 

with a value of zero. Also random initialization affects the speed of training and 

may lead to a local minimum of the loss function, [16]. In [2] the wavelons are ini-

tialized at the center of the input dimension of each input vector xi.
  

The initialization of the direct connections  and the weights 
]

i jw  is less 

important and they are initialized in small random values between 0 and 1. 

The previous heuristic method is simple but not efficient. As it is shown in 

figure 2 the initial approximation is a bad approximation of the function f(x). The 

heuristic method does not guarantee that the training will find the global mini-

mum. Moreover this method does not use any information that the wavelet de-

composition can provide. In literature more complex initialization methods have 

been proposed, [17] [14]  [18]. All methods can be summed in the following three 

steps. 

1. Construct a library W of wavelets 

2. Remove the wavelets that their support does not contain any sample points of 

the training data. 

3. Rank the remaining wavelets and select the best regressors. 

The wavelet library can be constructed either by an orthogonal wavelet or a 

wavelet frame. However orthogonal wavelets cannot be expressed in closed form. 



It is shown that a family of compactly supported non-orthogonal wavelets is more 

appropriate for function approximation, [19]. The wavelet library may contain a 

large number of wavelets. In practice it is impossible to count infinite frame or ba-

sis terms. However arbitrary truncations may lead to large errors, [20]. 

In [14] three alternative methods were proposed in order to reduce and rank the 

wavelet in the wavelet library namely the Residual Based Selection (RBS) a 

Stepwise Selection by Orthogonalization (SSO) and a Backward Elimination (BE) 

algorithm. In [21]  the RBS algorithm is used for the synthesis of a WN while in 

[17] an algorithm similar to SSO is proposed. In [18] an orthogonalized residual 

based selection (ORBS) algorithm is proposed for the initialization of the WN. 

All the above methods are used just for the initialization of the dilation and 

translation parameters. Then the network is further trained in order to obtain the 

vector of the parameters  which minimizes the cost function. 0w w=
The heuristic, the SSO, the RBS and the BE methods that constitute the bases 

for alternative algorithms and can be used with the batch training algorithm will 

be tested. We test these methods in two examples. The first example where the 

underlying function f(x) is: 

[ ]1( ) 0.5 0.4sin(2 ) ( )  0,1f x x x xπ ε= + + ∈
                                                                              

where x is equally spaced in [0,1] and the noise İ1(x) follows a normal distribution 

with mean zero and a decreasing variance: 

2 2( ) 0.05 0.1(1 )2x xεσ = + −
 

  Figure 1 show the initialization of all four algorithms for the first example. The 

network uses 2 hidden units with learning rate 0.1 and momentum 0. The use of a 

large learning rate or momentum might lead to oscillation between two points. As 

a result the WN would not be able to find the minimum of the loss function or it 

will be trapped in a local minimum of the loss function. It is clear that the BE and 

SSO algorithms starting approximation are very close to the target function f(x). 

As a result less iterations and training time are needed. In order to compare the 

previous methods we use the heuristic method to train 100 networks with different 

initial conditions of the direct connections 
 
and weights 

[0]

iw
[2]

jw  to find the glob-

al minimum. We find that the smallest mean square error (MSE) is 0.031332. Us-

ing the RBS algorithm the MSE is 0.031438 and is found after 717 iterations. The 

MSE between the underlying function f(x) and the network approximation is 

0.000676. The SSO needs 4 iterations and the MSE is 0.031332 while the MSE 

between the underlying function f(x) and the network approximation is only 

0.000121. The same results achieved by the BE method.  Finally, one implementa-

tion of the heuristic method needed 1501 iterations.  

From the previous examples it seems the SSO and the BE algorithms give the 

same results and outperform both the heuristic and the RBS algorithm. In order to 

have a more clear view we introduce a more complex example where  
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and İ2(x) follows a Cauchy distribution with location 0 and scale 0.05 and x is 

equally spaced in [-6,6]. While the fist example is very simple the second one 

proposed by [22] incorporates large outliers in the output space. The sensitive to 

the presence of outliers of the proposed WN will be tested.        

The results for the second example are similar however the BE algorithm is 

10% faster than the SSO. Using the RBS, SSO and BE algorithms the MSE is 

0.004758, 004392 and 0.04395 and is found after 2763, 1851 and 1597 iterations 

respectively. The MSE between the underlying function g(x) and the network ap-

proximation is 0.000609, 0.000073 and 0.000057 respectively.  

One can observe in Figure 2 that the WN approximation was not affected by 

the presence of large outliers in contrast to the findings of [22]. In this study 8 

hidden units were used for the network topology proposed by Ȟ-fold cross-

validation while in [22] 10 hidden units were proposed by the FPE criterion. As it 

is shown in the next section the FPE criterion does not perform as well as sam-

pling techniques and should not be used. 

The previous examples indicate that SSO and BE perform similarly whereas 

BE outperforms SSO in complex problems. On the other hand BE needs the calcu-

lation of the inverse of the wavelet matrix which columns might be linear depen-

dent, [14]. In that case the SSO must be used. However since the wavelets come 

from a wavelet frame this is very rare to happen, [14]. 

3. Model Selection 

In this section we describe the model selection procedure. One of the most crucial 

steps is to identify the correct topology of the network. A network with less HU 

than needed is not able to learn the underlying function while selecting more HU 

than needed will result to an overfitting model. Several criteria exist for model se-

lection, such as Generalized Prediction Error, Akaike�s Information Criterion, Fi-

nal Prediction Error (FPE), Network Information Criterion and Generalized Cross-

Validation (GCV). These criteria are based on assumptions that are not necessarily 

true in the neural network framework. Alternatively we suggest the use of sam-

pling methods such as bootstrap and cross-validation. The only assumption made 

by sampling methods is that the data are a sequence of independent and identically 

distributed variables. However, sampling methods are computationally very de-

manding. In this study we will test the FPE proposed by [14], the GCV proposed 

by [14], the bootstrap (BS) and the v-fold cross-validation (CV) methods proposed 

by [23] and [24]. These criteria will be tested with and without training of the 

network. 

In both examples BS, FPE and CV propose similar models. In the first example 

2 HU were needed to model the underlying function f(x).On the other hand GCV 

suggests 3 hidden units. The MSE between the underlying function f(x) and the 



approximation of the WN using 3 HU is 0.000271 while using 2 HU is only 

0.000121 indicating that the GCV suggested a more complex model than needed. 

In the second example BS and CV propose the same network topology (8 HU) 

while using the FPE criterion the prediction risk minimized in 7 HU and using the 

GCV criterion it is minimized in 14 HU. In order to compare the performance of 

each criterion the MSE between the underlying function g(x) and the approxima-

tion of the WN is calculated. The MSE is 0.000079, 0.000073 and 0.000101 for 7, 

8 and 14 HU. Again the BS and CV gave correct results while the FPE performs 

satisfactorily. 

 

 
Fig. 1. Four different initialization methods. 

 

 
Fig. 2.  Data and WN approximation using 8 hidden units. 



In order to significantly reduce the training times [14] propose that since the 

initialization is very close to the underlying function the prediction risk can be 

calculated after the initialization. In the first example all information criteria gave 

the same results as in the previous case. However in the second example in all cri-

teria more than 14 HU were needed proving that early stopping techniques does 

not perform satisfactory. 

Since sampling techniques are very computationally expensive the FPE crite-

rion can be used initially. Then BS or CV can be used in +/-5 HU around the HU 

proposed by FPE in order to define the best network topology. 

4. Model fitness and sensitivity criteria. 

In real problems it is important to define correctly the independent variables. In 

most problems there is a little information about the relationship of any explanato-

ry variable with the dependent variable. As a result unnecessary independent va-

riables included in the model reduce the predictive power of the model. In this 

section we will present eight different sensitivity criteria and one model fitness 

sensitivity (MFS) criterion for testing the significance of each explanatory varia-

ble. 

First we create a second variable X2 which was randomly drawn from the uni-

form distribution within the range (0,1). To fit the sample for the first example we 

use a WN with both X1 and X2 as inputs. Using the CV the prediction risk is mini-

mized when 3 HU are used and it is 0.04194. The network approximation con-

verges after 3502 iterations. Comparing the results with the findings in previous 

section it is clear that including an irrelevant variable to our model increases the 

training time while the predictive power of the model is reduced. Hence an algo-

rithm that correctly identifies the insignificant variables is needed. For analytical 

expressions of each criterion we refer to [24]. 

In linear models the significance of each explanatory variable is determined by 

the value of the coefficient. In the WN case by observing the weights of the direct 

connections one concludes that X2 is more significant than X1. As expected the 

listed magnitudes are much larger for the first variable for all nine criteria. How-

ever the only information that Table 1 gives is how sensitive is the dependent va-

riable to each independent variable. There is no information if X2 should be re-

moved from the model. In [24] a novel approach (parametric sampling) is 

presented in order to determine if a variable should be removed from the model. In 

parametric sampling new networks are created by bootstrapping the parameters of 

the initial network. In order to reduce training times [24] use local bootstrap. 

Wavelets are local function and local bootstrapping may cannot be used. Hence 

we sample from the training patterns. As Ȟ-fold cross validation performs better 

than bootstrap [23] we propose an approach where 50 new training samples are 

created according to Ȟ-fold cross validation. After the correct topology of the net-

work is determined, the sensitivity criteria are calculated for each sample. Next the 

p-values for each criterion are computed and the variable with the largest p-value 



is removed. The procedure is repeated until all explanatory variables have p-value 

less than 0.1 indicating significant variables.   

 First the standard deviation and the p-values for all sensitivity and model fit-

ness measures for the two variables of the first example are calculated. As it was 

expected X1 has a larger impact in the output y. However all eight sensitivity 

measures consider both variables as significant predictors. As discussed on [24] 

these criteria are application dependent while MFS criteria are much better suited 

for testing the significance of the explanatory variables. Indeed the p-value for X2 

using the SBP is 0.6019 indicating that this variable must be removed from the 

model. In the reduced model the p-value for X1 using the SBP is 0 indicating that 

X1 is very significant. Next the correctness of removing the X2 should be tested. 

The prediction risk in the reduced model was reduced to 0.0396 from 0.0419 in 

full model. Moreover the adjusted R2 increased to 70.8% from 69.7%. 

The same analysis is repeated for the second example. In Table 2 the mean, the 

standard deviation and the p-values for all sensitivity and model fitness measures 

for the two variables of the second example are presented. A network with 10 HU 

was needed when both variables were included in the model. Only three criteria 

suggest that X2 should be removed from the model, the SBP, the MaxDM and 

MinDM with p-values 0.1597, 0.4158 and 0.8433 respectively. However the 

MinDM wrongly suggests that X1 should also be removed from the model with p-

value 0.1795 in the reduced model. On the other hand the p-values for X1 using the 

SBP and the MaxDM are 0 indicating a very significant variable in both full and 

reduced models. The reduced model needed only 8 HU and the prediction risk re-

duced to 0.0008 from 0.0033 that it was when X2 was included as an input. More-

over the adjusted R2 increased to 99.7% from 99.2%. The previous examples show 

that SBP can be safely used for the identification of irrelevant variables. On the 

other hand the sensitivity criteria are application dependent and extra care must be 

taken when used. 

5. Conclusions. 

This study presents a statistical framework for wavelet network model identifi-

cation. To our knowledge this is the first time that a complete statistical frame-

work for the use of WNs is presented. Several methodologies were tested in wave-

let network construction, initialization, model selection and variable significant 

testing. We propose a multidimensional wavelet neural network with a linear con-

nection of the wavelons to the output and direct connections from the input layer 

to the output layer. The training is performed by the classic back-propagation al-

gorithm. Next four different methods were tested in wavelet network initialization. 

Using the BE and SSO the training times were reduced significantly while the 

network converged to the global minimum of the loss function.  

Model selection is a very important step. Four techniques were tested with the 

sampling techniques to give more stable results than other alternatives. BS and CV 

found the correct network topology in both examples. Although FPE and GCV are 



extensively used in the WN framework, due to the linear relation of the wavelets 

and the original signal, it was proved that both criteria should not be used in com-

plex problems. Moreover using early stopping techniques in complex problems 

was found to be inappropriate. 

A variable selection method was presented. Various sensitivity and model fit-

ness criteria were tested. While sensitivity criteria are application dependent, MFS 

criteria are much better suited for testing the significance of the explanatory va-

riables. The SBP correctly indentified the insignificant variables while their re-

moval reduced the prediction risk and increased the adjusted R2 implying the cor-

rectness of this decision. 

Finally the partial derivatives with respect to the weights of the network, to the 

dilation and translation parameters as well as the derivative with respect to each 

input variable are presented. The construction of confidence and prediction inter-

vals as well as a model adequacy testing scheme are left as a future work. 

 

Table 1. Sensitivity measures for the first example. 

 wi
[0] 

MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP 

Full model 

(two variables) 

          

X1 0.0161 1.3962 -1.3459 1.3962 0.0005 -0.0529 0.6739 0.2127 1.6323 0.0953 

X2 0.0186 0.4964 -0.7590 0.7590 0.0002 0.0256 0.0915 0.0781 0.1953 0.0001 

Reduced model 

(one variable) 

          

X1 0.1296 1.1646 -1.1622 1.1644 0.0014 0.0841 0.7686 0.3165 1.3510 0.0970 

MaxD=Maximum Derivative 

MinD=Minimum Derivative 

MaxDM=Maximum Derivative Magnitude 

MinDM=Minimum Derivative Magnitude 

AvgD=Average Derivative 

AvgDM=Average Derivative Magnitude 

AvgL=Average Elasticity 

AvgLM=Average Elasticity Ma nitude g

SBP=Sensitivity Based Pruning 
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