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Abstract: Artificial intelligence (AI) is a rapidly evolving field of computer science that involves the
development of computational programs that can mimic human intelligence. In particular, machine
learning and deep learning models have enabled the identification and grouping of patterns within
data, leading to the development of AI systems that have been applied in various areas of hematology,
including digital pathology, alpha thalassemia patient screening, cytogenetics, immunophenotyping,
and sequencing. These AI-assisted methods have shown promise in improving diagnostic accuracy
and efficiency, identifying novel biomarkers, and predicting treatment outcomes. However, limita-
tions such as limited databases, lack of validation and standardization, systematic errors, and bias
prevent AI from completely replacing manual diagnosis in hematology. In addition, the processing of
large amounts of patient data and personal information by AI poses potential data privacy issues,
necessitating the development of regulations to evaluate AI systems and address ethical concerns in
clinical AI systems. Nonetheless, with continued research and development, AI has the potential to
revolutionize the field of hematology and improve patient outcomes. To fully realize this potential,
however, the challenges facing AI in hematology must be addressed and overcome.

Keywords: artificial intelligence; hematologic disorders; diagnostic cytology; genomic testing;
machine learning

1. Introduction

Artificial intelligence (AI) refers to computer programs that contain robust datasets
and simulate human intelligence, including problem-solving skills and learning [1]. The
concept of AI has been around since the early 1950s and, in recent years, AI has become
an increasingly integral part of our daily lives, with applications in medicine to store,
retrieve, and uncover patient data. The emergence of global pandemics, chronic diseases,
and big data requires the use of AI-assisted technologies. Medical image analysis, clinical
decision making, and patient behavior analysis are some of the applications of AI in
healthcare settings [2]. The use of AI in diagnostic hematology is one of the most promising
applications in medicine [3]. In the field of hematology, AI has been used since 1994 when
three knowledge-based systems were implemented in Europe to analyze complete blood
counts (CBCs), immunophenotyping, and bone marrow reports in leukemia patients [4,5].

Machine learning (ML) is a subset of AI that enables computers to learn without
any preset rules. It is performed by utilizing algorithms developed to process the dataset
to automatically detect patterns and perform tasks, such as detection and classification,
in various domains [6]. Furthermore, ML can be classified into three types. These are
supervised ML, unsupervised ML, and reinforcement ML [1]. Supervised ML is used
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to predict outcomes based on a labeled training set while unsupervised ML identifies
patterns or groupings within data. Reinforcement ML is a combination of supervised and
unsupervised learning, which maximizes accuracy by trial and error. However, ML systems
require a significant amount of data to learn effectively [1].

Deep learning (DL) is a powerful subset of ML which refers to a multilayered network
of artificial neurons aimed at creating models from raw data. The expanding amount of
data provided by wearables, smartphones, and other mobile monitoring sensors can be
handled by DL algorithms in a number of medical fields. The algorithms are separated
into layers to create an artificial neural network (ANN) which functions similarly to the
human brain [7]. ANNs consists of three major layers, including the input layer, the middle-
hidden layer(s), and the output layer. Each hidden layer increases the complexity of the
learned features, and ANNs can perform various tasks such as image recognition, pattern
recognition, classification, translation, and medical diagnosis. There are several DL-based
techniques, including multi-layer perception (MLP), recurrent neural network (RNN), and
convolution neural network (CNN) [7]. MLP is the simplest type of neural network, in
which ANNs are layered sequentially and information flows through the system unidirec-
tionally. RNNs analyze input data one by one while simultaneously storing all memories
of encountered inputs, making them useful for interpreting sequential information such
as deoxyribonucleic acid (DNA) sequences. CNNs learn common features and perform
spatial correlations from captured images. They ranks hierarchies, and the output data are
converted into an input signal for the following learning steps [8].

These AI ML and DL models are the foundation of AI systems applied in hematology.
In recent years, researchers have utilized these models to develop algorithms for automated
interpretation of blood cell morphology, classification of blood disorders, prediction of
disease prognosis, and identification of new biomarkers. For instance, automated blood
cell morphology analysis using DL models has shown promising results in reducing inter-
observer variability and improving diagnostic accuracy [9]. Moreover, ML algorithms
have been employed to predict the risk of thrombosis in patients with myeloproliferative
neoplasms (MPNs) and to identify new subtypes of leukemia based on genomic data [10].
These models have also been applied to the analysis of large datasets of hematology images,
such as peripheral blood smears (PBSs), bone marrow aspirates (BMAs), and lymph node
biopsies, and have produced AI-aided diagnosis systems that are able to assist pathologists
to make more accurate diagnoses [11].

By leveraging the power of AI and ML models, researchers are making significant
progress in the field of hematology. Given the increased prevalence of hematologic dis-
orders and emerging global pandemics, these models have the potential to revolutionize
hematology by providing faster and more accurate diagnoses, improving patient prognosis,
and lowering healthcare costs. However, there are still challenges that need to be addressed,
such as the need for large datasets and the potential for bias in the training data. Therefore,
further research and development are necessary to fully realize the potential of AI in hema-
tology. The most recent updates from well-known electronic databases, including PubMed,
the Web of Science, Medline, and Google Scholar, and search engines for gray literature such
as Google, were meticulously combed through. Conference abstracts were excluded while
we considered full-text, peer-reviewed publications, books, review papers, and preprints
pertinent to the area and written in English. This review highlights the current updates
and challenges in the role of AI in diagnosing hematologic disorders, risk stratification,
prediction of disease prognosis, challenges, and future directions in implementing AI in
the health system.

2. Current Applications of AI in Hematologic Cytology

Non-communicable diseases are becoming a global health problem, resulting in the
death of 41 million people each year and accounting for 74% of all deaths globally [12].
Cancer, a complex disease caused by multiple factors, is the world’s second leading cause
of death, particularly in developing countries [13]. Hematologic malignancies, also known
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as blood cancers, are a set of neoplastic disorders marked by persistent abnormal cell
growth in the bone marrow, lymph nodes, and/or blood [14]. These complex diseases
require experts for detection, diagnosis, risk identification, and treatment. This approach
is becoming a challenge as healthcare facilities are overburdened due to the increased
prevalence of the disease and the emergence of global pandemics, implying the need for
an accurate and efficient patient management system. Despite the emergence of cutting-
edge diagnostic technologies, manual expert evaluation remains indispensable for disease
reclassification, validation, and result interpretation.

Current diagnosis of hematologic malignancies is based on evaluating patient blood
parameters, biopsies to test small pieces of tissue for cancerous cells, and imaging tests to
rule out metastasis of specific disease conditions. The treatment options may include any
combination of chemotherapy, bone marrow transplantation, immunotherapy, radiation
therapy, targeted therapy, and transplantation [15]. The emergence of malignancies with
multiple drug resistance and their atypical nature put a double burden on the detection
and diagnosis of hematologic disorders. A more efficient, accurate, and traceable approach
is mandatory to tackle this emerging public health concern. AI is an emerging approach
that can help to analyze big data, identify patterns, correlate with clinical diagnosis, and
predict patient survival in healthcare settings. AI can be applied in various hematologic
diagnostic services, including in CBCs, cellular morphology analysis, detection of cellular
inclusions, identification and quantification of malignant cells, molecular characterization,
and prediction of patient prognosis.

2.1. Review of Blood/Marrow Smears

Review of peripheral blood smears (PBSs) and bone marrow smears (BMSs) is a pow-
erful diagnostic tool that provides rapid, reliable information about a variety of disorders
such as leukemia, anemia, infections, and allergies [16]. Smear review in bone marrow
examination is frequently used for diagnosing infiltrated hematologic disorders and helps
differentiate between the underlying causes. PBS and BMS examinations are essential to
confirm a clinically suspected disease and to uncover a previously unsuspected diagno-
sis [17]. Depending on the circumstances, peripheral blood, BMAs, and trephine biopsy
are possible samples to use for analyzing the cytomorphology of blood cells as well as
their pattern of distribution [18]. However, the routine microscopic examination of blood
and marrow smears in the hematology laboratory takes a longer time, is cumbersome
and error-prone, and is inefficient in high-patient-flow healthcare settings. Given the
dynamic nature of hematologic disorders and atypical features of various cells, AI and
ML approaches would provide a more rapid, accurate, and efficient examination of PBSs
and BMSs. Furthermore, it would reduce turnaround time for patient diagnosis, reduce
interpersonal variation, improve healthcare delivery, and predict the prognosis potential
of patients.

The use of AI in hematology is still limited, with only a few Food and Drug Adminis-
tration (FDA)-approved AI devices currently available on the market. These devices are
primarily used for the examination of PBS morphology. Among them, CellaVision and
Morphogo are two representative systems used for the examination of PBS and BMA slides,
respectively. CellaVision is an automated digital image analyzer that has been approved by
the FDA [19,20]. It can be connected to a hematologic analyzer and slide-making device to
perform a CBC, blood film preparation, staining, cell location, and identification automati-
cally. The system includes a high-quality microscope and a digital camera connected to a
computer. When a PBS is scanned, the analyzer identifies the monolayer of cells, and the
image analysis software captures cell images for pre-classification.

The pre-classification of both white blood cells (WBCs) and red blood cells (RBCs)
is achieved by means of ML-based ANNs, which are a collection of connected artificial
neurons (nodes) organized into hidden layers that can perform different transformations
based on the inputs received. Signals are transmitted from the input to the output layer,
possibly passing through the hidden layers multiple times [21]. CellaVision’s ANNs are
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well trained using a large database of images. Individual WBCs are captured by a 100×
oil-immersion lens, and pre-classification is performed for the WBC differential count,
allowing for the classification of up to 17 cell types, including immature cells such as blasts
and myelocytes. The pre-classification of WBCs is based on cell color, special features,
geometry, and texture [22]. The captured image of the WBCs is compared to the database
in the library, and the results can be verified by users (Figure 1). The pre-classification
of WBCs has been reported to have an overall accuracy of approximately 98%, showing
a good correlation with the manual identification of cells [23]. CellaVision (DM96) with
ANN support demonstrated 100% sensitivity and 94% specificity in identifying blasts, as
well as 100% sensitivity and 97% specificity for typical WBCs and nucleated RBCs. The
system also has extra features such as the ability to consult and review slides remotely and
perform cell-by-cell quality control [24].

Cells 2023, 12, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 1. The process of classifying abnormal cells using CellaVision’s ANNs. (A) Normal blood cell 
morphology. The system detects and classifies normal mature WBCs, RBCs, platelets, and immature 
cells. (B) WBC disorder. The system detects abnormal WBCs, such as increased blast cells, and sug-
gests acute leukemia. (C) RBC disorder. The system characterizes RBC size, color, and shape and 
suggests iron-deficiency anemia. (D) Platelet clumps. The system detects and classifies platelets, 
including platelet clumps. The automatically captured images are pre-classified as different cell 
types by a pre-processing algorithm and then fed into an ANN model for further classification into 
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ure 2). The convolution filter of the CNN can enhance the quality of the cell cluster image 
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sharpening, blurring, and edge detection [28]. Cancer cell cluster features are extracted 
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Figure 1. The process of classifying abnormal cells using CellaVision’s ANNs. (A) Normal blood cell
morphology. The system detects and classifies normal mature WBCs, RBCs, platelets, and immature
cells. (B) WBC disorder. The system detects abnormal WBCs, such as increased blast cells, and
suggests acute leukemia. (C) RBC disorder. The system characterizes RBC size, color, and shape and
suggests iron-deficiency anemia. (D) Platelet clumps. The system detects and classifies platelets,
including platelet clumps. The automatically captured images are pre-classified as different cell
types by a pre-processing algorithm and then fed into an ANN model for further classification into
subtypes such as “abnormal WBCs”. The ANNs are trained on a large dataset of labeled images to
learn the features that differentiate each subtype, allowing for accurate and efficient classification of
abnormal cells. ANN, artificial neural networks; RBC, red blood cell; WBC, white blood cell.
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RBCs are pre-characterized by a program called CellaVision Advanced RBC applica-
tion, which captures them using a 50× oil-immersion lens. RBCs are classified based on
morphological abnormalities such as size, central pallor, roundness, border notching, and
inclusion bodies [19]. They can be pre-classified into 21 morphological categories, and RBC
grading can be reported. According to reports, the sensitivity of CellaVision ranges from
33% for RBC agglutination to 100% for detecting poikilocytosis (sickle cells, stomatocytes,
etc.). The specificity was 84.5% and 99.5% for schistocyte and sickle cells, respectively [25].
In addition, CellaVision helps to characterize platelets in peripheral blood [23].

The potential of AI in hematologic diagnosis is undeniable because it offers several
benefits, such as reduced turnaround time and improved consistency in patient results due
to easier standardization. CellaVision can enhance the training efficiency of staff, as well
as reduce eyestrain by allowing laboratory technologists to review and verify results on a
computer screen. However, this technology has limitations that prevent it from fully replac-
ing traditional slide reviews by manual microscopy. CellaVision has low sensitivity and
specificity in identifying lymphoblasts and plasma cells, which share similar morphological
features with lymphocytes. In cases of leukemia, CellaVision can identify blast cells, but
cannot differentiate myeloblasts, lymphoblasts, and monoblasts. Additionally, CellaVision
has poor sensitivity and specificity in identifying schistocytes, which are crucial for the
diagnosis of microangiopathic hemolytic anemia (MAHA). According to the guidelines
of the International Council for Standardization in Hematology, even the presence of <1%
schistocytes in a PBS should be reported for the diagnosis of thrombotic thrombocytopenic
purpura and hemolytic uremic syndrome [19]. However, the morphological definition
of schistocytes has not been standardized, and there is high variability in identifying
them among technologists. Moreover, CellaVision cannot identify malaria parasites and
hemoglobin H (Hb-H) inclusion bodies as it only captures monolayer cell images and
has low resolution [26]. Finally, CellaVision faces difficulty in identifying neonatal blood
cells. Billard et al. reported that the performance of CellaVision had the lowest accuracy in
classifying neonatal samples (81%), which might be due to their increased fragility [27].

BMS examination plays a crucial role in diagnosing hematologic diseases. Although
manual microscopy remains the gold standard, it is time consuming and can be subject
to bias among hematologists. Morphogo is an AI-aided BMA smear analysis system that
can differentiate nucleated cells into specific categories and provide information useful
for diagnosis. It employs a 27-layered CNN that captures multiple high-resolution images
of the BMS and pieces them together to generate a full picture of the target morphology
(Figure 2). The convolution filter of the CNN can enhance the quality of the cell cluster
image by removing or emphasizing specific cell characteristics during image processing,
such as sharpening, blurring, and edge detection [28]. Cancer cell cluster features are
extracted and classified as carcinoma or non-carcinoma [29]. Fu et al. demonstrated the
performance of Morphogo in identifying hematologic lineage cells in 230 cases and showed
a classification accuracy of 85.7–91% [20,30]. The system’s average sensitivity and specificity
were found to be 69.4 and 97.2%, respectively [20]. Another study by Lin et al. reported
that Morphogo demonstrated an accuracy of 82% and specificity of 91% in identifying
metastatic cancer cells when compared to pathologists, with a reliability coefficient of
0.827 [22]. Consequently, it is thought that Morphogo has potential as an AI tool for BMS
analysis in the future, possibly negating the need for additional analyses such as flow
cytometry and molecular analysis.

On the other hand, the Morphogo AI-based system was able to diagnose technically
challenging metastatic non-hematopoietic tumor cells in BMSs. For instance, the method
can classify metastatic cancer cells with 82.2% accuracy and 91.3% specificity. The study
indicated that Morphogo could be a reliable method (reliability coefficient of 0.827) in the
detection and classification of cells of cancer cell clusters (area under the curve (AUC):
0.865) [29]. Furthermore, recent advances in AI technologies enabled Morphogo to detect
megakaryocytes from bone marrow samples. Want et al. used bone marrow digital images
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with CNNs to identify and characterize megakaryocytes with a sensitivity and specificity
of 96.6% and 89.7%, respectively [31].
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Figure 2. The workflow of the Morphogo system. Clear cell images are automatically obtained
and standardized. Following this, the nucleated cells in the images are located, segmented, and
identified. Finally, further cell classification and quantification are auto-analyzed and auto-calculated,
respectively, using the CNN model.

Scopio is a newly FDA-approved high-throughput hematology digital cell morphology
platform using a browser-based application. This advanced computational photography
imaging tool with AI support enables the capture of digital scans with a full field of view
of the monolayer and a feathered edge at a 100× oil-immersion magnification level. The
system can hold up to 30 slides and process up to 40 samples within an hour, which can
fulfill the high-throughput requirements of large hospitals and labs. It can pre-classify
WBCs, estimate platelets, and evaluate the morphology of RBCs. According to a study by
Katz et al. in 2021 [32], the Scopio full-field PBS (Labs X100) (Scopio, Israel) has an accuracy
of 96.3%, a sensitivity of 87.9%, and a specificity of 97.6% when compared to the manual
blood smear assessment. This new technology was tested with 335 patients’ normal and ab-
normal PBSs. Additionally, they examined RBC morphology and found that the test results
had a 99.8% agreement with the reference methods. Similar to this, the platelet estimation
by Scopio Labs X100 full-field PBS had a 94.9% accuracy, a 90% sensitivity, and a 96.3%
specificity [32]. The system was updated to incorporate a BMS assessment with Scopio’s
unique AI-powered full-field BMA (FF-BMA) application to obtain a digitized BMA image
including a nucleated differential count, myeloid to erythroid ratio, megakaryocyte count,
maturation stages, and morphology assessment [33].

Another AI-assisted blood cell analysis system, Mantiscope, uses AI to fully classify
blood cells and find abnormalities. A scanner and the cloud are two components of
the in vitro diagnostics system. The blood smear is automatically digitized using the
scanner. Following this, the system analyzes the smear samples using AI after uploading
the images to the cloud based on the patient’s barcode. Medical professionals can edit the
AI recommendations using the system’s annotation interface. Additionally, the system can
count, identify, and pre-classify cells in BMAs [34].

Vision Hema provides automatic analysis and pre-classification of blood cells derived
from a PBS. The system analyzes WBCs, RBCs, platelets, and reticulocytes in great detail. It
also analyzes pathological changes in cells such as those with degenerative changes, blasts,
atypical lymphocytes, erythroblasts, smudge cells, and other non-WBC cells. Modules for
cell identification and pre-classification in bone marrow samples, body fluids, and cervical
cytology are also available [35].

It was a challenge to detect atypical and dysmorphic cells in patients with hematologic
disorders, such as myelodysplastic syndromes (MDS), where their diagnosis is based on
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morphological findings in peripheral blood and bone marrow, particularly with other
conditions presenting similar phenomena such as aplastic anemia (AA). Kimura et al.
developed a novel AI-supported image analysis platform based on deep convolutional
neural networks and CNNs, which can assist in differentiating between MDS and AA [36].
They evaluated their method using a dataset consisting of 695,030 images taken from
3261 PBSs and were able to differentiate blood cells according to their morphological
features with a specificity and sensitivity of 96% and 93.5%, respectively. The automated
MDS diagnostic system was able to differentiate MDS from AA with 96.2% sensitivity and
100% specificity (AUC: 0.99) [36].

Similarly, the use of DL helps to identify subtypes of acute myeloid leukemia (AML).
Acute promyelocytic leukemia (APL) is a subclass of AML and is characterized by a translo-
cation of the retinoic acid receptor alpha gene located on chromosome 17. Bleeding and
thrombosis are major causes of fatal complications and death in patients with APL [37,38]. A
multistage DL that automatically reads images of BMSs, accurately segments cells, and
subsequently predicts APL is used to automatically detect and predict APL from BMSs.
This DL method showed an average detection precision of 97% and differentiated APL
from other AML subtypes and healthy individuals [39]. Li et al. on the other hand, were
able to differentiate human diffuse large B-cell lymphoma (DLBCL) and non-DLBCL with
100% accuracy using multiple CNNs to classify pathologic images [40]. A study under-
taken on BMSs to identify and classify bone marrow cells showed that the convolution and
attention network model (CoAtNet), a hybrid of CNNs and transformer models, showed
the best performance (accuracy >95%) when compared to other models evaluated in a
similar fashion [41]. AI-assisted BMS evaluation helps to predict mutations in hematologic
malignancies. Eckardt et al. used a multi-stage CNN-based prediction model to diagnose
AML and predict nucleophosmin 1 mutation status from a BMS (AUC: 0.92) [42].

Diagnosis of lymphoma based on clinico-morphological features is challenging due
to the heterogeneity of the malignant cells, time-consuming process, and requirement of
expertise. Integration of AI-based models, such as CNNs, in the differential diagnosis of
lymphoma helps to deliver a high standard of care and further improve the therapy of
lymphoma patients. Automatic classification of common lymphoma types was improved
via the use of pattern detection mechanisms based on the content of each image [43].
Efficient Net CNNs help to classify non-Hodgkin’s lymphoma (NHL) cases with high
accuracy (95.6%) from histologic images [44]. Miyoshi et al. reported a DL method for
detecting and classifying malignancy lymphoma. They collected whole-slide images (WSIs),
stained with hematoxylin and eosin (H&E) from BCL, follicular cell lymphoma (FCL), and
lymphoid hyperplasia patients. The method is able to accurately classify the three types of
lymphoma cases with an accuracy of 97%, which is higher than the average accuracy (76%)
recoded by the pathologist using WSIs [45]. An ML-based diagnosis helps to classify T-cell
lymphomas. Yu et al. collected 40 histological WSIs for dataset training in a DNN. They
succeeded in extracting picture characteristics and categorizing T-cell lymphomas, such as
intestinal T-cell lymphoma, which pose difficulties in morphologic diagnosis [46].

Similarly, a DL-based CNN approach helps to diagnose lymphoma from cytochemical-
stained smears. They collected H&E-stained slides from 128 cases. Using WSIs, they
established a diagnostic model for the four lymphoma groups, including benign lymph
node, DLBCL, Burkitt lymphoma, and small lymphocytic lymphoma. Accordingly, they
could predict the different types of lymphoma from H&E-stained images with an accuracy
of 95% using the CNN model [47]. Syrykh et al. employed a CNN-based approach called
Bayesian neural networks (BNN) to distinguish FCL from follicular hyperplasia. They
used H&E-stained lymph node slides and were able to detect FCL with an overall accuracy
of 91% [48]. AI models were also used to detect and classify rare lymphoma types such
as mucosa-associated lymphoma tissue (MALT). Pezoulas et al. developed federated AI
algorithms such as federated gradient boosting trees (FGBT), FGBT with dropouts (FDART),
federated multilayer perceptron (FMLP), and federated multinomial naïve bayes (FMNB).
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Among these, the FDART was able to identify and classify MALT lymphoma in primary
Sjogren’s syndrome patients with an accuracy of 82.8% [49].

The ML-based method LymphoML can predict lymphoma subtypes from H&E-stained
slides. The new method helps to predict the different types of lymphoma, including DLBCL
(F1 score: 78.7%), classic Hodgkin lymphoma (F1 score: 74.5%), and mantle cell lymphoma
(MCL) (F1 score: 71.0%), where the F1 score is a combined measure of both specificity and
sensitivity. Considering the nuclear shape features, the method performed better with a
diagnostic accuracy of more than 85% [50].

Immunohistochemical staining (IHC), a more advanced type of histopathology, is
an immunologic technique that uses antigen–antibody interactions to detect cellular or
tissue antigens under a microscope [51]. The technique uses various antibody panels
and requires experienced pathologists to identify hematolymphoid diseases. Studies
indicated the integration of ML with IHC in the pathologic diagnosis of hematologic
neoplasms. ImmunoGenius, an ML-based mobile application, helps to predict various
lymphoma types using IHC results. Abdul-Ghafar et al. reported that validation of the
ImmunoGenius on 3052 cases of lymphoid neoplasms was able to predict and differentiate
lymphoma with an accuracy of 91.8% [52]. Accordingly, the method showed a decrease
in error rate and convenience after external validation and could be applied in clinical
practice. The potential limitation of this algorithm is that it does not take into account
the clinicopathology of patients, which needs to be considered in the future development
of AI-based diagnosis using IHC in hematologic neoplasms [52]. ML provides accurate
differentiation of DLBCL based on IHC compared to gene expression profiles. Cost et al.
reported that ML helps to differentiate germinal center and non-germinal center subtypes
of DLBCL with an accuracy of 91.6% [53]. Similarly, Carreras et al. applied AI-based
ANNs to identify prognostic markers for MCL. They analyzed 123 cases and used ANNs
to identify 58 genes that predicted MCL patient survival with high accuracy (AUC: 0.9).
Among prognostic markers, based on IHC, they revealed that the regulator of G-protein
signaling 1 (RGS1) was associated with poor survival [54]. Due to the lack of single clinical
features for hematolymphoma, labor-intensive diagnostic approaches in tissue staining
and examination, and the need for multiple panels of antibodies, integration of ML in
clinical diagnostics could improve the delivery of care and prognosis of patients. AI-based
algorithms are limited regarding lymphoma diagnosis, differentiation, risk stratification,
and identification of prognostic markers. There is currently no FDA-approved, ML-based
algorithm for lymphoma diagnosis. In order to develop a more precise ML-based diagnostic
algorithm that would be affordable and improve health care delivery, more research on
large-scale databases, including rare disorders, should also be evaluated.

2.2. Detection of Hb-H Inclusion Bodies

Anemia can cause a variety of physical symptoms as well as visual signs, making it
difficult to diagnose. As a result, a novel AI approach based on ML as a model is recom-
mended for diagnosing, selecting treatments, and predicting prognosis [55]. Thalassemia
is a group of inherited genetic disorders associated with a defect in hemoglobin (Hb) syn-
thesis. Studies showing the role of AI in detecting and classifying thalassemia have been
reported [56]. Detection of Hb-H inclusion bodies in RBCs is a crucial test for the diagnosis
of α-thalassemia and is commonly performed in hematology laboratories using supravital
stains such as brilliant cresyl blue (BCB) or new methylene blue. However, the manual
examination of stained cells under a microscope is a laborious and time-consuming process,
with one case taking up to 15 min [57]. Moreover, the possibility of human error during
screening may result in the omission of Hb-H-positive cells, particularly in cases where
Hb-H-positive cells are very low [58]. Therefore, there is a need for a more efficient and
accurate method of detecting Hb-H inclusions in RBCs.

Lee and colleagues developed an AI-based protocol for the detection of Hb-H inclu-
sions that promises to improve the accuracy and efficiency of screening [59]. The protocol
involves capturing digital images of BCB-stained blood smears at various magnifications
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and inputting them into an AI model that has been trained to recognize Hb-H-positive
cells. The training process involves classifying cells as either Hb-H-positive or -negative
and setting up the ground truth for the AI’s decision-making process. Once the ground
truth is established, the AI can analyze test images and assign a prediction confidence score
(PCT) to each cell image, indicating the level of confidence that its prediction is correct.
Lee et al. reported that the AI system ML-CNN achieved a sensitivity of 90.9%, a specificity
of 99%, and an accuracy of 97.6% in Hb-H inclusion screening when the PCT threshold
is set at 0.2 or higher. This represents a significant improvement over manual screening,
which is labor intensive, time consuming, and prone to human error, particularly in cases
with low levels of Hb-H-positive cells [59].

In order to further clarify the previous sentence, it is crucial to point out that the low
PCT of the AI model in Hb-H inclusion detection may not necessarily point to a problem
with the model itself but rather with the type of input data used. Kensert et al. suggested
that the high similarity in image patterns between Hb-H-positive and -negative cells might
pose a challenge for the AI model to accurately classify the cells [60]. This highlights the
importance of continually refining and optimizing the training dataset for the AI model
to improve its accuracy and reduce false negatives. Additionally, it may be beneficial to
incorporate other features and information beyond image analysis, such as clinical history
and laboratory results, to further enhance the accuracy of Hb-H inclusion detection.

Aside from its use in advancing morphology-based diagnosis, ML can also be ap-
plied to other Hb variants, such as Hb-S and Hb-D, which require precise diagnosis and
prediction in the diagnosis of hemoglobinopathies. These Hb variants can be identified
using high-performance liquid chromatography (HPLC); however, Hb-S and Hb-D can-
not always be reliably distinguished from one another due to differences in the software
used for gradient programs and HPLC models. The use of ML, such as ANNs, helps
to classify and predict Hb variants. Ucucu et al. demonstrated ANN-based recognition
of human Hb variants in the HPLC system. The study used clinical samples of known
hemoglobinopathies and found that ML was able to detect Hb variants with an accuracy of
99%, specificity of 99%, and sensitivity of 99% [61]. This implies that an ANN-based ML
method has demonstrated high performance and has the potential to be integrated into
diagnostic service as a tool for the detection and prediction of hemoglobinopathies.

2.3. Flow Cytometric Analysis

Flow cytometry is a powerful laboratory assay for the detection, diagnosis, and
monitoring of various hematologic disorders such as leukemia and lymphoma [62]. While
several markers have been developed for flow cytometry analysis in recent years, manual
interpretation of results, including cell population gating, remains necessary. The technical
procedures in handling flow cytometry data and prolonged gating time required to deliver
patient results are the existing gaps in the field. To overcome this limitation, researchers
introduced AI applications to flow cytometric analysis. The use of AI-supported techniques
in flow cytometry has been shown to improve workflow and provide accurate and timely
results. For example, researchers developed an AI-based algorithm to classify patients with
chronic lymphocytic leukemia (CLL) based on their flow cytometric profiles. Salama et al.
developed deep neural networks (DNN) to diagnose CLL. They evaluated the hybrid
DNN approach on treated CLL patient samples using a 10-color panel to detect minimal
residual disease (MRD) in CLL and compared it with expert analysis. Accordingly, the
hybrid DNN approach showed a reduction in gating time to 12 s per case from 15 min
per case when compared to the manual process, yielding an overall accuracy of 97.1% [63].
Relapse is common in acute leukemia, particularly in B-cell acute lymphoblastic leukemia
(ALL). Identification of potential markers indicating the prognosis during diagnosis is a
challenge. Chulian et al. demonstrated using AI-based ML flow cytometry analysis to
identify potential prognostic markers in 56 pediatric B-cell ALL patients. Based on Fisher’s
linear discriminant for relapse prediction, they identified cluster of differentiation 38 (CD38)
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as a potential marker for relapse, indicating that B-cells with low CD38 expression might
serve as a potential indicator for relapse in ALL patients [64].

Similarly, Vial and colleagues developed a DL-based method to accurately detect MRD
in AML using multiparameter flow cytometry (MFC) data. These studies demonstrate
the potential of AI in enhancing the accuracy and efficiency of flow cytometric analysis in
identifying MRD in AML. In this novel approach, flow cytometry results are transformed
into a self-organized map (SOM) that is then converted into a two-dimensional (2D) format
that is accessible by CNNs. The SOM file of the sample is then input into a CNN, which
generates a prediction of MRD, implying that the use of AI allows for an easy and robust
assessment of AML-MRD patients in the absence of molecular markers [65].

Integration of ML in flow cytometry analysis helps to classify B-cell NHL (B-NHL).
Gaidano et al. integrated ML into the available database of 1465 B-NHL samples. Accord-
ingly, they were able to identify nine clinico-pathologic known subtypes of B-NHL with an
accuracy of 92.7%, which includes DLBCL, Burkitt lymphoma, FCL, splenic lymphoma,
MCL, marginal zone lymphoma (MZL), and lymphoplasmacytic lymphoma (LPL) [66].
Zhao et al., on the other hand, converted MFC raw data into a multicolor 2D image using a
SOM. The SOM file of the sample was then input into a CNN, which generated a prediction
of the B-NHL subtype. The AI model successfully classified B-NHL subtypes from nor-
mal cases with a 0.94 weighted F-score, indicating high accuracy. The model successfully
differentiated B-NHL from lymphocytic leukemia, MZL, MCL, prolymphocytic leukemia,
and FCL. However, limitations arise when the similarity of flow cytometry results is high
as the classification may be wrongly reversed, for example, between LPL and MZL [67].
Further developments are needed to resolve this issue, but this novel AI application in
flow cytometric analysis may pave the way for fully automated flow cytometry analysis in
the future.

Recent studies explored the use of AI in other areas of flow cytometric analysis beyond
disease classification. Studies indicated that an AI-based method for automated gating
of cell populations in flow cytometry data achieves high accuracy and consistency across
different datasets [68]. In addition, Arvaniti and colleagues developed an AI-based tool
called CellCNN to identify rare cell populations in flow cytometry data, which could have
significant implications in the diagnosis and monitoring of various diseases [69]. These
studies highlight the potential of AI to not only improve disease classification, but also to
automate and enhance various aspects of flow cytometric analysis.

Understanding computation data and applying them for patient diagnosis and man-
agement is a hurdle in the healthcare setting. DL tools could overcome this limit by
interpreting the AI prediction system. The use of the “local interpretable model-agnostic
explanations” algorithm for explainable artificial intelligence (XAI) helps to interpret the
AI data with an accuracy of 98.4% [70]. AI is becoming increasingly important in clinical
decision making, particularly in areas where skilled labor is in short supply. Clinical deci-
sion systems are now being incorporated into AI-supported flow cytometry applications as
a result of recent advancements in AI technology to support clinical diagnosis, treatment
options, and treatment outcome prediction. This will help in determining the best course of
treatment for the patient and will improve healthcare delivery. The system replicated expert
judgment by employing a number of training procedures based on a baseline database
containing various factors and the estimated dynamic impact of each factor [71] (Table 1).
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Table 1. AI-based integrated diagnostic methods in hematologic cytology laboratories.

No. Methods Function Model Used Accuracy (%) Year References

1 WSI analysis Automated detection of HB-H inclusions
in RBCs ML, CNN 97.6 2021 [59]

2 CellaVision Blood and marrow smear image analysis
Advanced RBC morphology analysis AI, ANN 98 2020 [19,23]

3 DI-60 Automated cell image analyzer 91 2022 [72]

4 Morphogo Blood and marrow smear image analysis AI, CNN 85.7–91 2021 [20,30]

5 Scorpio Fulfilled PBS and BMA image analysis AI 94.9 2020 [33]

6 Mantiscope Digital PBS and BMS preparation and
image analysis ANN, CNN NA 2018 [73]

7 Vision Hema Blood cell identification and
pre-classification AI NA 2019 [35]

8 EasyCell
Assistant

Automatic detection and classification of
cell morphology ML NA 2023 [74]

9 YOLOX-s model BM cell classification DNN 92.5 2023 [75]

10 Nextslide Automated digital imaging AI 99.7 2012 [76]

11 XGBoost Differentiate PV, ET, and MF CNN, DL 90 2021 [77]

12 HematoNet BM cell detection and classification DL,
CoAtNet 95 2022 [41]

13 Ensemble model WBC detection DL 98.8 2023 [78]

14 Automated BMT
phenotyping

Morphological identification of
megakaryocytes AI, ML 95 2020 [79]

15 AIPSS-MF Risk stratification of MF patients ML,
random forest 82 2023 [80]

16 ImageStream
(Amnis) Identification of white blood cells ML, SVM 99 2020 [81]

17 Attune CytPix High-resolution, real-time imaging of
cells in flow cytometry AI NA 2023 [82]

18 ImageStream
(Amnis) Leukemia monitoring CNN, linear

SVM 98.2 2021 [83]

19 AlexNet Detection of ALL and AML ML, CNN 98 2022 [84]

20 DNN-FC Detection of CLL-MRD AI, DNN 97.1 2022 [63]

21 XAI Translate AI data in ALL AI, DL 98.4 2022 [70]

22 EfficientNet Differentiate NHL CNN 95.6 2021 [44]

23 LymphoML Predict lymphoma types ML, LightGBM 85 2023 [50]

24 ImmunoGenius Predict and differentiate
lymphoma subtypes

ML, decision
tree algorithm 91.8 2023 [52]

AI, artificial intelligence; AIPSS-MF, artificial intelligence prognostic scoring system for myelofibrosis; ALL,
acute lymphocytic leukemia; AML, acute myelocytic leukemia; ANN, artificial neural network; BMT, bone
marrow trephine; CLL-MRD, chronic lymphocytic leukemia minimal residual disease; CNN, convolution neural
network; DL, deep learning; DNN, deep neural networks; ET, essential thrombocythemia; GBM, gradient-
boosting framework; MF, myelofibrosis; NA, not applicable; PV, polycythemia vera; RBC, red blood cells; SVM,
support vector machine; WSI, whole-slide imaging; XAI, explainable artificial intelligence; XGBoost, extreme
gradient boosting.
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3. AI-Assisted Genomic Testing for Hematologic Disorders
3.1. Cytogenetic Karyotyping

Fluorescence in situ hybridization (FISH) has been used for detecting chromosomal
abnormality by applying a DNA-targeted probe; however, the existing technique is time
consuming and technically demanding. Although the DNA FISH model is the technique
of choice to locate the genomic loci in a single allele, it requires user monitoring, which
limits managing big data in a short time. The use of AI-integrated, FISH-based diagnosis
of chromosomal abnormality will shorten the time required and improve the diagnosis.
Gudla et al. developed a more efficient and accurate CNN-based DNA FISH detection
method named SpotLearn. Accordingly, this CNN-based method could detect FISH signals
with an accuracy greater than 98% [85]. DeepSpot is another ML-based method for the
detection of RNA FISH. The method was able to accurately detect RNA FISH signals
(accuracy: 97%). However, applying this AI-based method in lymphoma diagnosis needs
further investigation [86]. Similarly, FISH was used for risk stratification of MRD patients
with plasma cell myeloma. Integrating ANN into the diagnostic algorithm improved the
detection and high-risk stratification of myeloma cases with an accuracy of 94% [87].

Cytogenetic karyotyping is a well-established method for detecting chromosome
abnormalities in patients. However, the process of preparing and interpreting the results
can be time-consuming and requires experienced technologists [88]. To address these
challenges, researchers explored the use of AI in cytogenetic karyotyping. For example, AI
models have been developed for automatic chromosome segmentation and pairing [89].
Despite these advances, challenges remain in cases where the chromosomes are distorted,
overlapping, or blurred, as is often the case in bone marrow samples.

To address these challenges, new AI models were developed such as the ChromoEn-
hancer model developed by Bokhari and colleagues in 2022 [90]. This model uses an
image-to-image translation model called the CycleGAN model and does not require a
training set. One key feature of ChromoEnhancer is that it enhances each chromosome
image separately, resulting in an output image with similar contrast. In comparison to
other models, such as histogram equalization, block-matching, and 3D filtering, ChromoEn-
hancer provides a clear outline of the chromosome with sharp contrast in the chromosomal
bands. Moreover, ChromoEnhancer is able to retain abnormality features in the chromo-
some, such as deletion and translocation [90]. Thus, the ChromoEnhancer model has the
potential to improve the resolution and accuracy of cytogenetic karyotyping analysis for all
sample types.

Karyotype analysis from G-banded metaphase images has important clinical signif-
icance in the diagnosis, treatment, and prognosis of hematologic tumors. Accordingly,
CNNs perform well when it comes to image recognition. The metaphase system was origi-
nally used for chromosomal analysis in cells from different tissue types, e.g., lymphocytes
and bone marrow. Hu et al. developed an AI-based CNN to detect chromosomal changes
automatically. They used Softmax activation function mapping to classify chromosomes
using a CNN with multiple layers that was trained using the labeled dataset. The results
showed that the CNN-based identification of chromosomes was 93.8% accurate [91]. On
the other hand, Chen et al. reported that ML could be applied in chromosome segmentation
analysis. They developed a chromosome segmentation model called ChroSegNet based on
U-Net, a CNN-based algorithm, which is able to extract key features of chromosomes and
provide an accurate result (accuracy: 93.3%) [92].

Similarly, DL, such as DNNs, uses advanced algorithms in the field of AI applied for
detecting and classifying chromosomal abnormalities. Through advanced AI applications,
Ikaros, supported by DNN, was used in separating and classifying banded chromosomes.
This system applied fluorescence R-banding to obtain all karyograms from bone marrow
and blood samples. The DNN predicted the chromosome class and the required rotation
angle from the individual chromosome image. This CNN-based application helped to
predict chromosome classes with 98% accuracy and classify chromosome bands as normal
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and abnormal in hematologic malignancies. It further reduced the processing time by 42%
when compared to the conventional karyotyping workflow [93] (Figure 3).
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The use of AI in cytogenetic karyotyping holds great promise for improving the
accuracy and efficiency of diagnosis. However, more studies are required to address
some of the issues with this strategy, including the requirement for large datasets for
building AI models and the shortcomings of weak AI classifiers that still require histological
classification or medical examination. Overall, the development of advanced AI models,
such as ChromoEnhancer, represents an important step toward improving the diagnosis
and treatment of hematologic disorders [90,94].

3.2. Sequencing for Profiling of Genetic Markers

AI has been applied primarily in image-based diagnosis. However, accurate and
precise disease classification is challenging with this approach. To address the difficulties
in hematologic malignancies, a comprehensive strategy is necessary. Genetic profiling is
crucial for the management of hematologic neoplasms because it provides important data
for diagnosis, risk stratification, therapeutic choices, monitoring of residual disease, progno-
sis, and treatment resistance. Hematologic diseases, especially hematologic malignancies,
are characterized by unique gene expression profiles, such as the BCR-ABL1 (breakpoint
cluster region-Abelson 1) fusion gene in chronic myeloid leukemia (CML) and different
gene expressions in thalassemia. Therefore, genetic testing, such as sequencing, has become
a common diagnostic method [95]. However, analyzing and interpreting the results often
requires expertise, which can introduce human error and bias [7,94].

To address this issue, a research team developed a platform that combines a middle-
throughput gene expression assay and ML to identify the subtyping of B-NHLs. Using a
panel of 137 genetic markers, the gene expression assay classified B-NHLs according to
their cellular origin, the composition of their microenvironment, and the configurations of
their immunoglobulin genes [94]. The team then developed an ML system, the random
forest classifier, to classify cases into seven major subtypes of B-NHLs, such as germinal
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center B-cell lymphoma and activated B-cell lymphoma. The results showed 80–100%
concordance with previous classification results [94].

The conventional classification of leukemia, such as AML, is based on a clinicomor-
phopathologic classification, which groups AML into primary and secondary AML types.
This kind of classification lacks correlation to molecular signatures. ML integrated genomic
signatures for AML and was able to identify novel genomic AML subclasses. The model
included genomic data from primary AML and secondary AML patients and applied both
supervised and unsupervised ML methods. This ML model showed a 97% accuracy in
classifying the different subtypes of AML and predicting their prognosis [96].

These studies suggest the possibility of integrating AI into routine clinical testing
by combining genetic profiling with limited laboratory resources, such as resources for
DNA library construction only. The use of well-trained AI can avoid bias and human error
in diagnosis since the classifier achieves a high accuracy of diagnosis based on historical
databases. However, the limitations of using AI were uncovered, including the requirement
for a larger database, such as data from patients with rare conditions, to enhance the
accuracy of diagnosis and avoid missing rare cases. All AI classifiers mentioned in the
studies were weak AI, which still requires histological classification or further examination
by physicians for some cases. Therefore, the ultimate goal would be to develop a DL
diagnostic system that does not require any historical database support or secondary
examination [94,97].

3.3. Whole-Genome Sequencing for Analysis of Copy Number Variations

Accurate copy number variation (CNV) detection is still a major issue for the commu-
nity because of the unique characteristics of tumor samples and the complicated nature
of tumor genomes. The collection and evaluation of representative data from various
regions of the genome is also required for CNV interpretation, making it difficult to provide
consistent, high-quality clinical interpretation of CNVs. The present diagnostic strategy
employing next-generation sequencing requires excellent-quality data, which is not always
the case owing to the lack of standards and the presence of numerous biases. Furthermore,
the analysis of big data takes time and affects the quality of care in addition to the data
quality. Advances in genomics and AI led to the development of new approaches for the
diagnosis and treatment of hematologic disorders. One such approach involves the use
of AI to analyze whole-genome sequencing (WGS) data for the detection of CNVs. CNVs
are a form of genetic mutation that can contribute to the development and progression of
hematologic malignancies. For instance, detecting CNVs in the ZMAT4 gene had a strong
association with hematologic malignancies such as AML [98]. The gain of chromosome
21 in patients with Down Syndrome was associated with leukemogenesis [99], and gain
of chromosome 1q was associated with multiple myeloma (MM) [100]. Furthermore, the
detection and characterization of CNVs could help in monitoring the prognosis of pa-
tients with hematologic malignancies such as ALL [101]. Although WGS improved the
efficiency of detecting chromosomal alterations in various hematologic disorders [102],
detecting CNVs can be challenging because they can be difficult to distinguish from noise
in sequencing data.

A study was published using AI to develop a DL model called AI-CN. AI-CN could
accurately detect and classify CNVs in WGS data from patients with hematologic malignan-
cies. Haferesh et al. reported that AI-CN could classify chromosome bands with an accuracy
of 98.6% [103]. CNV-P is another AI-based method for the detection of chromosomal al-
terations. The researchers tested the model on a large cohort of patients and found that it
outperformed other CNV detection methods in terms of sensitivity and specificity [104].
These models could help to identify clinically relevant CNVs that are not detected by other
methods, demonstrating their potential for improving the accuracy of CNV detection and
prediction in hematologic disorders.

In another study, researchers used a combination of WGS and AI to identify CNVs in
patients with AML [105]. The researchers developed a DL model called CopyNumberGAN
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to identify CNVs from the patient sequencing data. They compared the performance
of CopyNumberGAN to other CNV detection methods and found that it had higher
sensitivity and specificity. The results suggest that AI-assisted CNV detection can improve
the accuracy and efficiency of diagnosis and treatment for patients with AML.

These studies demonstrate the potential of AI-assisted WGS for CNV analysis in
hematologic disorders. Using AI to analyze sequencing data, researchers can improve
the accuracy and efficiency of CNV detection, which could lead to better prediction of
patient diagnosis, therapeutic responses, and prognosis. The development of AI algorithms
for CNV detection has the potential to revolutionize the field of hematologic disorders,
enabling the development of more personalized and effective treatment strategies.

3.4. Single-Cell Sequencing Analysis

Single-cell sequencing is a powerful tool that allows researchers to study individual
cells within a heterogeneous population, providing valuable insights into complex disease
mechanisms at the cellular level [106]. In recent years, there have been several studies
utilizing AI-assisted single-cell sequencing analysis for hematologic disorders [107]. For
example, an ML model can be used to differentiate patients with hematologic disorders from
healthy individuals. More than eight AI-based ML models were tested, and ANN models
showed the highest performance (accuracy: 82.8%) in screening hematologic malignancies
when compared to other ML models [108]. A study used AI to analyze single-cell RNA
sequencing (scRNA-seq) data from patients with CLL. The researchers developed a DL
model called scDeepCluster, which identified distinct subpopulations of cells based on
gene expression profiles. They found that scDeepCluster outperformed other clustering
methods in terms of accuracy and speed and identified novel subpopulations of cells that
were associated with disease progression [109–111].

Another study used AI to analyze scRNA-seq data from patients with MDS. The
researchers developed a DL model called DeepMDS, which was able to accurately pre-
dict patient outcomes based on gene expression profiles. They found that DeepMDS
outperformed other prediction models in terms of accuracy and identified several novel
biomarkers that were associated with disease progression [112].

Additionally, AI can assist in the analysis of single-cell sequencing data from patients
with AML. A DL model called support vector machine (SVM) was developed, which
identified cell subpopulations and predicted patient outcomes based on gene expression
profiles. They found that SVM outperformed other clustering and prediction methods in
terms of accuracy and identified several genes that were associated with disease progres-
sion [113,114]. Recurrent infections and treatment failures are two common occurrences
in the management of hematologic malignancies and must be identified early [115]. For
patients with hematologic malignancies, such as AML, AI could assist in selecting the best
course of treatment. Potential therapeutic protein targets have been identified based on
target analysis, and various AI algorithms were used to rule out therapeutics and select
promising therapeutic candidates [116]. On the other hand, AI helps to predict personalized
medicine for patients with AML. Gimeno et al. applied the multi-dimensional module
optimization (MOM) ML method to help to predict and interpret the appropriate drug
for AML patients based on the predicted genetic mutations from RNA-seq data [117].
The effectiveness of these AI-based techniques using scRNA-seq data from patients with
hematologic malignancies must be examined in more detail. Overall, the use of AI-assisted,
single-cell sequencing analysis has the potential to improve the diagnosis and treatment of
hematologic disorders by providing insights into the molecular mechanisms underlying
disease progression. By identifying novel subpopulations of cells and biomarkers associ-
ated with disease progression, researchers can develop more targeted and personalized
therapies for patients [67,109,116].

There are emerging AI-assisted single-cell sequencing platforms that will be furthered
via validation using clinical samples from patients with hematologic disorders. A multi-
level convolutional neural network (MulCNN) was developed by Jiao and his colleagues to
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provide a unique, single-cell gene expression profile by extracting critical features through
multi-scale convolution while filtering noise [118]. BERMUDA (batch effect removal
using deep autoencoders), another novel DL-based method, provides a higher-resolution
cellular subtype. It merges a number of batches of scRNA-seq data with heterogeneous
cell compositions. Wang and his colleagues indicated that the new model outperformed
existing methods for removing batch effects and distinguishing cell types in multiple
datasets, including real scRNA-seq datasets [119].

Similarly, reference component analysis 2 (RCA2) uses reference transcriptomes as
a guide and adopts graph-based clustering (scalability). It offers user-friendly down-
stream analysis modules, new mouse and human reference panels, and support for the
establishment of custom panels. It also provides cell type-specific quality control for
accurate clustering of data from heterogeneous sources. The method was evaluated on
single-cell data from human bone marrow and healthy peripheral blood mononuclear
cells (PBMCs) [120]. Although there are platforms for AI-assisted single-cell sequencing,
analysis, and prediction, more research is needed to assess their effectiveness in clinical
settings using samples from patients with hematologic neoplasms (Figure 4 and Table 2).
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data. Limitations in benchmarking analysis tools, integration of data across models, types 
of cells and measurements, varying levels of resolution, handling of cell sparsity including 
a high dropout rate leading to the absence of expression, mapping single cells to a 

Figure 4. The application of AI in genomic testing for hematologic disorders. AI-based computational
methods, including ML and DL, have been developed in hematologic disorders of genomic analysis,
such as chromosome karyotyping, copy number variation, cell clustering, and epigenetic profile
prediction. ANN, artificial neural network; CNN, convolution neural network; CNV, copy number
variation; DNA, deoxyribonucleic acid; GAN, generative adversarial network; RF, random forest;
SVM, support vector machine; SVR, support vector regression.

Due to their capacity to offer solutions for diverse biological samples, scRNA-seq
techniques are growing in popularity. Thought should be given to the difficulties with
single-cell technologies when using new ML approaches to handle single-cell sequencing
data. Limitations in benchmarking analysis tools, integration of data across models, types
of cells and measurements, varying levels of resolution, handling of cell sparsity including
a high dropout rate leading to the absence of expression, mapping single cells to a reference
atlas, generalizing trajectory inferences, dealing with errors, and missing data are a few
of the challenges, which impede downstream analysis and influence the performance of
emerging ML models in the diagnosis of hematologic neoplasms [121,122]. Therefore,
new AI/ML-based systems must take into account current difficulties and offer more
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precise, comprehensive, and trustworthy prediction and diagnostic algorithms employing
representative big scRNA-seq datasets.

3.5. Epigenetic Profiling to Identify Novel Biomarkers

Epigenetics is caused by a complex interaction between a person’s genotype and
the environment, which plays a role in disease development. Recent studies showed
the potential of AI-assisted epigenetic profiling for hematologic disorders. For instance,
researchers utilized AI to analyze DNA methylation data from patients with ALL. The
developed DL model, called single-cell omics references (EpiScore), accurately predicted
patient outcomes based on DNA methylation patterns, outperforming other prediction
models. EpiScore also identified novel biomarkers that were associated with disease
progression, showing the potential of AI in enhancing our understanding of ALL [123,124].

In another study, a DL model called MethylNet was developed to analyze DNA
methylation data from patients with MDS. The AI model accurately classified patients
into different subtypes of MDS based on their DNA methylation patterns, outperforming
other classification methods. Furthermore, MethylNet identified several novel biomarkers
associated with disease progression, suggesting its potential for improving the diagnosis
and treatment of MDS [125,126].

MM, a heterogeneous malignant tumor, is distinguished by abnormal plasma cell
clonal proliferation in the bone marrow and is often accompanied by apparent monoclonal
immunoglobulin protein. DNA methylation analysis in MM patients showed heterogeneity
associated with transcriptomic variability, implying the need for more accurate predic-
tion models [127,128]. A study employed AI to analyze chromatin accessibility data from
patients with an MM. The researchers developed a DL model called Epimetheus, which
accurately predicted patient outcomes based on chromatin accessibility patterns, outper-
forming other prediction models. Epimetheus also identified several novel biomarkers
associated with disease progression, demonstrating the potential of AI-assisted epigenetic
profiling for MMs [129,130].

Other epigenetic prediction tools, including DeepCpG [131], are also available, al-
though further research is required to evaluate their performance in predicting the detection
and prognosis of hematologic malignancies.

These studies highlight the potential of AI in enhancing our understanding of hema-
tologic disorders by analyzing epigenetic data. By using AI to analyze DNA methylation
and chromatin accessibility data, researchers can identify novel biomarkers associated with
disease progression, ultimately leading to better diagnosis and treatment for patients.

Although AI-based ML improved diagnostic accuracy and identification of potential
biomarkers for epigenetic alterations, there are still limitations that need to be considered
to improve the implementation of ML in clinical diagnosis. One potential challenge might
arise from the low incidence of cases and increased differentially methylated regions
(DMR) within a single case. Further, it has been indicated that epigenetic datasets have
more variables than patient samples, limiting the effectiveness of AI-based algorithms.
An analysis of a DNA methylation dataset reveals nonlinear relationships in addition to
the DMR. Several CpG sites may appear on the same gene, which may influence other
regions of the methylome. This suggests that, despite recent advancements in epigenetic
research, future developments in AI technologies for detection, risk classification, and
prognosis should take into account newly emerging multiple causal factors for epigenetic
changes, such as environmental factors, and work on representative large DNA methylation
datasets [132].
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Table 2. AI applications in sequencing for hematologic disorders.

No. Method/Device AI Model Function Accuracy (%) Year References

1 Ikaros CNN, DNN Chromosome karyotyping myelofibrosis 98 2023 [80]

2 ChromoEnhancer
method CycleGAN Bone marrow karyotyping NA 2022 [90]

3 Softmax CNN Chromosome classification 93.8 2019 [91]

4 KaryoNet MFIM, DAM Chromosome quantitation and classification 98.4–99.6 2023 [133]

5 CNV-P DL CNV detection 90 2021 [104]

6 CUP-AI-Dx: CNN Predicts tumor primary site and molecular subtype 98.5 2020 [134]

7 scDCC DL Cell clustering 90 2021 [110]

8 DeepCpG: DL DNA methylation NA 2023 [131]

9 EPiScore DL DNA methylation NA 2018 [135]

10 MOM ML Therapeutic prediction NA 2022 [117]

11 MulCNN CNN Cell clustering and batch effect removal NA 2023 [118]

12 BERMUDA DL Cell clustering and batch effect removal NA 2019 [119]

13 RCA2 MEM, SNN Cell clustering and batch effect removal NA 2021 [120]

14 SpotLearn CNN DNA FISH detection 98 2017 [85]

15 DeepSpot DNN RNA FISH detection 97 2022 [86]

16 ChroSegNet CNN, U-Net Chromosome segmentation 93.3 2023 [92]

AI, artificial intelligence; BERMUDA, batch effect removal using deep autoencoders; CNN, convolution neural
network; CNV, copy number variation; DAM, deep assignment module; DL, deep learning; DNA, deoxy-
ribonucleic acid; DNN, deep neural networks; FISH, fluorescence in situ hybridization; MEM, memory efficient
fast cluster; MFIM, masked feature interaction module; MoM, multi-dimensional module optimization; MulCNN,
multi-level convolutional neural network; NA, not applicable; RCA2, reference component analysis 2; scDCC,
single-cell deep constrained clustering; SNN, shared nearest neighbor clustering.

4. AI-Assisted Clinical Prediction Models for Hematologic Disorders

Clinical prediction and treatment optimization play crucial roles in clinical diagnosis.
Hematologic diseases are linked to the development of complications, putting the patient at
risk for secondary conditions and eventually death. The use of AI as a potential tool to perform
clinical prediction for hematologic disorders has been explored in recent years [136,137]. For
example, a 50-variable random forest model (IAC-50) was developed to predict the overall
survival of patients with MMs. The model used various parameters, such as age, first-line
treatment, and gene expression, to predict the optimal first-line treatment that would offer
the best predicted survival rate for MM patients. However, further validation with larger
databases was needed to achieve a more precise predictive value [138]. Another study
published recently also used AI to develop a clinical prediction model for MM patients. The
researchers analyzed clinical and genetic data from over 2000 MM patients and developed
a model that accurately predicted patient outcomes. The model outperformed other
prediction models in terms of accuracy and identified several novel biomarkers associated
with disease progression [139]. Patients with MM have a higher risk of acquiring bacterial
and viral infections due to immune deficiency and other therapeutic effects, which also
contribute to death. Different ML prediction models were applied to 564 MM patients
to predict the risk of infection. The ML-XGBoost model performed significantly better in
terms of prediction than other models (AUC: 0.8664). This type of AI model will assist in
lowering the risk of infection and enhancing the prognosis for MM patients [127].

A study used ML algorithms to analyze clinical and genetic data from AML patients.
The researchers developed a model that accurately predicted patient outcomes, outper-
forming other prediction models in terms of accuracy. The model also provided valuable
insights into the underlying mechanisms of AML. Furthermore, ML could help to predict
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the in-hospital mortality of AML patients. A study on a cohort of 29,613 hospitalized
AML patients used three ML models, including ML algorithm logistic regression, decision
tree, and random forest. Among these, ML logistic regression and random forest mod-
els showed better performance in predicting the in-hospital mortality of AML patients
(AUC: 0.78) [140]. Identification of MRD cases is a challenge in clinical practice and is time
consuming. ML could help to differentiate AML from MDS and healthy individuals. An
ML model with over 2000 patient samples showed accurate differentiation of AML from
MDS (AUC: 0.943) [141].

Similar to this, a study used AI to create a clinical prediction model for CLL patients.
The researchers developed an algorithmic population description approach (ALPODS)
based on an XAI model that accurately predicted patient outcomes after analyzing MFC
data from samples from more than 150 CLL patients. The ALPODS XAI algorithm model
outperformed (AUC: 0.95) other prediction models in terms of accuracy [142]. AI empow-
ered with ML can identify new cases with a high risk of infection. A study developed the
CLL treatment-infection model, which can predict the risk of infection for at least two years
with a precision of 72% and a recall of 75% [143].

Risk identification and stratification are essential components in clinical diagnosis to
predict patient outcomes and reduce therapeutic costs. AI could help to predict risks in
chronic hematologic diseases, including thrombosis. Ryan et al. showed that ML methods
help to reduce risks in hospitalized patients with deep vein thrombosis [10]. A study on risk
stratification and prediction in patients with myelofibrosis (MF) using genetic data showed
that ML improved case risk stratification. According to the study, the AIPSS-MF (Artificial
intelligence prognostic scoring system for myelofibrosis) model helped to identify patients
at risk of secondary MF and predicted survival status [80].

On the other hand, a study by Shanbehzadeh et al. compared eight ML methods to
predict the survival status of CML patients with either alive or deceased outcomes. Among
the eight ML approaches, the SVM showed the best performance with an accuracy of 85.7%.
This implies that AI could help predict long-term patient outcomes and choose the best
treatment options [144].

It is important to note that clinical prediction models require regular evaluation and
optimization over time and in different settings, since the estimated condition may not
always completely represent actual events in the future [137]. Although AI-assisted clinical
prediction models are more commonly used in clinical research than in clinical practice, they
have the potential to provide better personalized and more effective treatments for patients
with hematologic disorders. Applications of AI approaches to integrating transcriptomic,
genomic, and epigenetic data would contribute to a deeper comprehension of patient
phenomena and aid in diagnosing hematologic neoplasms, including MRDs.

5. Challenges in Developing Clinical AI Systems

AI in healthcare environments increases the accuracy of diagnosis, lowers overall
healthcare costs, facilitates information sharing, and enhances target treatment, including
the treatment of rare diseases. However, developing clinical AI systems presents a unique
set of challenges that must be addressed to ensure their accuracy and reliability in clinical
practice. One of the main challenges is to ensure the quality and availability of data. AI
algorithms are trained on data, and if the data contain bias or are not representative of the
patient population, the algorithm may produce inaccurate or biased results. Therefore, it is
essential to ensure that the data used to train AI algorithms are of high quality, free of bias,
and include variation among patient backgrounds and clinical conditions [1,136]. On the
other hand, in some situations where the incidence of hematologic malignancies is rare,
representative information may not be acquired to develop AI-based models for prediction,
diagnosis, and risk stratification. A possible example could be ocular MALT lymphoma
and other lymphomas such as enteropathic T-cell lymphoma. In such conditions, AI fails
because of its inability to get the global solution to the problem and tends to get stuck in
local minima due to the small sample size.
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Another challenge in developing clinical AI systems is to ensure that they are regularly
evaluated for accuracy, sensitivity, and specificity. The evaluation process should be
undertaken systematically and frequently to identify any issues and to ensure that the AI
system remains accurate and reliable over time [1,136]. In addition, the development of
XAI has improved the communication between AI and physicians. XAI allows physicians
to better understand how AI arrives at its conclusions, which is important for building
trust in the system and for ensuring that the results are interpreted correctly [145].

Ethical issues are also a concern when developing clinical AI systems. One of the
main ethical concerns is data privacy. AI systems process large amounts of personal and
sensitive information, and if this information is not adequately protected, it can pose a
significant threat to patient privacy and security. Strict regulations, such as the general data
protection regulation, must be applied to ensure the security of health medical records,
protect user data, ensure data integrity and traceability, and ensure the security of electronic
signatures [146].

Healthcare providers typically own medical records and patient-related information.
Sharing clinical data should involve a degree of transparency in patient compliance. The
best course of action would be to increase patient awareness of the types of data, the nature
of the information in their records, and the recipients of those records. Patients ought to
be not only told when their data are used in research but also informed of the findings
and potential repercussions of that research. Jessica Morley et al. reviewed the narrations
related to AI ethics and suggested that policymakers should consider and take action for
AI ethics and help AI improve the quality of care [147].

There is great potential and major concerns over privacy, confidentiality, and control
of data in the era of AI about individuals once the data are shared. However, the benefits
of data sharing should outweigh the drawbacks and be based on the interest of the larger
community. AI applications in the diagnosis of hematologic neoplasms should comply with
state- and region-based regulations. It would be in patients’ best interests to be actively
involved in the development of policies on data sharing. Owners of AI-based technologies,
however, should be aware of the potential risks involved with AI-based data management
and processing, both in success stories and in instances when diagnosis went wrong. It
also aims to pave the way for public policies to support a balanced agenda that safeguards
personal information while enabling the use of data to improve clinical patient care and
public health. Furthermore, healthcare policymakers at the global level need to create a
unified legal and policy framework that supports a fair agenda that protects individual
privacy rights, restricts commercial exploitation, and sends a strong public message while
allowing the use of AI in healthcare datamining for both research and commercial purposes.
Regulation should prioritize patient autonomy and consent and support ever-evolving
data anonymization and protection techniques [148].

The challenges in developing clinical AI systems extend beyond just ensuring the
quality of data and regular evaluation of the AI algorithms. Another major challenge is
to ensure the interoperability of different AI systems used across various clinical settings.
The lack of interoperability can lead to fragmented care and inconsistencies in treatment
recommendations [149]. Currently, we do not understand how AI works, and it is usually
used as a black box. However, in the last few years, the field of interpretable AI has
become more prevalent, and there might be studies on the application of interpretable AI in
hematologic disease and cytology. There is a need for standardization in the development
and implementation of AI systems in clinical practice. Therefore, the issue of bias in
AI systems must be addressed to ensure that the algorithms do not perpetuate existing
disparities in healthcare delivery [150,151].

It is also critical to make clinical AI systems user-friendly and accessible to healthcare
professionals with various levels of technical specialization. User interfaces should be
designed to facilitate easy navigation, and the output of the AI system should be presented
in a clear and understandable format to aid decision making and change the future of
healthcare services [152]. In order to use AI systems in clinical practice successfully,
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healthcare providers also need to receive adequate training and support. Furthermore, the
application of AI in hematology outside of the realm of research receives little attention in
postgraduate medical education and training. This hinders the development of hematology-
related AI research and the application of the technology in healthcare systems [153].

6. Conclusions

In conclusion, the application of AI in hematology diagnostics is on the rise, and
it has the potential to greatly facilitate hematology diagnosis by combining results from
different diagnostic methods. The use of AI in hematology diagnostics will help reduce
the turnaround time, reduce diagnostic costs, and predict disease outcomes. However, it
is important to note that AI cannot fully replace manual diagnosis due to its limitations,
including limited databases, lack of validation and standardization, and the risk of sys-
tematic errors and bias. Furthermore, the use of AI poses data privacy issues; therefore,
regulations on clinical AI systems, including evaluation of AI systems and regulations on
ethical issues, are necessary to protect user information and privacy. To address the field’s
current challenges, more research must be conducted, and AI should be incorporated into
medical education.
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2D Two-dimentional
AA Aplastic anemia
AI Artificial intelligence
AIPSS-MF Artificial intelligence prognostic scoring system for myelofibrosis
ALL Acute lymphoblastic leukemia
ALPODS Algorithmic population description approach
AML Acute myeloid leukemia
ANN Artificial neural network
APL Acute promyelocytic leukemia
AUC Area under the curve
BCB Brilliant cresyl blue
BERMUDA Batch effect removal using deep autoencoder
BMA Bone marrow aspirate
BMS Bone marrow smear
B-NHL B- cell non-Hodgkin lymphoma
BNN Bayesian neural network
CBC Complete blood count
CD Cluster of differentiation
CLL Chronic lymphocytic leukemia
CML Chronic myeloid leukemia
CNN Convolution neural network
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CNV Copy number variation
CoAtNet Convolution and attention network model
DNA Deoxyribonucleic acid
DL Deep learning
DLBCL Diffuse large B-cell lymphoma
DMR Differentially methylated region
DNN Deep neural network
FCL Follicular cell lymphoma
FDA Food and Drug Administration
FDART Federated gradient boosting trees with dropout
FGBT Federated gradient boosting tree
FISH Fluorescence in situ hybridization
FMLP Federated multi-layer perceptron
FMNB Federated multinomial naive bayes
H&E Hematoxylin and eosin
Hb Hemoglobin
Hb-H Hemoglobin H
HPLC High-performance liquid chromatography
IHC Immunohistochemistry
LPL Lymphoplasmacytic lymphoma
MALT Mucosa associated lymphoma tissue
MCL Mantle cell lymphoma
MDS Myelodysplastic syndrome
MF Myelofibrosis
MFC Multiparameter flow cytometry
ML Machine learning
MLP Multi-layer perception
MM Multiple myeloma
MOM Multi-dimensional module optimization
MPN Myeloproliferative neoplasm
MRD Minimal residual disease
MulCNN Multi-level convolutional neural network
MZL Marginal zone lymphoma
PBMC Peripheral blood mononuclear cell
PBS Peripheral blood smear
PCT Prediction confidence score
RBC Red blood cell
RCA2 Reference component analysis 2
RGS1 Regulator of G-protein signaling 1
RNN Recurrent neural network
ScRNA-seq Single-cell RNA sequencing
SOM Self-organized map
SVM Support vector machine
WBC White blood cell
WGS Whole-genome sequencing
WSI Whole-slide image
XAI Explainable artificial intelligence
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