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Coherent optical control within or through scattering media via wavefront shaping has seen
broad applications since its invention around 2007. Wavefront shaping is aimed at overcoming
the strong scattering, featured by random interference, namely speckle patterns. This random-
ness occurs due to the refractive index inhomogeneity in complex media like biological tissue
or the modal dispersion in multimode ¯ber, yet this randomness is actually deterministic
and potentially can be time reversal or precompensated. Various wavefront shaping approaches,
such as optical phase conjugation, iterative optimization, and transmission matrix measurement,
have been developed to generate tight and intense optical delivery or high-resolution image of
an optical object behind or within a scattering medium. The performance of these modula-
tions, however, is far from satisfaction. Most recently, arti¯cial intelligence has brought new
inspirations to this ¯eld, providing exciting hopes to tackle the challenges by mapping the
input and output optical patterns and building a neuron network that inherently links them.
In this paper, we survey the developments to date on this topic and brie°y discuss our views
on how to harness machine learning (deep learning in particular) for further advancements in
the ¯eld.
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1. Introduction

When coherent light propagates within complex
media, the optical wavefront is distorted by either
the multiple scattering due to inhomogeneous re-
fractive index pro¯le or modal dispersion in multi-
mode ¯ber (MMF). The strong distortion leads to
random interference with randomly distributed
bright and dark spots, namely optical speckle pat-
terns. Such a process of light propagation, albeit
seemingly random, is actually deterministic within a
certain temporal window1,2 and can be analytically
described by a transmission matrix.3 This allows
feasibility to probe the complex medium by shaping
the incident wavefront onto the medium so that the
medium can be learned with the induced speckle
patterns. The information from the probed speckle
patterns can be used for wavefront control and
imaging object through the medium.

Optical wavefront shaping (WFS)1,2,4–6 is devel-
oped to compensate for the scattering-induced
phase distortions, where a spatial light modulator
(SLM) with discrete elements is typically employed
to resolve the continuous wavefront.7 By controlling
millions of modes to shape the incident light, not
only di®raction-limited optical focusing2,4,8,9 but
also arbitrary intensity pro¯le (e.g., images) trans-
mission10–12 can be achieved through or within
highly scattering media. Depending on how we op-
timize the wavefront displayed on the SLM, the
current implementations can be categorized into
two groups: time-reversed WFS and iterative
WFS.13 The former is generally enabled through
optical phase conjugation (OPC),14–20 where the
distorted wavefront is directly measured by an in-
terferometry con¯guration. A phase-conjugated
copy of the wavefront distortion is then generated
to time-reverse the light propagation and form a
focus inside or through the complex medium. This
process can be extremely fast, thus is suitable for
real-time or even in vivo applications.21–23 In the
latter category, the best modulation is achieved by
iterative optimization5,6,24,25 or transmission matrix
(TM) measurement.3,12,26 In iterative optimization,
an algorithm is used to update the SLM pattern so
that the feedback signal is enlarged step by
step.24,28 In the TM method, a linear transforma-
tion of a static medium is analyzed to determine
how the incident wavefronts are discretely weighted
to the outputs.3 The static assumption allows a set
of incident wavefronts of the orthogonal basis to

probe the response from the medium (i.e., the out-
put wavefronts). Note that the performance of
modulation (e.g., focusing) in this way sees some
limitations while the iterative method modi¯es the
wavefront in a real-time manner.29 Nevertheless,
the TM physically describes the interaction between
the medium and the random optical process, where
features like polarization,29 spectrum,30,31 as well as
eigenchannels32–36 of the transmission can be
extracted. Furthermore, the measured TM can be
used to derive the desired modulation for raster
scanning37 and image transmission.38 Such capa-
bilities, however, are highly dependent on the sta-
bility of medium; small perturbations could possibly
result in a new matrix.4,39 Besides, it is assumed
that the optical processes are linear and can be
modeled with a single matrix, which is not met well
under noisy environments. Lastly, the performance
and complexity of both iterative optimization and
TM measurement increase proportionally to the
number of resolved modulating elements ðNÞ, lead-
ing to a time-consuming optimization procedure
when N is up to millions for high-quality control.2,4

Adaptive optics (AO) is a twin of WFS that
shares similar goals and challenges, although it
works in regimes of weaker scattering where residual
but distorted optical focus exists. AO was initially
invented to correct the optical wavefront distortion
induced by turbulent atmosphere in astronomical
observation.40 Recently, this technique has been
transplanted to biomedicine,41 mainly on micro-
scopic42,43 and retinal imaging44,45 to compensate
for aberrations induced by the specimen or human
eye. Conceptually, an AO system includes a wave-
front sensor for measuring the distorted wavefront
directly, a dynamic optical element (e.g., deform-
able mirror, DM46) in a feedback loop to correct the
distortion.

Another topic of interest is to image or compu-
tationally recover hidden objects from the speckle
patterns. In this application, the TM of the scat-
tering medium is usually measured in advanced,3,12

and then inverted to focus light47–49 or descramble
transmitted image12,50 through a complex medium,
such as di®users3,49 or MMFs.48,50,51 To be noted,
however, such TM approach is usually of complex-
ity and susceptibility. There are also other phase
retrieval approaches, such as through holography,52

transport of intensity equation,53 and iterative algo-
rithms (e.g., Gerchberg–Saxton–Fienup algorithm).54,55
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While promising, the implementation perfor-
mance of wavefront control and computational im-
aging thus far have seen limitations, mainly because
a large number of independent modulating elements
are usually needed, and the modulation process is
time-consuming. It is especially critical when living
biological tissues are involved where physiologic
motions, such as breathing, heartbeat, and blood
°ow, resulting in optical speckle patterns that dec-
orrelate fast.2,4 In the past few years, the rapidly
developing arti¯cial intelligence (AI) techniques
dominated by machine learning sub¯eld,56 have
been introduced to this ¯eld and brought new
hopes, and deep learning a major workhorse. For
example, deep learning can help build up a
computational architecture as a generic function
approximating the light propagation process across
a complex medium. That is, the transformation
from the input wavefronts to the output speckle
patterns can be learned and linked through a com-
plex yet data-driven neural network that is implicit
to actual physical states. This opens up possibilities
to directly determine the optimum wavefront com-
pensation for any desired output pattern,28,57,58 or
reconstruct objects from the recorded speckles,
namely computational imaging.59–61

In this paper, we survey these recent develop-
ments of AI-assisted light control and computa-
tional imaging through scattering media, and the
rest of this article is organized as follows: In Sec. 2,
we discuss how AI techniques can be utilized to
assist coherent light wavefront control within or
through complex media of di®erent degrees of
scattering; In Sec. 3, we discuss how AI can assist
AO bioimaging, computational imaging recon-
struction, as well as MMF-based image transmission;
In Sec. 4, we brie°y summarize the developments
thus far, compare di®erent networks employed for
wavefront control and image recovery, and outline
existing challenges and potentials for further
advancement in this exciting ¯eld.

2. AI for Coherent Optical Wavefront

Control through Scattering Media

2.1. Integration of AI with WFS

In the model of transmission matrix, x and y are
usually denoted to present the input and output
complex ¯elds in the model of transmission matrix,
and they are linked by y ¼ T x, where T is the TM

of the complex medium. Since regular photo-
detectors can only detect intensity of light, the
phase information is missed. Therefore, phase shif-
ted3,37,62,63 or interferometry47 methods have been
used to measure the TM. In machine learning, the
input–output transformation is extended and gen-
eralized; the propagation of light in scattering
media, albeit complex, is mathematically simpli¯ed
as y ¼ fðxÞ, where f represents the forward prop-
agation operator. The inverse scattering propaga-
tion thus can be expressed by x ¼ f�1½y�, with f�1

indicating the inverse operator. Unlike in TM
method, the output y here can be directly de¯ned as
the intensity pro¯le of the output wavefront, which
can generalize the transformation by learning the f.
Note that nonlinear e®ects associated with the
propagation process could be included here, and
through training input–output pairs, the forward
and inverse operators of the medium can be statis-
tically modeled, with which the relationship be-
tween x and y is determined. Now, let us consider
how machine learning functions in optical wave-
front control. In this context, the desired or target
output pro¯le ŷ is given or known. Thus, the opti-
mized input x̂ can be determined by the learned f̂

�1

and the target ŷ through x̂ ¼ f̂
�1
ðŷÞ. By doing so,

when x̂ is displayed on the SLM, a desired output
identical or similar to ŷ will be produced at the
targeted position.

Such idea was ¯rst demonstrated by Horisaki
et al. in 2017,28 when the authors demonstrated
single-shot light focusing through a scattering me-
dium by utilizing the trained inverse scattering
operator (Fig. 1(a)). Based on a number of training
pairs of the input and output patterns, they used
Support Vector Regression (SVR) to calculate the
pixel-wise inverse scattering operator. The input
pattern was stepwise optimized with the trained
inverse scattering operator, and the target output
pattern was successfully reproduced, which could be
single and multi-focus behind the complex medium.
However, the study sees limitations in terms of ¯eld
of view, signal to noise ratio, and training duration
(97min).

Shortly afterwards, Alex Turpin et al.57 proposed
a two-step neural network (NN) approach for light
scattering control (Fig. 1(b)): First, the pairs of il-
lumination patterns displayed on a digital micro-
mirror devices (DMD) and the corresponding
speckle patterns recorded with a CCD camera were
generated and used to train a NN, with a goal to

Arti¯cial intelligence-assisted light control and computational imaging through scattering media
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infer the relationship between the pairs; Second,
the desired or arbitrary target pattern was fed into
the trained network to generate a prediction (of the
input modulation), which was then displayed on
the DMD to produce the desired pattern through
the scattering material. Good agreement has been
achieved between the desired target pattern fed into
the network and the ¯nal produced pattern, proving
that the trained network essentially functions as the
inverse transmission matrix of the medium.

In their research, the authors have demonstrated
that NNs can be used to e±ciently shape light
through various scattering media. Single-layer NNs
(SLNNs) proved to take advantage of the linearity
of light scattering to focus through several scatter-
ing media or even generate any desired light dis-
tributions through a glass di®user. Although easy to
implement and train, SLNNs are still constrained
by underlying linearity. The authors then found a
three-layer convolutional neural network (CNN) for
light scattering control. The CNN can e±ciently
lower the number of parameters required for train-
ing, advantageous for nonlinear situations. As seen,

the integration of deep learning and WFS enables
coherent light control in transmission through
scattering media.

2.2. Integration of AI with AO

If the medium is not very thick or di®usive, fewer
scattering events are involved, and residual optical
focus, rather than random speckle patterns, can be
observed at the region of interest. Optical wavefront
control in such a scene is usually referred to as
AO but not WFS. AO typically works in an imaging
system to improve imaging quality through
wavefront modulation. AI techniques have been
currently applied in AO systems for aberration
measurements and wavefront reconstruction in
astronomical observation.

Applications of arti¯cial neural networks (ANN)
are seen in this ¯eld to estimate the wavefront dis-
tortions in AO system.64–66 These works, however,
will not be discussed here; instead, we will focus
on the recent developments that are related to
direct wavefront control. In AO implementations,

(a)

(b)

Fig. 1. Illustration of AI-assisted coherent light control through scattering media. (a) Light focusing through a scattering medium
assisted by machine learning. The input pattern was stepwise optimized with the trained inverse scattering operator, and the target
output pattern can be reproduced through the scattering medium and (b) Two-step NN-assisted WFS for controllable light delivery
through scattering media. The illumination and the corresponding speckle patterns are formed into pairs to train the NN, with the
speckle patterns as the input and the DMD patterns as the output. The trained network is then used to predict a DMD pattern that
can generate a desired pattern after the medium. The prediction is subsequently displayed on the DMD, resulting in a pattern
identical or very similar to the desired one through the scattering medium. Reproduced from Refs. 28 and 57.
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the distorted wavefronts are typically measured by
a Shack–Hartmann (SH) wavefront sensor, with
which the slopes of each SH lenslet are recovered.
Then the recovered slopes are applied to the DM via
command matrix to induce phase correction to the
upcoming light. Such implementations, however,
are inherently limited by the number of lenslets in
the system and prone to certain error modes.67 The
concepts of AI, especially ANN, have not been used
for AO for long time,68–70 but this area has recently
revived, bringing new hopes to overcome the
aforementioned limitations. For example, in 2014
Osborn et al.71 reported a single hidden layer multi-
layer perceptron to infer the Zernike polynomials
from the SH slopes for wavefront reconstruction; in
2018 Swanson et al.67 employed a U-Net architec-
ture to learn a mapping from the SH slopes to the
true wavefront slope data, based on which the la-
tent atmospheric wavefront was reconstructed and
a convolutional LSTM network was employed to
predict future wavefronts with only ¯ve previous
data samples; also in 2018, Suarez et al.72 proposed
a CNN-based reconstructor relying on the full
measurement images of the SH wavefront sensor; in
2019 Ma et al.73 used a CNN to extract features
from the two intensity images of wavefront distor-
tions and obtained the corresponding Zernike coe±-
cients, based on which satisfactory AO compensation
e®ect was achieved.

To our best knowledge, wavefront reconstruction
algorithms have been dominated by Zernike poly-
nomials model74,75 in current astronomical AO im-
aging system. Deep learning has thus been utilized
to mainly infer Zernike coe±cients for wavefront
correction, or to map the measured SH slope maps
to the true wavefront data. Since no systematic
study regarding the integration of AI and AO
bioimaging till now, more e®orts for deep learning
techniques to boost AO bioimaging are highly
desired.

3. AI for Microscopy and

Computational Imaging Through

Scattering Media

AI techniques can be employed for image post-
processing to deal with residual aberrations that
degrade imaging quality in AO bioimaging system,
and by extension, in general microscopic system.
Here, we also report recent advances about AI

techniques in imaging through complex scattering
media.

3.1. AI-assisted AO bioimaging post-

processing

AO has been introduced to bioimaging41 — mainly
on optical microscopy42,44 and retinal imag-
ing44,45 — from the ¯eld of astronomy, providing
correction for aberrations induced by the specimens
and the imaging system. The value of AO micros-
copy can be seen in many applications where fo-
cusing deep into specimens is essential. Take
neuroscience as an example, adaptive correction
of two-photon microscopy76,77 and confocal mi-
croscopy78 deep in mouse brain tissue have been
demonstrated with enhanced performance. Another
example is the compensation for ocular aberra-
tions79 to achieve near di®raction-limited retinal
imaging in modalities like confocal scanning oph-
thalmoscopy and optical coherence tomography.

With imperfect wavefront correction, in AO
bioimaging residual aberrations inevitably exist and
downgrade the imaging quality,80 making it indis-
pensable for appropriate imaging post-processing.
This can be obtained by using image restoration
techniques, such as nonblind deconvolution based
on PSF measurement81 or more generalized blind
deconvolution algorithms,82,83 which allow simul-
taneous recovery of blurred images and PSF dis-
tributions. Many machine learning-based
approaches have also been developed. For example,
to deblur AO retinal images, a method using the
deconvolution method and Random Forest was
proposed in 2017 to learn the mapping of retinal
images onto the space of blur kernels.84 The recon-
struction performance of this method, however, is
limited due to the dependency of the system speci-
¯city on a nonblind deconvolution algorithm. More
recently, deep learning has been proposed to restore
the degraded AO retinal images80 (illustrated in
Fig. 2). In this method, a CNN was trained based
on a synthetically generated dataset of 500,000
image pairs; 100 ideal retinal images were ¯rst
created and then 5000 PSFs were generated for
each of them to produce the training dataset. Note
that this method does not need to predict the PSF
of the imaging system and allows directly learning
an end-to-end mapping between the blurred and
restored images. With both synthetic and real
images, the trained CNN was validated to restore

Arti¯cial intelligence-assisted light control and computational imaging through scattering media
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clean and sharp retinal images from corrupted
images e®ectively.

In additional to AO bioimaging, deep learning
has also seen wide applications for other micro-
scopic scenes employed for biomedicine, such as
resolution improvement,85–89 depth-of-¯eld exten-
sion,88,90 and aberration correction.66,91,92 For this
topic, it is ¯rst reported that researchers from
UCLA proposed a deep learning-based microscopy
that works with a single image captured using a
standard optical microscope in 2017.88 They trained
a CNN framework providing low-resolution \input"
images (lung tissue) and high-resolution \training
labels". Once the training is complete, with any low-
resolution image taken in, a higher-resolution ver-
sion with improved ¯eld of view and depth of ¯eld
can be quickly (0.69 s/image) generated by the
network. Furthermore, they reported that with
appropriate training, the entire framework (and
derivatives thereof) might be e®ectively applied to
other optical microscopy and imaging modalities,
and even assist in designing computational imagers.
For bene¯cial reference, we expect to ¯nd inspira-
tions from these extended techniques, which may
open up new avenues for learning-based aberration
correction for AO microscopy.

3.2. AI-assisted computational imaging

through scattering media

Imaging through complex scattering media is a
pervasive challenge in many scenes, of which deep-
tissue optical imaging93 is of particular interest.
Optical scattering scrambles the wavefront phases
and impedes the delivery of information, with the
result of no clear image of the object being produced
or observed but only random speckles out of com-
plex media. To address this challenge, approaches
based on digital holography,94–96 WFS,3,6,95 and
memory e®ect97,98 have been developed, albeit
complex optical setups are usually required. As
for computational imaging, in particular, the
TM-based method has been exploited widely to
descramble the distorted images.3,12 However, as
discussed earlier, the characterization of the \one-
to-one" input–output relationship is of experimen-
tal and computational complexity, which is, further,
susceptible to external perturbations. Moreover, in
TM method it is inherently assumed that the opti-
cal propagation and interaction with the medium
are linear and can thus be mathematically modeled
as a single matrix. Such assumptions, however,
are probably invalid or incorrect under noisy or
inadequate experimental conditions.28

Fig. 2. The schematic diagram of the CNN used for AO retinal image deblurring. The network comprises ¯ve layers that combine
convolutions with element-wise recti¯ed linear units (ReLU). A blurred image goes through the layers and is transformed into a
restored one, and some sample feature maps are drawn for visualization. Reproduced from Ref. 80.
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In this part, we would like to report recent
developments of learning-assisted computational
imaging through scattering media, which has been
proven to be simpler and more robust. The key to
such inverse scattering process is to recover the
target objects from the recorded speckles via
\learning" to approximate solutions to the inverse
problems in computational imaging. Now, let us
denote g as the unknown target object, I as the
recorded speckle pattern, and H as the forward
imaging operator. With an additional regularization
item �ð�Þ, we can model the inverse problem
through the Tikhonov–Wiener optimization func-
tion: ĝ ¼ arg mingjjHg� Ijj2 þ ��ðgÞ, where � is
the regularization parameter, and ĝ is the estimate
of the target.60 To work out this ill-posed recon-
struction function, H and � must be known ex-
plicitly or parametrically. Although there are
several approaches99–101 to determine these prior
representations, the process is often complicated
and prone to errors. Recent years have seen AI
techniques in solving this inverse problem by
learning these operators implicitly through the
training of target examples. In 2016, Horisaki
et al.102 ¯rst demonstrated such an idea by pro-
posing a SVR method to learn the scattering oper-
ator, where light is scattered by three sequential
scattering plates and modulated by two SLMs.
After the operator is learned, faces being imaged
through random media can be reconstructed from
the speckle patterns. The authors also made it clear
that the SVR leads to a promising generalization.
Such a machine learning-based approach in the
context of computational imaging through scatter-
ing media has a positive impact in boosting other
related works, especially for the successful intro-
duction of deep learning-based techniques.

A deep neural network (DNN) can be trained to
learn H implicitly, and to act as the inverse opera-
torH inv to recover the target object from a recorded
speckle, described as the expression ĝ ¼ H invI

mathematically. This learning approach requires no
prior knowledge and is expected to be a more robust
approximator to nonlinear operators, but a large
training dataset of known image pairs of the target
objects and their corresponding speckle patterns
must be available. In 2017, Lyu et al.60 used a DNN
model with two reshaping layers, four hidden layers,
and one output layer to retrieve the handwritten
digit images from Mixed National Institute of
Standards and Technology (MNIST) database

behind a 3mm thick white polystyrene slab. In this
method, objects locating at one side of the scatter-
ing medium were mapped to the corresponding
speckle patterns observed on the other side, simple
yet opening up avenues to explore optical imaging
through more general complex systems. Also in
2017, Sinha et al.61 experimentally built and tested
a lensless imaging system, where a \U-net"-based
DNN was trained to recover phase objects created
by an SLM; the corresponding resultant intensity
di®raction patterns were used as the input. Note
that the network has learned a model of the un-
derlying physics of the imaging system. Even
though it was trained exclusively on images from
the ImageNet database, it was still able to accu-
rately reconstruct images of completely di®erent
classes from Faces-LFW database. In 2018, the
same group further proposed a network architecture
called IDi®Net, a U-net with densely connected
CNN, and introduced negative Pearson correlation
coe±cient (NPCC) as the loss function for network
training.59 The IDi®Nets trained on di®erent data-
bases all seem to learn automatically the physical
characteristics of the scattering media, including the
degree of shift invariance and the priors restricting
the objects. But the type of object, which can be
reconstructed, is restricted to the type of object (e.g.,
face, scene or digit) in the training dataset. This U-
net based architecture was shown to achieve higher
space-bandwidth product of reconstructed images
than the previously reported, and to exhibit ro-
bustness toward the choice of the priors. In addition,
the team implemented IDi®Nets to achieve phase
retrieval in a wide-¯eld microscope shortly after,103

where the network was trained using the data gen-
erated by a transmissive SLM and tested with ima-
ges captured from a microscope. The reconstruction
results of a phase target showed the value of IDi®-
Nets to build a quantitative phase microscope.

To address the susceptibility to speckle decorr-
elation in the deterministic TM method (one-to-one
mapping), in 2018, Li et al.39 proposed a \one-to-
all" deep learning scheme (see Fig. 3), where a
CNN, similar to the model used in Ref. 60, was built
to learn the statistical information about the
speckle intensity patterns measured on a series of
di®users with di®erent microstructures yet the same
macroscopic parameters. The trained CNN can
\invert" speckles captured from di®erent di®users
to the corresponding target object accurately. This
can signi¯cantly improve the scalability of imaging
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1930006-7

J.
 I

n
n
o
v
. 
O

p
t.

 H
ea

lt
h
 S

ci
. 
2
0
1
9
.1

2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

5
5
.6

9
.1

8
2
.6

 o
n
 0

6
/2

9
/2

0
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



by training one model to ¯t various scattering
media of the same class.

3.3. AI-assisted MMF-based image

transmission

A typical MMF can support tens of thousands of
optical modes and is capable of delivering spatial
information. However, MMFs behave like scattering
media due to modal dispersion, resulting in seem-
ingly random speckle patterns, if coherent light is in
use. Since 1967, researchers have started to explore
the feasibility of image transmission across
MMFs.104 The development of optical WFS has
opened a new era. In recent years, methods based on
phase conjugation,11,105 iterative optimization,10,106

and transmission matrix measurement48,50 have
been proposed to compensate for the e®ects of
modal dispersion. They either focus light at the
distal end of the ¯ber or transmit desired images
through the MMF. Although WFS techniques are

indeed indispensable for controlling coherent light
propagation across MMFs, some challenges remain
with these studies as discussed earlier.

Being simpler and more robust, deep learning
techniques has been introduced for imaging or
image transmission through MMFs. Here, we report
some recent examples that recover object images
from the intensity measurements collected at the
output side of MMFs, transforming MMFs into
useful imaging ¯bers, which is especially promising
for endoscopic applications with ultra slim ¯bers.50

In practice, most of the learning-based methods
train a neural network with the resultant speckle
patterns as the network inputs and the input images
to the ¯ber as the training labels, in order to classify
and reconstruct the input image with a new pro-
vided speckle pattern. There are early demonstra-
tions107,108 of using two-layer networks to train and
to recognize a few images across a 10m long step-
index ¯ber. In 2017, Takagi et al.109 demonstrated
the binary classi¯cation of the face and nonface

(a)

(b) (c)

Fig. 3. Diagram of deep learning-based scalable imaging through scattering media. (a) Speckle measurements are repeated on
multiple di®users, (b) During the training stage, only speckle patterns collected through the training di®users D train

1 ;D train
2 ; . . . ;

D train
N are used and (c) During the testing stage, objects are predicted from speckle patterns collected through previously unseen

testing di®users D test
1 ;D test

2 ; . . . ;D test
N , demonstrating the superior scalability of this deep learning-based approach. Reproduced

from Ref. 39.
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targets based on their corresponding speckle pat-
terns transmitted through an MMF. Three super-
vised learning methods (support vector machine,
adaptive boosting and neural network) were used
and all of them achieved high accuracy rates of
�90% for classi¯cation. Later on, Rahmani et al.110

used both VGG-net and Res-net to perform a
nonlinear inversion mapping between the amplitude
of the speckle patterns and the phase or the am-
plitude at the input of a 0.75m long MMF. The
authors showed that the networks can be trained for
reconstructing images that belong to another class
not used for training/testing. Borhani et al.111

trained a \U-net" to reconstruct the SLM input
images from the recorded speckle (intensity) pat-
terns from the MMF, and a VGG to classify the
distal speckle images and reconstructed SLM input
images. The authors further showed that such ca-
pability was observed for MMFs of up to 1 km long
through training the DNNs with a database of
16,000 handwritten digits. Most recently, Fan
et al.112 showed that a CNN can be trained under
multiple MMF transmission states to accurately
predict the input patterns at the proximal side of
the MMF at any of these states, exhibiting a sig-
ni¯cant generalization capacity for di®erent MMF
states. The aforementioned recent studies are sum-
marized in Table 1.

4. Discussion

In this paper, we have reviewed recent progress on
the applications of AI to assist WFS and AO to
achieve controllable light delivery, imaging, and
image recovery through scattering media. Most of

these studies rely on machine learning-based
approaches, deep learning in particular, and have
enabled powerful and robust performance. In terms
of di®erent NNs deployed for various applications in
wavefront control and image recovery, we here
make a brief comparison and reveal the key points
in network model design.

Deep learning for di®erent WFS applications
often requires a careful search for optimal archi-
tecture to match the data complexity and speci¯c
task demands. To be ¯rst, for coherent light control
through scattering media, usually simple network
architectures could be well enough. In Ref. 57,
SLNNs can be quali¯ed for the case where the light
scattering is linear within simple scattering mate-
rials. As SLNNs are easy to implement and train,
they are suited to shape light to correct for scat-
tering in media (like MMFs) with slow dynamics
(on the order of a few tens of seconds). And for
nonlinear situations, simply combining multiple NN
layers densely may make it challenging to train data
due to the increased number of parameters. Such
multi-layer NNs need to be speci¯cally designed
(e.g., using CNN) and trained (usually larger
training set is required compared to SLNNs) to
generate the desired type of light distribution
through scattering media.

For AO wavefront reconstruction networks,
many recent works that either to infer Zernike
coe±cients for wavefront correction73 or to map SH
slopes to true wavefront data,67 have adopted the
CNN architecture, for its advantage to extract
image features. And there is nothing obvious about
these networks. When it comes to image restoration
in computational imaging, the network con¯gura-
tions are usually complex for good e®ects (i.e.,

Table 1. Summary of recent deep learning approaches for image transmission through MMFs.

Network
Reference structure MMF states Database Features

Takagi et al. (2017)109 One hidden layer Static situation Caltech computer
vision database

Object classi¯cation

Rahmani et al. (2018)110 VGG-net
Res-net

0.75m long Handwritten Latin
alphabets

�1 Amplitude-to-amplitude and
amplitude-to-phase mapping

�2 Transfer learning

Borhani et al. (2018)111 VGG
U-net

0.1m, 10m and 1000m Handwritten digits �1 Classi¯er and Reconstruction
�2 Large dataset for robustness

Fan et al. (2018)112 CNN Dynamic shape variations MNIST database �1 Generalization capability
�2 Robustness to variability and

randomness of MMF

Arti¯cial intelligence-assisted light control and computational imaging through scattering media
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image enhancement for microscopy or image re-
construction from speckle patterns). A remarkable
feature in most current reconstruction net-
works39,59,61 is that the \U-net" architecture with
skip connection layers are widely employed. These
skip connections through the encoder–decoder
paths can pass the high-frequency information
learned in the initial layers toward the output
reconstructions. What more, there are also residual
blocks113 in Ref. 61 to ensure learning new features,
or dense blocks114 in Refs. 39 and 59 to increase
receptive ¯eld of the convolution ¯lters and accel-
erate convergence.

To advance new developments of this integrative
¯eld by AI techniques, we also would like to provide
some views here, including existing challenges and
potential directions, for further discussion. First,
more advanced statistical machine learning meth-
ods, especially the deep learning models, are highly
desired. For AI-assisted WFS-based light control,
take Ref. 28 as an example, the SVR and kernel
method were chosen to calculate the pixel-wise in-
verse scattering operator. Note that such a statis-
tical process is quite time-consuming (97min) and
not suitable for focusing with a low signal-to-noise
ratio. Hence, more e®ective regression algorithms
need to be explored. Concerning computational
imaging and microscopy, take Ref. 80 as an exam-
ple. Apart from more complex AO retinal imaging
process for further modeling and training with the
network, more e®ective regularization e®ects for the
deep neural network such as dropout and batch
normalization can improve the network's perfor-
mance in deblurring the AO retinal images. There
are also many examples67,110,111 where popular
networks from the ¯eld of computer vision are
employed to train and exploit data for wavefront
reconstruction, image enhancement and restoration.

Second, deep learning techniques can be intro-
duced for wavefront reconstruction in AO bioima-
ging, which has not yet been achieved since the
aberration measurement and control in adaptive
optical microscopy and retinal imaging remain in-
tractable. This may be attributed to the fact that
current deep learning-based approaches highly rely
on the measured SH slope data, while direct wave-
front sensing is challenging inside specimens of
adaptive optical microscopes. There have already
been quite a few reports about learning-based
wavefront sensing and reconstruction for the as-
tronomical AO system, where inspirations might be

drawn from. As regards to adaptive optical bioi-
maging system, with the proper design of input and
output for the DNN, perhaps deep learning can be
adapted to indirectly deal with phase corrections
based on the collected sequence of distorted wave-
front images.

Last but not least, deep learning can be especially
promising to allow light control or imaging through
dynamic biological tissue. Inspired by Ref. 40, the
CNN model can be designed to capture su±cient
statistical variations to interpret speckle patterns
under di®erent conditions. By adopting such a sta-
tistical \one-to-all" deep learning method, the
trained network may be made compatible with bi-
ological samples with live macroscopic parameters
or in motion. Of course, further investigations are
needed to explore the accessibility to the in situ
light ¯elds through or within biological tissues, for
which internal guidestars such as ultrasonic modu-
lation,23 photoacoustic signal,9 and magnetically
controlled absorbers19 may be considered.

Moving forward, we envision that with further
development in WFS, computational imaging and
AI, the integration of them has the potentials to
enable controllable optical delivery and imaging
transmission or recovery through or within dynamic
scattering media, such as in vivo biological tissue
and free moving multiple mode ¯bers. It is not hard
to imagine that such capability could bene¯t widely
for many optical applications, such as imaging,
sensing, control, stimulation and communication.
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