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Abstract

Background: Artificial intelligence (AI) is often heralded as a potential disruptor that will transform the practice of medicine.
The amount of data collected and available in health care, coupled with advances in computational power, has contributed to
advances in AI and an exponential growth of publications. However, the development of AI applications does not guarantee their
adoption into routine practice. There is a risk that despite the resources invested, benefits for patients, staff, and society will not
be realized if AI implementation is not better understood.

Objective: The aim of this study was to explore how the implementation of AI in health care practice has been described and
researched in the literature by answering 3 questions: What are the characteristics of research on implementation of AI in practice?
What types and applications of AI systems are described? What characteristics of the implementation process for AI systems are
discernible?

Methods: A scoping review was conducted of MEDLINE (PubMed), Scopus, Web of Science, CINAHL, and PsycINFO
databases to identify empirical studies of AI implementation in health care since 2011, in addition to snowball sampling of selected
reference lists. Using Rayyan software, we screened titles and abstracts and selected full-text articles. Data from the included
articles were charted and summarized.

Results: Of the 9218 records retrieved, 45 (0.49%) articles were included. The articles cover diverse clinical settings and
disciplines; most (32/45, 71%) were published recently, were from high-income countries (33/45, 73%), and were intended for
care providers (25/45, 56%). AI systems are predominantly intended for clinical care, particularly clinical care pertaining to
patient-provider encounters. More than half (24/45, 53%) possess no action autonomy but rather support human decision-making.
The focus of most research was on establishing the effectiveness of interventions (16/45, 35%) or related to technical and
computational aspects of AI systems (11/45, 24%). Focus on the specifics of implementation processes does not yet seem to be
a priority in research, and the use of frameworks to guide implementation is rare.

Conclusions: Our current empirical knowledge derives from implementations of AI systems with low action autonomy and
approaches common to implementations of other types of information systems. To develop a specific and empirically based
implementation framework, further research is needed on the more disruptive types of AI systems being implemented in routine
care and on aspects unique to AI implementation in health care, such as building trust, addressing transparency issues, developing
explainable and interpretable solutions, and addressing ethical concerns around privacy and data protection.

(J Med Internet Res 2022;24(10):e40238) doi: 10.2196/40238
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Introduction

Artificial intelligence (AI) is often heralded as a potential
disruptor that will transform the practice of medicine [1,2]. The
promise of AI lies in its ability to process and learn from large
volumes of data and capture patterns otherwise difficult for
humans to identify. This ability has raised questions and worries
about liability and risks, in particular related to the level of
autonomy granted to AI applications [3]. Others see a role
complementary to humans; for example, decision support or
decision augmentation where humans (in the roles of clinicians
or programmers) provide oversight and collaborate [4-7]. The
latter approach has been demonstrated to yield superior
performance compared with experts alone [8]. Other benefits
include improved patient outcomes, error reduction, health
system optimization, cost reductions, and increased value [6].

The amount of data collected and available in health care,
coupled with advances in computational power, has contributed
to advances in AI applications [9] and an exponential growth
of publications on AI in health care, with >10,000 records on
PubMed in 2021 alone. Included in this are multiple reviews
across medical specialties that explore the potential roles of AI
to augment health care delivery [10-14]. These include
diagnostic (eg, early cancer diagnosis, diabetes retinopathy
screening, or COVID-19 diagnosis based on computed
tomography images), therapeutic (eg, precision medicine in
chemotherapy and for combination drug therapy), and regulatory
or administrative applications (eg, coding of records or economic
evaluations), as well as for population health management (eg,
public health surveillance or predictive epidemiological
modeling) [15-21].

However, the development of AI applications does not guarantee
their adoption into routine health care practice. Research has
identified a number of factors influencing adoption of
innovations. These include context (eg, economic and political
context, laws and regulations, and sociocultural factors),
organization (eg, organizational structure, resources, and
processes), group (eg, professional values and cultures),
individual (eg, attitudes, motivation, user satisfaction, and trust),
and technology (eg, usability, design, accuracy, and

explainability) [22,23]. This suggests a need to know more
about how AI can be implemented in health care, not only as
an innovation but also with respect to its unique potential and
associated concerns.

Previous reviews have tended to focus only on some aspects of
the process of implementation of AI in health care; for example,
regulation and legal issues [24,25], trust and ethics [24-29],
clinical and patient outcomes [30-32], and economic impact
[33]. Others have focused their studies on specific AI
applications for health care, such as predictive medicine,
diagnostics, and clinical decision-making [9,30,34,35]. A few
reviews have been more overarching, focusing on coproduction
processes [36], implementation frameworks [37], and critical
implementation barriers or success factors [38] that could inform
the development of relevant implementation strategies of AI
technology. Generally, it is argued that the implementation of
AI in health care could significantly improve patient and health
care outcomes, but none of these reviews have actually explored
the knowledge base of real-world implementation in everyday
clinical practice.

Given the resources invested in developing AI applications and
the risk of reproducing already investigated aspects of effective
AI applications to support, augment, and perhaps even transform
health care for patients, staff, and society, we sought to explore
how the implementation of AI in health care practice has been
empirically investigated in the research literature.

Methods

Study Design
We chose a scoping review methodology in line with the Arksey
and O’Malley framework [39] and reported according to the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
checklist (Figure 1) [40]. A previous review suggested that
implementation of AI in health care was not well studied [37].
A scoping review would thus enable a mapping of the “extent,
range and nature of research activity” in this emerging area of
research [39].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. AI: artificial intelligence.

Identifying the Research Question
To address our aim, we formulated three research questions:

1. What are the characteristics of research on implementation
of AI in practice?

2. What types and applications of AI systems are described?
3. What characteristics of the implementation process for AI

systems are discernible?

Identifying Relevant Studies
We focused our search, with support from a university librarian,
by iteratively testing synonyms for 3 concepts: artificial
intelligence, health care, and implementation (Textbox 1). For
the purposes of clarity, we differentiated between AI algorithms
and models (the actual code), AI applications (the innovation
package), and AI systems (the application in its context) and

used standardized Medical Subject Headings terms and subject
headings describing AI and its subcategories provided by the
databases used for our searches [41]. Implementation was
defined as “An intentional effort designed to change or adapt
or uptake interventions into routines,” based on a review of
frameworks for the translation of AI into health care practice
[37]. Synonyms were joined by the Boolean operator OR; next,
we combined the search strings for each concept with the
Boolean operator AND (Multimedia Appendix 1).

To cover content in both general and health- and health
care–specific sources, 5 electronic databases were searched:
MEDLINE (PubMed), Scopus, Web of Science, CINAHL, and
PsycINFO. In addition, we used snowball sampling by manually
reviewing reference lists of the review articles we had identified
during the screening that might contain relevant references given
the topic of the review.
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Textbox 1. Concept areas and synonyms used to develop the search strategy.

Search concepts, combined using “AND”

• Artificial Intelligence

• Healthcare

• Implementation

Search terms, combined using “OR”

• Artificial intelligence, Neural networks, Deep learning, Machine learning

• Delivery of healthcare, Health care, Healthcare

• Implementation, Improvement, Innovation, Intervention

Eligibility Criteria
We included peer-reviewed empirical studies published in
English between December 2011 and February 2022 because

preliminary searches suggested that AI applications in health
care are a more recent phenomenon (Table 1).

Table 1. Eligibility criteria and their rationale.

RationaleEligibility criteria and variable

Inclusion criteria

Greater credibility because the papers have been reviewed by peer experts
in the field

Peer reviewed

Empirical studies improve the ability to answer the research questions
compared with conceptual commentaries or viewpoints

Empirical study design

Given the rapid pace of development of technology and changing data
sets, solutions developed before the last decade are likely to be obsolete

Published between December 2011 and February 2022

Practical consideration, given the investigators’ language proficiencyEnglish language

Exclusion criteria

Empirical studies improve the ability to answer the research questions
compared with conceptual commentaries or viewpoints

Nonempirical designs, including editorials, commentaries, opinion
articles, and reports

As the aim was to explore implementation in practice, studies that stop
short of that, for example, proof-of-concept, validity, or feasibility studies,
should be excluded

Proof-of-concept, feasibility, or validation studies not related to im-
plementation of artificial intelligence technologies

Study Selection
All identified records were imported into the open-access
software Rayyan. Duplicates were removed, and the titles and
abstracts of the remaining records were screened for eligibility
by at least one of the authors. Any uncertainty or conflict was
discussed at regular check-ins until consensus was reached
among all authors. These discussions were informed by the
multidisciplinary backgrounds of the authors. We also
continually reviewed our interpretations of the screening criteria,
and when questions were raised, we backtracked to ensure that
the criteria had been applied correctly and in a universal fashion,
independent of who had screened the records. We used the AI
screening and highlighting function of Rayyan, but we still
screened each record. We also erred on the side of inclusion.
Full-text articles were then screened independently by at least
two researchers. Conflicts and uncertainty were again resolved
through discussion until consensus was reached among all
researchers. As we followed the original framework, a quality
appraisal of the included studies was not conducted.

Charting the Data
We developed a data extraction template to chart data for each
of the research questions. To define these conceptual areas, we
adopted the World Health Organization’s guidance on ethics
and governance of AI for health definition of AI (based on a
recommendation of the Council on Artificial Intelligence of the
Organisation for Economic Co-operation and Development
states) [42,43]: “An AI system is a machine-based system that
can, for a given set of human-defined objectives, make
predictions, recommendations, or decisions influencing real or
virtual environments. AI systems are designed to operate with
varying levels of autonomy” [42].

The following data were extracted:

1. General information: authors, publication year, country,
clinical setting, study aim, and study design

2. Types and applications of AI: AI technology used, type of
AI model, type of task performed by AI, level of action
autonomy, intended use of AI, and intended user of AI
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3. Implementation process: research focus, motives for
implementation, elements in the implementation process,
and frameworks used

Collating, Summarizing, and Reporting the Results
The extracted data relating to research questions 1 and 2 were
mapped and summarized. A qualitative thematic analysis [44]
was used to analyze data associated with research question 3 to
summarize the motives for implementation and elements in the
implementation process. Articles were read and reread, with
initial ideas sorted into either the domain Motives behind the
implementation or Elements in the implementation process.
Next, initial codes were identified in each article. The codes
were compared based on similarities and differences and collated
into potential themes, which were then compared to generate a
thematic map that was used to generate clear definitions and
names for each theme in the respective domains. Coding and
data analysis were performed in pairs, and any uncertainties
were discussed among all authors until consensus was achieved.

Results

Search Results
We identified 9218 records, of which 9179 (99.58%) were
identified through database searches and 39 (0.04%) through a
snowball search of reference lists in the review articles (n=36).
Of the 9218 records, after removal of duplicates, 5666 (61.47%)
records remained, and we screened titles and abstracts. In this

screening, 98% (5553/5666) of the records were excluded, and
the remaining 2% (113/5666) were assessed for eligibility
through full-text review. Of these 113 articles, 68 (60.2%) were
excluded for reasons highlighted in Figure 1, and 45 (39.8%)
were included in the scoping review.

Research Question 1: Study Characteristics
The reviewed body of literature was fairly recent, with the
majority of the studies (32/45, 71%) having been published
between 2020 and 2022 [45-76]. Most (33/45, 73%) of the
articles were from North America and Europe [46,47,
49-55,57,58,61-63,67-70,73-87], of which most (18/33, 55%)
were from the United States [46,47,49-52,54,68,73-77,
79-81,84,87]. The greatest number of AI systems were
implemented either in hospital-wide settings (6/45, 13%)
[50,55,56,65,74,80] or in radiology (6/45, 13%)
[53,56,66,68,73,76]. Most (27/45, 60%) of the studies were
authored by a multidisciplinary team [46,47,50-55,58,
59,61,62,64,67,69,70,72,74,75,78-80,82,86-89], with clinical
and IT or informatics backgrounds being the most common
combination (9/27, 33%) [47,50,55,61,70,74,79,87,89]. Among
studies with authors from only 1 domain, the most common
background was clinical (8/45, 18%) [63,65,66,68,71,73,76,84].
There was a wide range of study designs. Most (24/45, 53%)
used a case-study design, including both single-case
[46,49,50,52,53,55-57,59,60,66-68,70,74,75,78-83,85,86] or
multiple comparative case designs [53,56,78] (Table 2 and
Multimedia Appendix 2).
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Table 2. Overview of articles included in the scoping review (N=45).

Study designStudy aimAuthor, year, country; clinical setting

Case studyDescribe Child Health Improvement through Computer Automation system and
methods to represent pediatric guidelines using Arden syntax

Anand et al [79], 2018, United States;
pediatrics

Case studyConduct a detailed analysis of barriers to use of machine learning model in health
care

Baxter et al [50], 2020, United States;
hospital-wide implementation

Pre-post studyEvaluate the effects of a data-driven clinical productivity system that leverages
electronic health record data to provide productivity decision support functional-
ity in a real-world clinical setting

Bennet [77], 2011, United States;
mental health

Qualitative studyIlluminate barriers and facilitators to use of intensive insulin therapy CDSSaChampion et al [87], 2011, United
States; intensive care

Case studyEvaluate the implementation of an AIb-powered translation system in radiologyChonde et al [68], 2021, United
States; radiology

Interrupted time seriesDetermine if a VTEc stewardship program can increase risk-appropriate VTE
prophylaxis and VTE risk assessment using CDSS

Chong et al [65], 2021, Australia;
hospital-wide implementation

Case studyDescribe a real-time CDSS and its effect on adherence to clinical pathwaysCruz et al [85], 2019, Spain; primary
care

Case studyExplore how an AI-enhanced medical drone application in Ghana’s health care
supply chain improves the health care supply chain system

Damoah et al [60], 2021, Ghana;
management

Case studyDetermine the impact of a machine learning algorithm, meant to mark CTd head
examinations pending interpretation as higher probability for intracranial hemor-
rhage

Davis et al [73], 2020, United States;
radiology

Case studyPresent a decision support system for operating room scheduling at a university
hospital in Seville, Spain

Dios et al [83], 2015, Spain; surgery

Quantitative studyAssess the user satisfaction of a virtual caregiver designed to monitor the health
of patients admitted to hospital for COVID-19 infection for a period of 30 days
after discharge

García Bermúdez et al [69], 2021,
Spain; internal medicine service

Case studyPresent the nurses’ experience with technological tools to support the early iden-
tification of sepsis

Goncalves et al [59], 2020, Brazil;
nursing

Qualitative study with key
informant interviews

Assess the impact of an AI-based application on rifampicin-resistant tuberculosis
screening

Herman et al [64], 2021, Indonesia;
public health

Retrospective observation-
al study

Describe the impact of a new risk-management cognitive robot related to the
processes of identification and care for patients at sepsis risk in a clinical-surgical
unit

Kalil et al [88], 2018, Brazil; surgery

Qualitative study with key
informant interviews

Identify the different computational and organizational setups that early-adopter
health systems have used to integrate an AI-based CDSS into clinical workflows

Kashyap et al [47], 2021, United
States; not specified

Interrupted time seriesAssess the impact of using automatic video auditing in the quality and quantity
of hand-wash events

Lacey et al [61], 2020, United King-
dom; surgery

Case studyDescribe the implementation of a digitally automated prehospital triage solution
to direct patients to appropriate care

Lai et al [52], 2020, United States;
public health

Mixed methodsDescribe use of a CDSS on antibiotic prescribing for acute respiratory infections
in primary care, as well as facilitators and barriers to adoption

Litvin et al [84], 2012, United States;
primary care

Cross-sectional studyCharacterize the diverse use cases of COVID-19–related conversational agents
built using the IBM Watson Assistant platform

McKillop et al [48], 2021, multiple
regions; public health

Quantitative surveyValidate and implement the AI system and quantify referral patterns to the or-
thodontist specialist before and after implementation of the system

Mohamed et al [71], 2021, United
Arab Emirates; dentistry

Case studyDescribe the experiences and lessons learned during implementation of AI systemMoorman [49], 2021, United States;
inpatient care

Observational studyDescribe early implementation of a digital triage and monitoring service that in-
cluded the use of a chatbot using algorithmic decision-making

Morales et al [72], 2021, Brazil;
emergency care

Analysis of existing data
set

Develop a predictive model for risk stratification for enrollment into a nationwide
transitional care program

Ng et al [45], 2021, Singapore; gener-
al care
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Study designStudy aimAuthor, year, country; clinical setting

Quasi-experimental studyAssess (1) whether the introduction of an algorithm for the detection of intracere-
bral hemorrhage at noncontrast CT affects turnaround times and (2) whether the
impact on turnaround time was dependent on the manner in which information
was presented in the radiologist workflow

O’Neil et al [76], 2021, United States;
radiology

Case studyAnalyze the implementation of an AI-based decision support system in an emer-
gency department focusing on actors’ representations of the system

Petitgand et al [67], 2020, Canada;
emergency department

Case studyDiscuss optimization approaches for logistics services in hospitalsRais et al [82], 2018, Portugal; man-
agement

Case studyDescribe the development, implementation, and evaluation of a model-based de-
cision support system to determine daily scheduling of anesthesiologists and
rooms for elective surgeries

Rath et al [81], 2017, United States;
surgery

Case studyDescribe a failed AI project at a large hospital and identify the root causes that
led to failure

Reis et al [55], 2020, Germany; hospi-
tal-wide implementation

Pre-post studyTo explore attitudes about AI among staff who used AI-based CDSSRomero-Brufau et al [51], 2020,
United States; primary care

Controlled studyReduce unplanned hospital readmissions using AI-based CDSSRomero-Brufau et al [54], 2020,
United States; general care units

Retrospective observation-
al study

Describe the role of a digital AI platform in facilitating the implementation of
changes in rehabilitation service during the COVID-19 pandemic

Saverino et al [62], 2021, Italy; reha-
bilitation

Case studyDiscuss the implementation of data analytics in AI-enabled mission control at
one of the largest health care service providers in Washington state

Schlicher et al [75], 2021, United
States; management

Case study describing 3
projects

Outline the technical and clinical aspects of 3 CDSSs integrated into practice at
Vienna General Hospital

Schuh et al [78], 2018, Austria; inten-
sive care, oncology, and nephrology

Case studyPresent research and development of a decision support system for the patients
of a laboratory service

Semenov et al [86], 2016, Russia;
laboratory

Case studyDescribe the steps taken to integrate Sepsis Watch, a sepsis detection and manage-
ment platform, into routine care delivery at Duke University Hospital in Durham,
North Carolina

Sendak et al [46], 2020, United
States; emergency department

Case studyDescribe the system implemented, workflow changes, and impact on vulnerable
citizens

Snowdon et al [74], 2020, United
States; interdisciplinary

Case study (multiple)Identify barriers and facilitators to the implementation of AI applications in clin-
ical radiology

Strohm et al [53], 2020, The Nether-
lands; radiology

Mixed methodsDescribe health workers’ acceptance and use of the CDSS for maternal care at
rural facilities in Ghana and Tanzania and identify factors affecting successful
adoption

Sukums et al [89], 2015, Ghana and
Tanzania; primary care

Mixed methodsStudy how social power among various stakeholders affects IT adoption in health
care

Sun [56], 2021, China; hospital-wide
implementation

Case studyPresent design and implementation of a software platform for supporting detection
as well as using and processing clinical, bio-chemical, imaging, and histopatho-
logic findings from fusion biopsy

Tamposis et al [70], 2022, Greece;
urology

Case studyDescribe the use of AI for automatic detection and flagging of CT findings not
reported by radiologists to improve patient safety

Tan et al [66], 2021, Singapore; radi-
ology

Pre-post studyEvaluate the clinical impact of an AI upgrade of an existing orthodontic mobile
coaching app

Thurso et al [58], 2021, Slovakia;
dentistry

Case studyPresent recommendations for developing natural language processing tool sets
based on the experience of developing clinical natural language processing at the
Mayo Clinic in Rochester, Minnesota

Wen et al [80], 2019, United States;
hospital-wide implementation

Case studyTheory formalization of grounded insights from a CDSS development case, and
by doing this create an organizational learning theoretical foundation for AI de-
velopment in organizations

Wijnhoven [57], 2021, The Nether-
lands; neonatal care
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Study designStudy aimAuthor, year, country; clinical setting

User feedback surveyCharacterize the impact of deep learning–based auto-segmented contour models
in the clinical workflow at 2 cancer centers

Wong et al [63], 2021, Canada; oncol-
ogy

aCDSS: clinical decision support system.
bAI: artificial intelligence.
cVTE: venous thromboembolism.
dCT: computed tomography.

Research Question 2: Types and Applications of AI
Technology
The most common type of AI application implemented was
automation or optimization technology, reported in 71% (32/45)
of the implemented systems [45,46,49-51,53-59,62,64,65,
70,71,73,75,77-79,81-84,86-89]. Other technologies
implemented included human language technologies, computer
vision, and robotics technology (Table 2 and Multimedia
Appendices 2 and 3). The most common AI model was a
symbolic or knowledge-based model, reported in nearly half
(22/45, 49%) of the reviewed studies [48,52-54,57,
59,68-74,77-80,84,85,88], followed by statistical models (9/45,
20%) [45,49-51,58,81,82]. The most commonly performed task
was recognition (16/45, 36%) [52,56,61,
63-66,72,73,76,78-80,84,85], followed by forecasting (9/45,
20%) [45,46,49-51,53,54,57,71]. Other tasks performed were
event detection, goal-driven optimization, interaction support,
and personalization (Table 2, Multimedia Appendices 2 and 3).
Although more than half (24/45, 53%) of the AI applications
had no action autonomy [46,48-51,53,54,57,
63,66,67,70,73-75,79,81-85,87-89], a few reported applications
had low (2/21, 10%) [55,72], medium (4/21, 19%) [58,69,71,86],
or high (6/21, 29%) [52,55,60,61,68,76] action autonomy (Table
2, Multimedia Appendices 2 and 3). Nearly three-quarters of
all AI systems were intended for clinical care (33/45, 73%)
[46,49,51,53-59,61,63-73,78-80,84-89], and the majority (18/33,
55%) of these concerned providing support to inform the
patient-provider encounter [46,49,51,55,56,61,63,
65,67,68,74,78,79,84,85,87,89], followed by diagnosis and
prediction-based diagnosis (13/33, 39%)
[53,55,57,59,64,66,70,71,73,78,80,86,88]. The remaining AI
systems (12/45, 27%) were intended for health systems
management and planning [45,50,52,60,62,74-77,81-83]. Health
care providers were the most common target users; most often
physicians (19/45, 42%) [46,49,51,53-55,57-64,66-68,
70,71,73,74,76,79,80,84,85,88,89], followed by nurses (6/45,
13%) [46,49,51,59,87,88]. Other intended users included health
workers, technicians, managers, patients or caregivers, and the
general public (Table 2 and Multimedia Appendix 2).

Research Question 3: Implementation Process
Characteristics
The research focus in approximately a third of the studies was
to present the effectiveness of the implemented intervention
(16/45, 36%) [54,58,60-62,65,66,71,73-75,77,81,82,85,88].
Other research foci included user experiences
[51,59,63,64,69,86], AI use metrics [48,52,80,84,89], and
identification of barriers or facilitators [50,53,55,57,67,87]
(Table 2, Multimedia Appendices 2 and 3). Most (32/45, 71%)

of the studies described the implementation process as
successful, and only a few (4/45, 9%) described it as
unsuccessful (in the rest of the studies, the success of the
implementation was either not mentioned, or the outcome was
inconclusive).

In a little more than half (23/45, 51%) of the reviewed studies,
the motives behind the implementation were not described. For
those studies that did (22/45, 49%), we identified 6 types of
motives, with Improve health care quality and Achieve better
patient outcomes being the 2 most common. Studies in the
former theme described AI systems used to improve quality of
services [46,71,75,87,88], reduce diagnostic errors [66], reduce
hospital length of stay [73], or reduce unplanned readmissions
[50,54], whereas studies in the latter theme described AI systems
used to achieve better patient survival [59,70]. Another theme,
Improve efficiency, focused on health care–cost reduction,
increased service production, and optimization of public services
[45,72,74,76,77]. Respond to the COVID-19 pandemic was
stated as a motive necessitated by the need for access to the
most up-to-date information [48], the sudden surge in demand
for health care services [52], prioritization of limited resources
[72], and reorganization of service delivery in response to local
guidelines for prevention of infection transmission [62]. Improve
provider satisfaction focused on workload reduction for health
care professionals [55,69]. Empower patients by using AI to
support interpretations of laboratory investigations, rather than
just the test results, was another motive for implementing AI
[86].

Of the 45 included studies, 3 (7%) had an explicit focus on
implementation processes [46,49,68]. In the other studies,
characteristics common to implementation processes were
identified: cocreation, contextualization, nondisruptive workflow
design, communication, learning focus, training, incentives,
and organizational strategies. Both barriers and facilitators were
described.

Several (8/45, 18%) implementation efforts involved cocreation
with multidisciplinary stakeholders, starting from an ideation
phase that included problem identification, requirement
collection, and design or redesign of clinical workflows to
facilitate AI-system integration [45,46,49,52,55,59,68,78].
Cocreation also involved end users in the design of user
interfaces [46,68]. Contextualization of AI systems relating to
the local context and target population was highlighted as
important in development and implementation [52,54].
Nondisruptive workflow design was emphasized, where efforts
were made to design AI systems around existing roles and
functions of the intended user to avoid radical modification of
current practice to fit the AI system [46,49,51]. Communication
efforts were seen as central to building trust and promoting use
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by sharing evidence of AI effectiveness with clinicians and
describing overall benefits of the technology [46,49,59],
appointing champions to promote AI among peers [46,53,75],
and encouraging informal communication between clinicians
and IT developers to cultivate relationships and build trust in
the AI [56]. However, the study by Sendak et al [46] encouraged
the separation of developers and clinicians and made conscious
efforts to shift focus away from the technical aspects of AI. A
learning focus could begin in the ideation phase to understand
and assess the problem to be addressed by AI before coding,
through development and implementation, by iteratively testing
and adjusting workflows [46]. After implementation, learning
continued through the continuous capture of user feedback to
enable improvement [68]. Training involved both informal and
formal sessions to enable AI use [56,89]. After implementation,
training could continue in formal peer-group meetings to share
best practices and individual training and support for more
reluctant users [84]. Incentives were used to promote or enforce
AI use. More controlling approaches included periodic
monitoring and audits [56,84] or removing alternative ways of
performing the task altogether to necessitate AI use [84].
Gamification was used to promote a feeling of reward and
competition [61,65]. Organizational efforts involved including
the hospital’s top leadership as essential members of the project
team and the design and implementation of the AI system to
promote uptake [49,55]. One organization formed a special
governance committee as a formal mechanism to monitor AI
use among health care providers [46]. Another organization’s
innovation strategy included innovation managers as part of the
organizational structure to promote AI [53].

In 7% (3/45) of the studies [50,57,68], the use of the following
implementation frameworks was mentioned: the Reach,
Effectiveness, Adoption, Implementation, and Maintenance
framework [90]; the Nonadoption, Abandonment, Scale-up,
Spread, and Sustainability framework [91]; and the
Socialization, Externalization, Combination, and Internalization
model of knowledge dimensions [92]. Of the 45 included
studies, 4 (9%) proposed new frameworks, principles, or
recommendations based on their presented findings and
implementation experiences [49,55,56,80]. Moorman [49]
proposed 6 principles for implementation of AI: elements of
trust and transparency, minimal impact on workflows,
stakeholder buy-in, relevant education, actionability of AI
outputs, and sustainability through follow-up interactions. Reis
et al [55] proposed a framework for overcoming cognitive and
affective resistance to AI implementation centered around
concerns of users (physicians), such as transparency and
understandability of the AI system, involvement of users in the
AI training, and trust in the AI system. Sun [56] proposed a
power strategy matrix for AI adoption, suggesting that a “boss
strategy” or “expert strategy” can influence adoption. Wen et
al [80] presented 3 desiderata for developing an AI-based
platform, where the second one focused on improving adoption.

Discussion

Principal Findings
Our aim with this study was to explore how the implementation
of AI in health care practice has been empirically investigated
in the research literature. We found that research on
implementation of AI systems is mostly published in
high-income countries, covers many different clinical settings
and disciplines, and predominantly focuses on care providers
as users. The AI models are primarily symbolic or knowledge
based, use automation or optimization technologies, and are
mainly used to perform tasks related to recognition. AI systems
are predominantly intended for clinical care, particularly clinical
care pertaining to patient-provider encounters. Most possess no
action autonomy but rather support human decision-making.
The focus of most research is on establishing the effectiveness
of interventions or related to technical and computational aspects
of AI systems. Focus on the specifics of implementation
processes does not yet seem to be a priority in research, and the
use of frameworks to guide implementation is rare.

Study Characteristics
Most of the studies were published very recently (2020-2022),
which is unsurprising given the temporal distribution of AI
health care studies. Research on AI implementation in health
care is predominantly conceptual in nature, dominated by
commentaries, perspectives, opinion articles, and conceptual
frameworks that raise important questions and issues but without
much-needed empirical evidence [93-96]. As the empirical
evidence base for the implementation of AI solutions in routine
health care is still narrow and premature, it limits possibilities
for generalization both for practice and for the advancement of
methodological approaches. Most of the articles were published
in high-income countries, particularly the United States. This
finding is consistent with the more developed digital health
infrastructure, routine use of electronic health records, and big
data initiatives in North American and European countries and
aligns with other reviews of AI applications in various fields
of health care [32,97,98]. The many different clinical settings
and disciplines could corroborate the data-driven nature of health
care; the fact that AI is highly applicable; or that because of its
nascent state, AI is still being tried in many different contexts.
Given the focus on clinical care, it is not surprising that the
intended users were mostly health care providers, particularly
physicians. A recent scoping review on the use of AI in primary
care found a similar predominance of physicians as target end
users [99]. This suggests a view of AI systems as tools to support
decision-making by physicians rather than other health
professionals. It was surprising to find a scarcity of
implementations of AI applications to handle infectious diseases
(except for the study by McKillop et al [48]), given the
overwhelming attention given to, and funding provided for, the
management of the COVID-19 pandemic in 2020-2022. Another
underrepresented area where AI holds a strong promise is mental
health (except for the studies by Bennett [77] and Rahman et
al [100]).
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Types and Applications of AI Technology
Nearly half of the AI models were symbolic or knowledge based.
They used human-generated logical representations, rules, and
ontologies to infer conclusions and have greater explainability
than models that are based on pure data-driven or statistical
approaches. However, they might not live up to the full potential
of AI because they are “hard-coded, expert cookbooks” that are
limited by the knowledge that is encoded into them [101].
Data-driven, statistical approaches such as machine learning
learn predictive functions based on the inputted data. However,
these methods are opaque and have implications for health care
in relation to patient or provider trust, accountability and quality
assurance, and patient safety [3,102]. The World Health
Organization’s guidance on ethics and governance of AI for
health recognizes the potential trade-off between transparency
and accuracy but encourages AI explainability and transparency
over black-box approaches [43]. The predominance of
knowledge-based or symbolic models, whose greater
transparency and longer existence may ease acceptance among
care providers, is in line with previous reviews [103]. However,
the majority of recently published AI models use data-driven
or hybrid technologies, and knowledge-based models comprised
only a minority of the applications [104]. Our study found that
automation or optimization technologies were by far the most
common, followed by human language technologies. More than
half of the AI systems implemented had no action autonomy.
Instead, they were human decision support systems where the
AI system cannot act on its recommendation or output but
depends on the human operating the system to use or disregard
the recommendation made by it. This finding indicates that
decision support systems are the types of AI systems that have
achieved adoption the earliest, likely because they enhance
human actions and cause minimal disruption to clinical
workflows [105].

Implementation Process
This study found that the way the implementation process of
AI systems in health care is researched is varied and builds on
many types of study designs and methodologies. A little more
than half of the included studies did not provide a clear
motivation for implementing an AI system, which is a key factor
for successful adoption of AI in health care [105]. The lack of
a clear motivation indicates poor alignment with well-defined
needs from clinical practice and risks reinforcing a
technology-focused logic regarding implementation of AI in
health care. This observation might reflect the lack of consistent
understanding of what is meant by implementation of AI in
daily practice and a lack of methodological consistency in how
such implementations should be researched and reported. Most
of the studies either had a technical or computational
understanding of implementation or viewed implementation in
terms of the effectiveness of the intervention. There was not
much focus on the actual process of implementation studies but
more on presenting cases of implementation. This indicates the
relatively nascent nature of evidence in this field and is similar
to other studies, which highlights that many of the publications
on AI in health care focus on the methods and technical aspects
of applying the AI model to clinical scenarios but provide very

little information on the actual process of its implementation in
practice [51,99].

Despite the limited focus in the studies on researching the
implementation process, our inductive analysis identified the
following implementation elements: cocreation, designing
nondisruptive workflows, maintaining a learning focus,
communication, contextualization, leadership and conducive
organizational structure, trainings, and enforcement or
incentivization of AI use. These aspects are not unique to AI
but have been highlighted as important interventions for the
adoption of all digital technologies, including AI; for example,
the involvement of end users in the design and implementation
of IT services and applications forms the basis of user-centered
design, which is seen as an important driver of uptake of digital
technologies [106]. The commitment, involvement, and
accountability of leaders is also a well-known factor for
successful implementation in practice [107]. Seamless
integration with existing workflows was another factor
highlighted as central to adoption of AI systems. This finding
is consistent with the fact that most studied cases of AI system
implementation were based on decision support systems that
have no action autonomy and can be conveniently incorporated
into routine workflows. However, it is challenging to draw
generalized conclusions on the AI implementation strategies
from such systems because they introduce incremental
improvements in the workflows and do not represent more
disruptive types of AI systems; for example, those with high
action autonomy.

The findings of this study corroborate the recent work by Gama
et al [37] regarding the uncertainty of what should be considered
AI and the notion that our understanding of implementation is
still in the early stages of development. We would add that this
understanding is made even more complex by the lack of
agreement on what is meant by the term implementation. We
rejected numerous studies during the screening because the term
implementation was used in a computational sense; for example,
the product concept or requirements were implemented as a
code, or the coded algorithm was implemented using an existing
data set. Even in studies involving real-world settings, the term
was used to mean execution of a plan without reflection on the
process of execution. The focus of implementation as an
intentional effort designed to change routine practice, adapt
interventions, or increase the uptake of interventions into routine
practice was scarce in the published literature.

Limitations and Methodological Considerations
The strengths of this study include the substantial number of
records reviewed and the rigor observed during the screening
process. The search strategy was comprehensive and broad, and
covered 5 different electronic databases. However, we did not
include a broader search of the gray literature that would have
undoubtedly captured additional cases and potentially identified
more cases representing ongoing or completed implementation
projects not yet published in the research literature. As we aimed
to investigate the experiences from implementation in clinical
practice, during screening we removed clinical trials, case
reports, pilots, feasibility studies, and other forms of limited
and controlled introduction of AI applications in practice. We
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expect there to be a lag between the work of technology
companies and care providers and subsequent academic
publications. However, because of the number of records we
identified and the previously found extensive availability of
opinion-based articles in the literature in the form of
perspectives, insights, and narrative reviews [37], we made a
conscious choice to focus on peer-reviewed articles. Although
this procedure might risk excluding relevant knowledge from
smaller or unsuccessful implementation attempts or other
research adjacent to implementation processes, we delimited
the results to the literature based on actual experiences from
implementation in everyday clinical practice.

Our initial screening of title and abstracts did not require
decisions by 2 reviewers, but all decisions in the full-text
screening were confirmed in pairs. We deliberately worked to
maintain consistency and mitigate individual variation through
biweekly meetings where we worked to establish a
psychologically safe environment that encouraged all authors
to raise or flag doubts, discuss the application of exclusion
criteria, or consider differing interpretations. When in doubt,
we would backtrack or repeat without blame, and all conflicts
and uncertainties were resolved through discussion until
consensus was reached. Additional meetings were held with
other experts in the domain to ensure methodological rigor.
Although the Arksey and O’Malley framework for scoping
reviews [39] does not include a quality appraisal, we would

recommend that future authors consider doing so as the number
of articles that carefully consider implementation increases.

Conclusions
The current body of empirical evidence demonstrates a
dissonance between research and practice needs. On the one
hand, conceptual and methodological AI research builds on
large promises of AI to revolutionize health care and
problematizes its slow uptake into practice. On the other hand,
the current empirically supported knowledge derives mostly
from implementations of AI systems with low action autonomy
and highlights lessons on the implementation process that are
typical of implementations of other types of information
systems. Further research is needed on the more disruptive types
of AI systems being implemented in routine care to identify
those aspects of implementation unique to AI. This highlights
the need for future research to advance in two main streams:
(1) to empirically study the implementation processes of various
types of AI systems in health care practice and (2) to support
empirical research and practical implementations by developing
and disseminating an AI-specific implementation framework
that would take into account some of the unique aspects related
to uptake of AI in health care, such as building trust, addressing
transparency issues, developing explainable and interpretable
solutions, and addressing ethical concerns around privacy and
data protection.
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