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Abstract: The integration of Micro Electronic Mechanical Systems (MEMS) sensor technology in
smartphones has greatly improved the capability for Human Activity Recognition (HAR). By utilizing
Machine Learning (ML) techniques and data from these sensors, various human motion activities
can be classified. This study performed experiments and compiled a large dataset of nine daily
activities, including Laying Down, Stationary, Walking, Brisk Walking, Running, Stairs-Up, Stairs-
Down, Squatting, and Cycling. Several ML models, such as Decision Tree Classifier, Random Forest
Classifier, K Neighbors Classifier, Multinomial Logistic Regression, Gaussian Naive Bayes, and
Support Vector Machine, were trained on sensor data collected from accelerometer, gyroscope, and
magnetometer embedded in smartphones and wearable devices. The highest test accuracy of 95% was
achieved using the random forest algorithm. Additionally, a custom-built Bidirectional Long-Short-
Term Memory (Bi-LSTM) model, a type of Recurrent Neural Network (RNN), was proposed and
yielded an improved test accuracy of 98.1%. This approach differs from traditional algorithmic-based
human activity detection used in current wearable technologies, resulting in improved accuracy.

Keywords: Bi-LSTM network; classification algorithm; deep learning; deep neural network; hu-
man activity recognition; machine learning; MEMS sensors; mobile & wearable devices; recurrent
neural network

1. Introduction

Recent advancements in Micro Electronic Mechanical Systems (MEMS) sensor technol-
ogy and Artificial Intelligence (AI) have made human activity recognition (HAR) possible
with high accuracy. A series of MEMS sensors and AI techniques are used to detect body
motions to deduce critical information about it [1], such as the activity patterns of the user.
The HAR applications vary from entertainment to the defense industry such as sports
analytics, gaming, healthcare, smart homes, space exploration, personal fitness tracking,
remote tracking, enhanced manufacturing, security, etc [1,2]. For example, for space explo-
ration purposes a comprehensive/compact activity recognition system could be built on a
space rover. The scientists would then be able to track its motion status, which is a vital
piece of information. Another scenario could be, where a patient needs to be constantly
monitored due to some diseases like diabetes, high blood pressure, high cholesterol, etc.,
therefore, tracking their motion activities like walking, jogging, running, cycling, etc. can
provide feedback to them or their caregiver. The movement of a person can be tracked
with the use of smart bands, mobile phones, and wearable devices. With such electronic
devices in the market, users can access an extensive range of sensors for a wide spectrum of
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applications in both their professional and personal lives. Due to people’s increased aware-
ness of their health, exercising and tracking their sleep have become fashionable trends
for health enthusiasts [3]. By collecting behavioral data from these sensors, researchers
are addressing needs in the medical & healthcare sectors and smart homes [4]. Various
industries and technology giants also benefit from data collected in this way because it
directs their research efforts to develop future products that can be released to the market.

There are a variety of sensors that can sense movements, namely, video cameras, wear-
able physiological sensors, motion sensors, RADAR [5], acoustic sensors [6], Echo (Amazon
Echo, 2018), everyday objects (such as HAPIfork, 2018), food scales (SITU-The Smart Food
Nutrition Scale); additionally, IR motion sensors, magnetic sensors, and other ambient sen-
sors have also been employed extensively for motion activity recognition [7]. These devices
are compact, cheap, and have fast processing/computing capabilities [8]. With wireless sen-
sor networks [9], wearable devices (e.g., smart watches/fitness bands, body-worn sensors,
MEMS Sensors, smartphones, etc.) can gather and transmit real-time data from different
locations on the body (e.g., head, chest, upper arm, forearm, leg, etc.). HAR systems based
on video cameras can be used for many different security applications, but they have many
challenges involving with regards to privacy and space in smart environments. People
apart from the target/ Other people, such as caregivers or family members may also be
recorded by the device. The misuse of such videos contributes to security concerns and
infringes upon their privacy, which is deemed unacceptable. Nonetheless, the sensors
which are, wearable MEMS sensors, eliminate the security and privacy concerns related to
the monitoring of activities [4]. MEMS sensors that are present in smartphones and wear-
able devices can be used to extract information by processing the data from these sensors.
Accelerometers are also frequently employed for HAR along with gyroscopes, as they have
shown improved recognition performance when used together [10]. As smartphones have
developed, they have opened up previously unimaginable possibilities for monitoring and
interacting with human subjects in real-life settings. Latest smartphones are programmable,
equipped with numerous integrated MEMS sensors, large & high-resolution touch dis-
plays, faster & better CPUs, prolonged battery lives, greater storage memory, and wireless
connectivity to external sensors/devices, as a result, they are widely used [11]. Moreover,
there are wireless technologies that transmit data from the user’s body to a storage device
located remotely. This allows new types of decision support systems to be developed, and
data can be displayed on a device like a computer server. Despite the benefits of increased
privacy and security, wearable sensors also present some challenges/obstacles, including
intraclass variability, interclass similarity, class imbalance, and determining the actual start
and end times of activities [4].

Data collected from sensors can be used to train a number of ML classifiers [12] which
include Support Vector Machines (SVMs), Hidden Markov Models (HMMs), Dynamic
Bayesian Models (DBMs), Random Forests (RFs), Decision Trees (DTs), etc. In order to
utilize ML algorithms features need to be extracted from the collected data, even though
the data size need not be enormous [13]. Traditional ML has been revolutionized by Deep
Learning (DL) and has enhanced performance in many domains, some of which include
image recognition, object detection, speech recognition, and natural language processing
(NLP) [14]. With the help of ML & DL, HAR can be significantly improved in terms of
performance and robustness, which enables it to be used for a variety of wearable sensor-
based applications. In various applications, DL has been successful mainly because of
two reasons. First, a DL algorithm is capable of automatically learning robust features
from raw data sets for particular applications, while traditional ML methods engineer
features using expert domain knowledge, the process is often very time-consuming and
requires a great deal of expertise. Among DL models, recurrent neural networks (RNN),
convolution neural networks (CNN), long short-term memory (LSTM), autoencoders, etc.
are the most commonly used. Using deep neural networks (DNN), raw signals can be
effectively analyzed with minimal domain knowledge. As a second benefit, DNN can be
used to approximate practically any function, provided that they are dense enough and that
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there is sufficient observational data to do so [15–17]. As a result of their expressiveness,
DL-based applications have grown substantially. The results of DL have been encouraging,
but there remain several challenges and obstacles. These challenges include the need for
large amounts of data, high computational requirements to run complex neural networks,
and interpretability [18].

In this work, after analyzing the various ML models, we put forward a Bi-LSTM DNN
model for the classification of the said 9 motion activity classes as depicted in Figure 1,
these activities are classified as activities of daily living (ADL). As part of our study, we
aim to distinguish between these activities of daily living. Our focus is on HAR using
embedded MEMS sensors. The Bi-LSTM DNN model uses the data recorded from MEMS
sensors either separately or collectively to acquire information like acceleration, magnetic
field, orientation, and angular velocity about all three axes (i.e x, y, and z axes respectively).
These MEMS sensors are not only cost-effective but they are also integrated into nearly
every smartphone on the market today [19]. This study covers the following areas and has
the following contributions:

Figure 1. Steps for Human Activity Recognition.

(a) Rigorous experiments were conducted to prepare an extensive dataset of 9 differ-
ent human motion activity classes which include (a) Laying Down, (b) Stationary,
(c) Walking, (d) Brisk Walking, (e) Running (f ) Stairs Up (g) Stairs Down (h) Squatting
and (i) Cycling, the prepared dataset was then used for training and testing purposes
for the ML and DL model(s). A detailed explanation is provided in Section 3.1.

(b) Dataset prepared through these experiments was then used to train various ML and
DL model(s) as specified in Section 3.2.

(c) By combining an auto-labeling module with a DNN that uses Bi-LSTM structures, a
supervised DL framework is designed, constructed, and proposed, which efficiently
uses the extensively prepared dataset to achieve maximum HAR accuracy of 98.1%.

(d) The proposed DNN Bi-LSTM-based model was then tuned by varying several model
parameters to conclude the best possible model (hyperparameter tuning). Various
parameters like training & testing time, and size of the trained network were also
observed for the different cases (parametric analysis), as elaborated in Section 3.3.

(e) Comparative analysis has been performed on the WISDM dataset, which is a pub-
licly available dataset, Section 5 describes it in detail.
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The manuscript proceeds as follows, Section 2 provides a comprehensive literature
review on HAR, Section 3 describes the methodology used towards HAR, the results
achieved are discussed in Section 4. A comparative analysis has been provided in Section 5.
Finally the conclusion and future scope of the work is discussed in Section 6.

2. Literaure Survey

HAR is not something that is new to the researchers’ interest. It was in the 1990s when
some [20] started exploring the field. But due to less conception of wearable devices at that
time, good results were not seen. With the rapid development of wearable technology in the
21st century combined with the fast conception of wearable devices triggered the growth
of HAR. This is mainly because of the proliferation of handheld devices with multiple
built-in sensors. There are numerous ML and DL methods that can be used for classifying
human activities, but utilizing them in a way to get more accurate results still needs to be
worked upon. Modern devices are packed with a variety of sensors, like Accelerometer,
Gyroscope, Magnetometer, but the accelerometer is still the most reliable. The work by
Prasad et al. [12] using just an accelerometer and still getting good accuracy explains how
powerful results can be achieved using just a simple sensor. The aim was to identify the
six basic fundamental human activities, namely, walking, brisk walking, standing, sitting,
and going upstairs or downstairs. They focused on utilising the accelerometer present in
smartphones to detect the exercises by using a DL method naming Convolutional Neural
Network (CNN). Their paper supports the implementation of a two-dimensional CNN
model. It was found that the trained model was capable of classifying human activities
with an accuracy of 89.67%. The approach to get much better accuracy is an open challenge
in the work.

Some researchers extend the use of sensors to more than one sensor. Ronao et al. [21]
used smartphones to collect the data for Human Activity Identification [22]. The data set
was collected using the readings of accelerometer and gyroscope at a frequency of 50 Hz.
The correct feature subset was collected using random forest variable importance measures.
Six activities were classified, including walking, going upstairs, going downstairs, sitting,
standing, and lying using a two-stage Hidden Markov Model (HMMs). They utilise the
best from HMM- Gaussian Mixture Model (GMM) and used both of them separately. The
use of GMM was to model the picked features and HMM to model the temporal reliance
among actions. After analysing the results computed from two together-stage HMM, ANN,
Decision Tree (DT), and Naive Bayes (NB), it was noted that the two together-stage HMM-
GMM model performed best. Some researchers tried to fetch data using more complex
ways, but the practical implementation of their ways is a problem to tackle, like, the work
by Krishnan et al. [23] was to implement and collect the data by placing an accelerometer
on the thighs of a subject, but when the data was tested, it lacked that accuracy and it did
not perform well for activities like walking, sitting, lying down, etc. So, they conclude that
multiple sensors are required to get the best out of the model. A higher degree of accuracy
can be achieved by this, but in reality, it is really inconvenient to collect the data by placing
many sensors on the body of the user.

As more researchers started working on HAR, different methods started to get utilised
to maximise the accuracy and reduce the time to establish the classifier. Qi et al. [24]
proposed to classify human action using a smartphone in a much fast way. They focused
on providing an amazingly fast and powerful Deep Convolutional interconnected system
form (FR-DCNN) for action recognition utilising a mobile phone. The experiment was
performed on 12 complex data sets, which predicted that the FR-DCNN model is a high-
quality design for fast calculation and extreme accuracy recognition. The MATLAB app
on the smartphone was utilized for computing the activity readings. The time required by
the FR-DCNN model to conclude the action was just 0.0029 seconds in a connection to the
internet, accompanying 95.27% accuracy. Concurrently, only 88 seconds were required to
base the DCNN classifier on the compressed dataset, resulting in a reduced accuracy deficit
of 94.18%. It was completed later by instructing the consumers to record the 12 exercises
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by transferring the mobile phones established on the waist. HAR also started as a major
breakthrough in medical applications. The work by Ali et al. [25] stated that one person
collected the acceleration data using a mobile phone for a couple of days, to classify ADL
into activities as stationary, light ambulatory, intense ambulatory, and abnormal classes.
A J48 classifier is used to analyse the activities by feeding the collected data to a trained
model. An accuracy of 70% was noted for each activity class and an accuracy of 80%
was obtained by the model for stationary activities, and can easily differentiate between
correlated activities like sitting on a chair and standing. Their work is remarkable and can
have many amazing utilization in the medical field for monitoring purposes. Their work
opens the door for more advance techniques to increase the accuracy of prediction.

There’s always a question as to which method or classifier to use in order to efficiently
utilise the data collected by the user, so researchers did a comparative analysis of various
models of DL. The research carried out by Hammerla et al. [26] tried to compare the different
models of DL namely DNN, CNN, and RNN on some existing data sets of Opp, PAMAP2,
and DG. They also compared two different variations of RNN that are deep forward LSTMs
and bi-directional LSTMs. CNN got the highest accuracy on the PAMAP2 data set at 93.7%,
while the LSTM and the b-LSTM classifiers got the maximum accuracy of 76% and 92.7%
on the DG and OPP data sets, respectively. Their work claimed that one should rely more
on RNNs when the activities are short-timed, but if the activities are long-term, then CNN
is the best to work with. The question of which polling or sampling rate one should collect
the data to utilise it effectively was carried out by a study of Maurer et al. [27] They used an
accelerometer for the collection of data and observed how the accuracy is behaving when
the sampling rate is varied from 10 Hz [28] to 100 Hz [29]. After checking the accuracy
at different sampling rates, it was seen that no significant change occurred in accuracy
as a function of sampling rate above 20 Hz. They stated that the more important thing
to focus on is the placement of the accelerometer while collecting the data. He et al. [30]
after numerous observations claimed that it’s best to place the accelerometer in the trousers
pocket, alternatively many works suggest wearing it on the wrist [31], or belt [32], or in the
bag carried by the user [27]. Their work concluded that the position of the accelerometer
depends upon the type of readings one wants to calculate for what type of activity.

Suwannarat et al. [33] worked on reducing the dimensions of data collected by the
accelerometer and determining its impact on the DNN-based HAR. They put forward an
architecture by minimizing the parameters in accordance with the sample size that needs
to be fed to the DNN. The parameters had been reduced to half of their baseline values,
only the XY axes acceleration data is utilized, and the sample period had been reduced
from 8s to 4s. The classifier worked fine and got comparable or better results than the
baseline classifier. The UCI HAR, the Real World 2016, and the WISDM were the data sets
that were used for carrying out the experiments by them. The results obtained by their
research are really important, as they can help in the reduction of memory consumption,
time reduction, and overall resource utilization on a better scale. The model presented can
have many implementations, especially on low-powered devices like a smartwatch. The
number of survey articles on HAR has also increased significantly in the past years [34–38].
The survey by Lima et al [39] provides a complete roadmap on how the HAR has been
developed in the past years by providing a brief history of HAR and related works. In
addition, the authors present results from the perspective of inertial sensors embedded in
smartphones, which are important aspects of HAR solutions.

Recent studies in the field of HAR have explored the DL domain in a more detailed way.
The work by Wang et al. [40] provides the usage of CNN and LSTM altogether to get much
better results. Ramos et al. [41] used RNN, LSTM and GRU to get real-time detection of
human activities. A one-dimensional Convolutional Neural Network with a bidirectional
long short-term memory (1D-CNN-BiLSTM) model was presented by Luwe et al. [42]
which results in a much better accuracy of 94.17% to all other recent works in HAR using
DL. All the models presented by these papers are tested on some popular publicly available
datasets which are sometimes not up to the mark for real-time HAR detection. The work
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by Liu et al. [43] provides an in-house collected dataset CSL-SHARE (Cognitive Systems
Lab Sensor-based Human Activity REcordings) to classify 22 different activities with more
accuracy. The use of decision tree classifiers to sense the changes in pressure using MEMS
built accelerometer to collect and store data is provided by Pardeshi et al. [44]. Recent
works by Patange et al. [45] and Shewale et al. [46] provided us with the importance of
vibrations, temperature and other parameters in health monitoring systems. All these
researches will lead us to develop more smart and accurate devices which will change
human health monitoring systems forever.

Table 1 summarises the literature survey on HAR-related work performed by various
researchers. These were the pieces of work that motivated the flow of this paper. All the
research carried out in HAR always leaves a question: how to improve the model and
recognize the activities in a more fast, reliable, and accurate way. In this paper, we present
a comparative analysis between various ML and custom-built DL models and identifying
the model which gives the highest accuracy.

Table 1. Summary of the literature review of the past work related to HAR.

Author, Year Dataset Purpose Classification Techniques Accuracy Comments

Prasad et al, 2021 [12]
Self

collected

Classification of 6
different classes of

activities
Two dimensional

CNN model 89.67%

Only accelerometer is used
to collect data, accuracy can

also be improved by
other DL models.

Ronao et al, 2014 [21]
Self

collected

Classification of 6
different classes of

activities HMM-GMM classifier 91.76%

The HMM-GMM
model performed better

than ANN, DT
and NB

Krishnan et al, 2009 [23]
Self

collected

Recognition of
short duration hand

movement AdaBoost, HMM, k-NN 86%

Collecting data using large
amount of sensors can increase
accuracy but it is not feasible.

Qi et al, 2019 [24]
Self

collected

Classification of 12
different classes of

activities FR-DCNN classifier

Normal
dataset–95.27%

Compressed
dataset–94.18%

The proposed model
performed really well

with a fast speed
and good accuracy.

Ali et al, 2020 [25]
Self

collected

Classifying activities in
stationary, light

ambulatory, intense
ambulatory and
abnormal classes J48 Classifier

stationary
activities–80%

other
activities–70%

Their work can have
implementation in medical

field for monitoring
purposes but a higher

magnitude of accuracy is
required.

Hammerla et al, 2019 [26]
Opp, PAMAP2

DG

Classifying 11
Activities of daily

living
CNN,LSTM and

b-LSTM

CNN–93.7%
LSTM–76%

b-LSTM–92.7%

This works claimed that
CNN should be preffered for

long-term activities
and RNN for short-term

Maurer et al, 2006 [27]
Self

collected

Comparing the impact of
sampling rate and location

of data collecting device
on the accuracy Decision tree

Highest
accuracy–92.8%

No significant
change in accuracy
was noted above

20Hz sampling rate

He et al, 2008 [30]
Self

collected

Classification of 4
different classes of

activities SVM model 92.25%

The position of
accelerometer depends on

the type of activity
one wants to recognise.

Suwannarat et al, 2021 [33]

UCI HAR,
the Real

World 2016
and the WISDM

To create a light
weight classification

model DNN based classifier

Comparitive or
better accuracy than

baseline classifier

The model presented can
have many application

specially in smartwatches.

3. Methodology

Existing wearable technology in the market does not specifically “classify” human mo-
tion activities and does not utilize ML techniques [47–49]. They only determine if the user
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is active or inactive by using some algorithm. In this research, we present a ML/DL-based
approach for HAR to further improve classification accuracy in comparison to previous
works by using the prepared dataset from sensors commonly found in smartphones. This
is a baseline-level technology being proposed, which can be combined with several other
existing technologies to be more application specific. For example, by combining the ML-
based HAR system with other sensors like Sp02, BPM sensors, etc., the system can find a
use case in the healthcare or fitness industry.

Throughout daily lives, humans perform a wide range of activities that can be classified
automatically. However, this work identifies a few basic nine human activities, as given
in Table 2. Each class of human motion activity has been assigned a unique numerical
value from ’0’ to ’8’, these numerical values are used to classify the activities using ML and
DL models.

Table 2. Assignment of numeric values to each human motion activity class.

HAR Class Numeric Value HAR Class Numeric Value

Laying 0 Squatting 5
Stationary 1 Stairs-up 6
Walking 2 Stairs-down 7

Brisk-walking 3 Cycling 8
Running 4

3.1. Dataset

Data is like fuel to ML models; it is a key step before training an ML model. Publicly
available datasets are widely used these days for training purposes, but they are generally
too perfect or sometimes do not portray real-world conditions, hence as a result the models
trained in such datasets aren’t able to generalize to new data and give out wrong results
when deployed and tested in real-world conditions [50]. Therefore, to train a generalized
model, as well as evaluate the model objectively, we have prepared our own data set by
performing a large number of experiments for each human motion activity class, so as to
achieve good training and testing accuracy with the proposed ML and DL models. Data of
nine human motion activity classes has been collected using mobile phone sensors. The
data set prepared consists of different readings such as magnetic field, angular velocity,
orientation, and acceleration from the built-in mobile phone sensors i.e., magnetometer,
gyroscope, and accelerometer, given in Table 3, respectively in all axes (i.e., x, y and z).
These sensors’ signals were sampled at 100 Hz for the purpose of storing data and digitally
processing for each class of human motion activity. A sampling frequency of 100 Hz is
commonly used in HAR tasks as it strikes a balance between the need for high-resolution
data and the practical limitations of data storage and computation. This sampling frequency
is fast enough to capture the most important features of human motion, yet still manageable
in terms of data size and processing time. A sampling frequency of 100 Hz means that
the sensor data is collected 100 times per second, which allows for the capture of fast and
subtle movements. The time duration is To avoid class imbalances, the time durations of
each class have been taken the same, also keeping this in mind through data collection.
After the collection of data, pre-processing of the data was done where the initial segment
and final segment values of the data were removed, which contained erroneous data due to
the unsteady state of the mobile phone at the start and end of the experiment. The outliers
were observed by plotting a boxplot and removed.

Table 3. Sensors and respective parameters read.

Sensors Parameters Read

Accelerometer Acceleration, Orientation
Gyroscope Angular Velocity, Orientation

Magnetometer Magnetic Field
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The data in the raw format (data points per class) can be seen in Figure 2. The data
points per class were made equal to avoid the class imbalance problem. After the pre-
processing of data, the data was visually validated by plotting graphs of different param-
eters like magnetic field, angular velocity, orientation, and acceleration. Then the sensor
readings were merged into one matrix file containing 12 columns (features for ML), which
represent the magnetic field, angular velocity, orientation, and acceleration, in all three
directions (X, Y, and Z). In the data matrix, there are 403,500 rows, of which 500 are con-
sidered as one experiment, so we have approximately 807 sets of experiments. Finally, the
dataset was shuffled (to reduce variance and the problem of overfitting [51]) and divided
into two segments: (a) 70% of the data set for the training and (b) 30% of data set for the
testing, of ML and DL models. The training data set is used for training machine models,
while the testing data set is used for evaluation purposes. The device specifications used
for data collection and model training is given in Table 4.

Figure 2. Data points per class in raw data.

Table 4. Device Specifications.

Purpose Device Specifications

Data collection Smartphone

128 GB 6 GB RAM,
Exynos 9825 (7 nm),
Octa-core (2 × 2.73 GHz Exynos
M4 & 2 × 2.40 GHz
Cortex-A75 & 4 × 1.95 GHz Cortex-A55)

Model training Laptop
11th Gen Intel(R) Core(TM) i5-1135G7
@ 2.40 GHz 2.42 GHz,
16.0 GB RAM



Sensors 2023, 23, 1275 9 of 25

A comparison of our prepared custom dataset with 12 existing publicly available
datasets has been given in Table 5. This table contains detailed information about all
these datasets, including the number of subjects, sampling rate, sample types, sensors, and
classified activities.

Table 5. Public human activity datasets for evaluation.

Dataset Subject Sample Rate (Hz) Activity Sample Sensor Reference

OPPORTUNITY 4 32 16 191,564 A, G, M [52]

PAMAP2 9 100 18 64,173 A, G, M [53]

DSA 8 25 19 75,998 A, G, M [54]

MHEALTH 10 50 12 40,522 A, G, M [55]

HHAR 9 100–200 6 366,038 A, G [56]

Skoda 1 96 10 22,000 A [57]

Daphnet Gait 10 64 2 49,942 A [58]

UCI Smartphone 30 50 6 10,299 A, G [22]

USC-HAD 14 100 12 41,998 A, G [59]

SHO 10 50 7 20,998 A, G, M [60]

WISDM v1.1 29 20 6 91,515 A [61]

WISDM v2.0 36 20 6 248,653 A [62]

Our Custom Dataset 3 100 9 3,631,500 A, G, M -

A: Accelerometer; G: Gyroscope; M: Magnetometer.

3.2. Machine Learning for HAR

Preparation and pre-processing of the dataset were followed by the training of the
various ML models (a) Decision Tree Classifier, (b) Random Forest Classifier, (c) K Neighbors
Classifier, (d) Multinomial Logistic Regression, (e) Gaussian Naive Bayes, and (f) Support
Vector Machine. These ML models have been briefly discussed as follows.

(a) Exactly as its name suggests, a Decision Tree represents a flowchart-like structure
resembling a tree, where each internal node represents a test on an attribute, each
branch represents a decision rule, and each leaf node (also known as a terminal node)
exhibits the output. The parameters used for training the Decision Tree Classifier in
our work are as follows, min_samples_split: this value indicates how many samples
are required to split an internal node, min_samples_leaf : the minimum number of
samples that must be at a leaf node. In each branch, the split point must leave at
least min_samples_leaf training samples [63].

(b) Random Forest Classifier is a supervised ML algorithm that can be used to perform
classification as well as regression problems, It aggregates several decision trees
from various subsets of the dataset and improves predictive accuracy by taking the
average. Its advantages include less train time than other algorithms and running
efficiently on large datasets. The parameters used for training the Random Forest
Classifier in our work are as follows, n_estimators: it specifies the number of trees in
the forest, criterion: the quality of split is measured using this function, Random State:
the randomness and bootstrapping is controlled with the help of this function [63].

(c) One of the simplest machine learning algorithms is the K Nearest Neighbors (KNN)
Classifier, which uses proximity to classify or predict data points. A new case is
placed into the category with the highest similarity to the available categories based
on the similarity between the new case and the previously available cases. Since it
does not learn from the training set immediately, it is also known as a lazy learner
algorithm. Instead of learning from the dataset immediately, it stores it and later
on performs a classification algorithm on it. The parameters used for training the
KNN Classifier in our work are as follows, algorithm: the algorithm used to compute
the nearest neighbours, possible values are ‘auto’, ‘ball_tree’, ‘kd_tree’, and ‘brute’,
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n_neighbors: specifies the number of neighbors to use by default for k-neighbors
queries, Weights: function is used to make predictions, possible values are ‘uniform’,
‘distance’, and [callable] [63].

(d) Multinomial Logistic Regression is a modified version of logistic regression to in-
corporate multi-class problems as by default logistic regression performs binary
classification (i.e., 0 or 1). The parameters used for training the KNN Classifier in our
work are as follows, Dual: formulation with dual or primal components. The dual
formulation is only implemented with the liblinear solver for l2 penalties. When the
value of n_samples is greater than n_features, dual=False is preferred, Tol: stopping
criteria tolerance, C: this value is the reverse of regularization strength and must
be positive. Smaller values indicate stronger regularization, as in support vector
machines, fit_intercept: it indicates whether the decision function should include a
constant (a.k.a. bias or intercept) [63].

(e) Bayes’ theorem is applied with strong independence assumptions in Gaussian Naive
Bayes probabilistic classification algorithm. Regarding classification, independence
means that the presence of one feature value does not affect the presence of another.
The parameters used for training the Gaussian Naive Bayes Classifier in our work are
as follows, var_smoothing: for calculation stability, a portion of the largest variance
of all features is added to variances [63].

(f) Support Vector Machine (SVM) plots each data item as a point in n-dimensional space
(where n is the number of features), with each feature’s value being the coordinate
value. Once the hyperplane differentiates the two classes very well, classification is
conducted. After breaking down the multiclassification problem into multiple binary
classification problems, the same principle is applied to the multiclass classification
problem. In this technique, data points are mapped onto high-dimensional space
and mutually linearly separated into two classes by breaking the multiclass problem
into multiple binary classification problems. The parameters used for training the
SVM Classifier in our work are as follows, C: this is the regularization parameter,
must be positive, Kernel: an algorithm’s kernel type is specified here, Degree: Degree
of the polynomial kernel function (‘poly’), Gamma: it is a kernel coefficient [63].

Values of all these parameters for the ML classifier are specified in Table 6, by the
manual search method. In statistics, Pearson correlation coefficients measure linear as-
sociations between variables. The value ranges between −1 and 1, where −1 indicates a
perfect negative correlation, 1 indicates a perfect positive correlation, and zero indicates no
correlation between the two variables. Figure 3 shows the correlation matrix plotted for the
dataset, it can be used to analyze the relation between our features used to train the ML
models. The features used in our case are from Acceleration, Angular Velocity, Magnetic
Field, and Orientation along all three axes (i.e., X, Y & Z), for instance, the abbreviation
X_acc denotes the acceleration in the X direction, Z_orien denotes orientation along the
Z axis and so on. Hence, as it can be observed from the correlation matrix (Table 7), our
features are mostly distinct from each other, therefore all 12 of them have been utilized for
training purposes.

Using the six classifiers which have been discussed above, the ML models have been
trained and tested for HAR accuracy, Table 8 shows the test accuracy of these models.
The maximum accuracy which is achieved is 95% with the random forest classifier and
multinomial logistic regression has the lowest accuracy at 67%. The confusion matrix for
the maximum accuracy case using ML (random forest) is shown in Figure 4. Random forest
classifier is predicting classes 0, 1, 5 and 6 with high accuracy (for classes numbering refer
back to Table 2) and classes 3 and 8 are sometimes getting misclassified as the model is
mispredicting these classes as the motion activity in these two classes is quite similar. As a
further step towards improving the classification accuracy of human motion classes, DL
for HAR is explored in the next Section. A model is developed to improve human motion
classification accuracy.
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Table 6. Machine Learning Parameters Summary.

Classifier Name Parameter Parameter Value

Random Forest
1. n_estimators
2. criterion
3. random state

1. 100
2. gini
3. 43

Decision Tree 1. min_samples_split
2. min_samples_leaf

1. 2
2. 1

Support Vector Machine

1. C
2. Kernel
3. Degree
4. gamma

1. 1
2. rbf
3. 3
4. scale

Gaussian Naïve Bayes 1. var_smoothing 1. 10−9

K Nearest Neighbours
1. algorithm
2. n_neighbors
3. weights

1. auto
2. 10
3. uniform

Multinomial Logistic Regression

1. dual
2. tol
3. C
4. fit_intercept

1. false
2. 10−4

3. 1
4. true

Figure 3. Correlation Matrix of the dataset obtained through experiments.
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Table 7. Correlation Matrix of the dataset obtained through experiments.

X_acc Y_acc Z_acc X_angvel Y_angvel Z_angvel X_mf Y_mf Z_mf X_orien Y_orien Z_orien

X_acc 1 0.1 0.0 0.1 0.0 −0.2 0.0 0.2 −0.1 −0.2 0.1 0.4
Y_acc 0.1 1 −0.3 0.1 −0.2 −0.2 0.1 0.0 0.1 −0.1 −0.5 −0.1
Z_acc 0.0 −0.3 1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 −0.1

X_angvel 0.1 0.1 0.0 1 0.3 −0.3 0.0 0.0 0.0 0.0 0.1 0.0
Y_angvel 0.0 −0.2 0.3 0.3 1 0.0 0.0 0.0 0.0 0.0 0.0 −0.1
Z_angvel −0.2 −0.2 0.0 −0.3 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0

X_mf 0.0 0.1 0.0 0.0 0.0 0.0 1 0.6 −0.4 −0.7 −0.1 −0.1
Y_mf 0.2 0.0 0.0 0.0 0.0 0.0 0.6 1 −0.6 −0.8 −0.1 −0.3
Z_mf −0.1 0.1 0.0 0.0 0.0 0.0 −0.4 −0.6 1 0.5 −0.1 0.0

X_orien −0.2 −0.1 0.0 0.0 0.0 0.0 −0.7 −0.8 0.5 1 0.1 0.4
Y_orien 0.1 −0.5 0.1 0.1 0.0 0.0 −0.1 −0.1 −0.1 0.1 1 −0.1
Z_orien −0.4 −0.1 −0.1 0.0 −0.1 0.0 −0.1 −0.3 0.0 0.4 −0.1 1

Figure 4. Confusion Matrix for HAR using Random Forest Classifier.

Table 8. Test accuracies of various ML models.

Model Test Accuracy %

Multinomial Logistic Regression 67
Gaussian Naive Bayes 89
Decision Tree Classifier 93

Random Forest Classifier 95
K Neighbors Classifier 91

Support Vector Machine 93

3.3. Deep Learning for HAR

DL is a subset of ML, which utilizes the structure and functions of the human brain. In
DL, an artificial neural network is used to compute complex calculations and classifications
over large amounts of data. DL models are most commonly trained using the supervised
learning technique. In supervised learning, a training data set is used to train the DL model
to produce the desired outputs [64]. A classification-based supervised learning algorithm
has been used in this work. Over time, the model learns from labeled inputs and adjusts its
parameters based on the training data. In order to minimize the error, adjustment is made to
the algorithm’s loss function until it reaches the desired level of accuracy. By adding more
layers to the neural network, the accuracy value either increased or became saturated due
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to backpropagation [65]. In the backpropagation phase, the gradient and error calculations
are determined. Once the gradients have been transmitted back to the hidden layers, the
weights are adjusted. We continue determining the gradient and sending information back
until we reach the input layer. As compared to traditional ML algorithms, like—shallow
learning algorithms, it is a machine learning algorithm that reaches a performance plateau
when we add more samples and training data to the network, deep learning algorithms
like-DNNs, RNNs, LSTMs, etc, are much more scalable, and are able to solve more complex
problems [66].

Deep Neural Networks (DNNs) are usually feed-forward networks, where data flows
from input to output without going backward, and the connections between layers are
constantly going forward and never touching the same node twice [67]. Since DNNs are
forward-directed only they are stateless (have no memory), this stateless issue is addressed
by RNNs. RNNs aren’t stateless, information flows back into the previous layers of
the RNN network based on the connections between nodes that form a directed graph
along a sequence. This enables information to persist across layers because each model
depends on past events [68]. However, RNNs suffer from vanishing gradients/long-term
dependency problems, where information disappears rapidly. This problem does not exist
in Long Short-Term Memory (LSTM). LSTMs are a special breed of RNNs designed to learn
dependencies over time, which helps them predict the future by recalling past patterns and
memories [69]. Nowadays, LSTMs are widely used for Multilingual Language Processing,
Machine Translation, Language Modeling, etc.

Long Short Term Memory network, or LSTM, is a special breed of RNN designed to
learn dependencies over time, as shown in Figure 5. This network is extremely useful for a
wide range of situations, and it is now widely used in different applications. LSTMs are
specifically designed to overcome long-term dependency issues. In general, they have an
innate ability to memorize information for long periods of time. There are a number of
repeating modules in all recurrent neural networks. Standard RNNs consist of a single tanh
layer as the repeating module. These chains are also common in LSTMs, but the repeating
modules are different. Instead of a single layer, the LSTM consists of four layers of neural
networks, each layer interacting in a specific way. LSTM weights can be dynamically
modified without vanishing gradients or gradient expansion problems by modifying input,
forgetting, and output thresholds [70]. In the field of technology, LSTM has a wide range
of applications like speech recognition, picture recognition, robotics control, language
translation, document abstraction, handwriting identification, and image analysis are only
some of the applications for LSTM-based systems [71].

Figure 5. LSTM Architecture consists of 4 layers of neural network.
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Bidirectional LSTM, or bi-LSTM network is comprised of two LSTM networks. A
forward-processing input is received from one and a backward-processing input is received
from the other, as shown in Figure 6. The Bi-LSTM model extends the LSTM model based
on forwarding calculation. The LSTM model can only predict subsequent units based on
previous units, whereas the Bi-LSTM model can predict both from the front and the back.
Traditionally, Bi-LSTM, RNN structures have been divided into two types: a forward RNN
that is used for previous data, and a reverse RNN that is used for future data. Because
of its structure, Bi-LSTM can always access previous and next information. It generally
outperforms one-way LSTM in data with a heavy dependence on two-way information [72].

Figure 6. Bi-LSTM Architecture that takes input in both forward and backward directions.

3.4. Architecture of the Proposed DL Model Using Bi-LSTM Neural Network for HAR

We have made our own DL model using the Bi-LSTM network, the architecture of
Bi-LSTM can be seen in Figure 6. As shown in Figure 7, the proposed Bi-LSTM model
starts with the sequence input layer, with a value ’12’ set as the input size for the sequence
input layer (since we have total of a 12 features consisting of acceleration, angular velocity,
magnetic field, and orientation in all three directions, i.e., x, y, z). Followed by the input
sequence layer we have used the Bi-LSTM layer in which the number of hidden layers is
set to ’90’ (we get this number by analyzing the time taken, accuracy, and weights of our
model on different values of the number of hidden layers from ’10’ to ’110’ at a gap of 10).
Detailed analysis of the model on different numbers of hidden layers is given in Table 9. The
model hyperparameter (number of hidden layers) has been varied from 10 hidden layers
to 120 hidden layers and a maximum test accuracy of 98.1% has been observed for the case
when 90 hidden layers have been chosen. Additionally, the number of training and testing
elements, the training and testing time, the training and testing time per element, and the
size of the trained network were observed. It can also be analyzed that by increasing the
number of hidden layers, improvements in testing accuracy is observed until 90 hidden
layers, after which the accuracy starts to decrease, and the size of the trained network
also increases with the increase in the number of hidden layers as the network becomes
more complex.
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Figure 7. Deep Learning Model using Bi-LSTM for HAR.

In addition to the number of hidden layers, the proposed Bi-LSTM model incorporates
the following parameters [73]:

(a) Bi-LSTM can output two output modes, namely, ’sequence’ & ’last’. Sequence outputs
the entire sequence and last outputs the end of it. Since we only need the sequence’s
final step, we selected ’last’ [74].

(b) State activation function of Bi-LSTM model has two activation functions ’tanh’ & the
’softsign’ functions for updating the hidden layers. We used ’tanh’ as the weights
and bias are updated more frequently when using the ’tanh’ function due to its high
derivative [74].

(c) There are two types of gate activation functions available, namely, ’sigmoid’ and
’hard-sigmoid’. We have selected ’sigmoid’ function as ’hard-sigmoid’ performs worse
than ’sigmoid’ [74,75].

(d) Input weight initializers, initialize input weights, based on the following options,
’glorot’—create weights such that every layer’s activation variance is the same,
’he’—used in order to achieve a variance of approximately one, ’orthogonal’—used
to prevent gradients from exploding and disappearing, ’narrow-normal’—starting
with an average of ’0’ and a standard deviation of ’0.01’ input weights randomly
selected from a normal distribution, ’zeros’—weights are initialized to zeros, ’ones’—
weights are initialized to ones. We have selected ’glorot’ as our input weights
initialization function to maintain a smooth distribution for both forward and
backward propagation [74].

(e) Recurrent weights initializer serves as an initialization function for the recurrent
weights. There are the same options as in the input weights initializer that we dis-
cussed earlier. We have selected ’orthogonal’ as our recurrent weights initialization
function because the gradient descent can achieve zero training error in a linear
convergence rate for orthogonal initialization [74].

(f) Input weights learn rate factor is multiplied by the global rate of learning in order
to determine the input weights’ learning rate. To make the learning rate factor equal
to the global rate of learning, we set it to ’1’ [74].

(g) Recurrent weights learn rate factor is the learning rate factor of the recurrent weights
and multiplying it by the global rate of learning gives us the recurrent weights of
the layer. For the recurrent weights, we set the learning rate factor to ’1’ to make it
equal to the global rate of learning [74].
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(h) Input weights layer-2 factor is used to reduce the possibility of overfitting, layer-2,
it is a data link layer, regularization keeps weights and biases small. For the value 1,
the input weights of data link layer factor matches the current global data link layer
regularization factor [74].

(i) Bias learn rate factor is a non-negative scalar or 1-by-8 numerical vector that specifies
the learning rate for biases. A learning rate factor of ’1’ is applied to biases to make
them equal to the global rate of learning [74].

(j) Bias layer-2 factor is a non-negative scalar is specified as the regularization factor
for the biases based on the data link layer regularization. By multiplying this factor
to the global factor data link layer regularization determines the data link layer
regularization for biases in the layer. It’s set to zero because it doesn’t need to be
equal to global data link layer regularization factor [74].

(k) In Bias initializer, one of the following functions is used to initialize the bias, ’unit-
forget-gate’—creates the forget gate bias with ’1’, the other biases with ’0’, ’narrow-
normal’—starting with an average of ’0’ and a standard deviation of ’0.01’ input
weights randomly selected from a normal distribution, ’ones’—weights are initialized
to ones. We used ’unit-forget-gate’ to decide what information should be paid
attention to and which should be ignored [74].

All the above defined parameters of Bi-LSTM layer is summarized in Table 10.

Table 9. Detailed Parametric analysis of the proposed Bi-LSTM DL model.

No. of
Hidden
Layers

No. of
Training
elements

No. of
Testing

Elements

Total
Training

Time (sec)

Total
Testing

Time (sec)
Training Time
per Element

Testing Time
per Element

Testing
Accuracy

Size of Trained
Network (KB)

10 5084 2179 1274.9 26.26 250.77 12.05 90.5 1,143,306
20 5084 2179 366.73 24.68 72.13 11.33 95.1 1,143,364
30 5084 2179 743.61 8.38 146.26 3.85 95.7 1,143,387
40 5084 2179 432.96 24.9 85.16 11.43 96.9 1,143,465
50 5084 2179 412.32 8.61 81.1 3.95 97.06 1,143,522
60 5084 2179 408.23 8.45 80.3 3.88 97.29 1,143,557
70 5084 2179 371.23 8.42 73.02 3.86 95.96 1,143,647
80 5084 2179 336.83 9.18 66.25 4.21 96.65 1,143,758
90 5084 2179 969.36 20.24 190.67 9.29 98.1 1,143,849

100 5084 2179 376.1 8.27 73.98 3.8 97.15 1,144,000
110 5084 2179 342.52 8.07 67.37 3.7 97.4 1,144,137
120 5084 2179 417.89 9.65 82.2 4.43 97.43 1,144,315

Table 10. Bi-LSTM layer parameters for proposed DL model.

Parameters Value/Function

Output mode last
State activation function tanh
Gate activation function sigmoid
Input weights initializer glorot

Recurrent weights initializer orthogonal
Input weights learn rate factor 1

Recurrent weights learn rate factor 1
Input weights layer-2 factor 1

Bias learn rate factor 1
Bias layer-2 1

Bias initializer unit-forget-gate

To prevent neural networks from overfitting, we have a dropout layer after the Bi-
LSTM layer, in each iteration, it randomly drops neurons from the neural network. The
dropout layer in the proposed model has a probability of 0.5, because the common value is
a probability of 0.5 for retaining the output of each node in a hidden layer [76]. Followed
by the dropout layer we have a fully connected layer, as a fully connected neural network
is used to classify data after feature extraction [77]. A softmax layer is added after fully
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connected layer in our model, it is widely used for multi-class classification problems
requiring classifications on more than two labels. Lastly, we have classification layer, which
has a loss function as crossentropyex, which is used to compute the cross-entropy loss during
classification and weighted classification tasks. The architecture of the proposed Bi-LSTM
model is summarized in Figure 8.

Figure 8. Architecture of the proposed Bi-LSTM Model.

4. Performance Evaluation and Results

In the training data set, information from the accelerometer, gyroscope, and mag-
netometer was used to build a DL model and train the parameters in Bi-LSTM. Our
understanding that neural networks are efficient in solving optimization problems makes it
possible to answer the question of how errors are evaluated for sets of weights by training
them. If we are unable to predict the right output, a loss occurs based on how much
the model deviates from the actual result. It is widely accepted that mean square error
and cross-entropy are the two most widely used loss functions when neural networks are
trained. In order to improve classification models, cross-entropy loss functions (CELFs)
are generally used [78]. We also used CELF to adjust the weights of our models during
training on the last classification layer. CELF can be calculated as follows

Loss = −
OutputSize

∑
i=1

yi · logŷi (1)

In Equation (1), yi represents the ith actual value, ŷi represents the neural network’s
prediction for ith value, and OutputSize represents the number of classes [79]. Mean square
errors (MSEs) are often used in regression analysis. But they cannot be used to assess
classification problems and can be calculated by squaring the predicted values and the true
values [19].

For the purpose of assessing the performance of our model, the metrics, Accuracy,
Precision, Recall, F1 Score, confusion matrix, and loss/accuracy metrics are used [36,80–82].
The definitions of these matrices are

Accuracy: An accuracy measure is calculated by the ratio of the number of predictions made
to the number of classifications that are correctly predicted.

Accuracy =
Correct predictions

Total predictions
(2)

Precision: A sample’s precision is a measure of how many accurately identified positive
samples are in relation to the total number of positive samples. which is defined as

Precision =
Accurate positive samples

Total positive samples
(3)
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Recall: The recall of a model is a measure of how well a model finds all relevant cases within
a data set. Mathematically, recall equals to the proportion of true positive samples to the
summation of false negative samples and true positive samples.

Recall =
True positive

True positive + False negative
(4)

F1Score: The harmonic mean of precision and recall, also referred to as the balanced F score,
is a combination of the accuracy and recall indicators’ findings.

F1Score =
2 × Precision × Recall

Precision + Recall
(5)

The value of these metrics for the maximum accuracy 98.1%, is given in Table 11.
Accuracy and loss map [83]: As the neural network model is trained, the response to fluctua-
tions in accuracy and loss is measured, as shown in Figure 9. A loss and accuracy value
will be generated for each epoch. The accuracy and loss diagrams can be used to visually
represent the network model’s training. The trend can be used to detect time abnormalities
(like underfitting and overfitting) and perform real-time changes to see if the model was
trained effectively and appropriately.
Confusion matrix: When our classification model makes predictions, the confusion matrix
shows how it gets confused [82,84]. It summarizes the performance of classifiers by using a
confusion matrix, as shown in Figure 10. In data sets with more than two classes or unequal
numbers of observations in each class, classification accuracy alone could be misleading.
In order to determine what types of errors our classification model makes, we need to
calculate a confusion matrix.

Table 11. Testing parameters of the proposed Bi-LSTM model

Class Precision Recall F1 Score

0 1 1 1
1 1 1 1
2 0.90 0.96 0.93
3 0.96 0.88 0.92
3 0.99 1 0.99
5 1 1 1
6 0.99 0.99 0.99
7 0.99 0.99 0.99
8 0.78 0.99 0.99

A variety of ML models are used to evaluate HAR for the classes described in Table 2,
including Multinomial Logistic Regression (MLR), Gaussian Naive Bayes (GNB), Decision
Tree Classifier (DTC), Random Forest Classifier (RFC), K-Nearest Neighbour (KNN), and
Support Vector Machine (SVM). As a result of our experiments, RFC achieved the best
accuracy of 95%, compared to other ML models. The accuracy results of all ML models
used are summarized in Table 8 and the confusion matrix for RFC is shown in Figure 4,
illustrates the correct and incorrect predictions, as well as the accuracy for each human
motion activity class, by the RFC. To achieve better results, DL is explored and a Bi-LSTM
based model is proposed.

We conducted experiments with our proposed Bi-LSTM DL model, by varying the
number of hidden layers from 10 to 120. As shown in Table 9, best overall accuracy of
98.1% is achieved for 90 hidden layers. The confusion matrix for the proposed Bi-LSTM
model is shown in Figure 10, the values from ’0’ to ’8’ represent the human motion activities
described in Table 2. In the confusion matrix, the accuracy and errors for different human
motion activity classes are presented, it can be observed that most of the data points related
to brisk walking are categorized as walking and vice versa. It can thus be concluded that it
is difficult to differentiate between walking and brisk walking using sensor data. Therefore,
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walking and brisk walking have less accuracy than other human motion activities. Accuracy
and loss curve for the maximum accuracy case (98.1%) is shown in Figure 9.

Figure 9. Accuracy and loss curve of maximum accuracy with the proposed DL model.

Figure 10. Confusion matrix for the proposed Bi-LSTM model for the maximum accuracy case, as
seen in Table 9.

Overall, using different holdout percentages can provide a more comprehensive
understanding of a model’s performance and its ability to generalize to unseen data. This
information can be used to improve the model’s performance and to make more informed
decisions about its deployment in practical applications. Holdout is where a portion of the
data is set aside as a test set, while the remaining data is used for training. The holdout
percentage refers to the proportion of the data that is set aside as the test set. A common
approach is to use a holdout percentage of 20–30% for the test set, and the remaining data
for training.
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It is apparent from the Table 12 that different percentages of holdout result in different
accuracy results; the highest accuracy is 98.1% if we split training and testing 70–30. It is
crucial to do this analysis in order to properly evaluate the model, as the optimum split must
be determined. If the testing data is kept small, we may not be able to evaluate the model
properly. Similarly, if training data are kept less, the model will not train appropriately and
will provide incorrect results.

Table 12. Analysis for Different Train-Test (Holdout) percentages.

Train-Test (%) Observed Accuracy (%)

60–40 96.5
65–35 97.2
70–30 98.1
75–25 97.9
80–20 95.5
85–15 97.8

5. Comparative Analysis

For evaluating our proposed Bi-LSTM, a comparative analysis has been done on a
pre-processed data set released by the Wireless Sensor Data Mining (WISDM) Lab [61].
For the purpose of evaluating real-world human activity, this dataset was collected using
the actitracker system. A total of 36 subjects were equipped with accelerometer sensors
to collect data. The data set contains readings of 6 different human activities: walking,
jogging, upstairs, downstairs, sitting, standing. We have provided a complete parametric
analysis of WISDM dataset in the table 13.

Table 13. WISDM Dataset Raw-Data Statistics.

Parameters Value

Number of examples 1,098,207
Number of classes 6
Missing attribute values NONE
Walking 424,400 (38.6%)
Jogging 342,177 (31.2%)
Upstairs 122,869 (11.2%)
Downstairs 100,427 (9.1%)
Sitting 59,939 (5.5%)
Standing 48,395 (4.4%)

Our model performed quite well on WISDM dataset, after varying various hyperpa-
rameters our model was able to achieve an accuracy of 96.3%. A comparative analysis of our
model with earlier studies on WISDM dataset was performed to determine its adaptability.
The accuracy of our model against some of the latest works in the HAR domain is listed in
table 14.

Table 14. Comparative analysis of proposed model with earlier works on WISDM dataset.

Reference Algorithm Accuracy (%)

Reuda et al. [85] attrCNN-IMU 92.0
Ravi et al. [86] Deep Learning Models 92.7
Zhang et al.[87] HMVAN 93.1
Athota et al. [88] CMFA 94.98
Athota et al. [88] CGFA 84.35
Ullah et al. [89] Stacked LSTM 93.13
Ordóñez, F. J. et al. [90] LSTM 95.75
Proposed Model Bi-LSTM 96.30
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6. Conclusions

In this study, multiple Machine Learning (ML) and a Deep Learning (DL) model(s)
were utilized to classify nine different human motion activities, and a comparative study of
the proposed model on the WISDM dataset with previous works on HAR is also presented.
After experimenting with several ML models, including Random Forest Classifier (RFC),
Decision Tree Classifier (DTC), K-Nearest Neighbors (KNN), Multinomial Logistic Regres-
sion (MLR), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM), the highest
accuracy of 95% was achieved using the RFC. Furthermore, a DL model using Bidirectional
Long-Short-Term Memory (Bi-LSTM) was proposed for HAR, which performed better
than the other ML models. The proposed DL model employs a supervised deep learning
framework based on Bi-LSTM and a Bi-LSTM-based neural network was constructed to
handle sequential motion data, with a classification mechanism that is improved to identify
fine-grained motion patterns based on features extracted from the dataset. Through hyper-
parameter fine-tuning, the proposed model achieved an accuracy of 98.1%. The experiment
used mobile phone sensors to collect data and implementing a Bi-LSTM model for HAR
resulted in significant improvement in classification. Therefore, the proposed Bi-LSTM
model is found to be practical and useful based on evaluation results. Additionally, we com-
pared the time taken, accuracy, and weights of the proposed Bi-LSTM model for different
numbers of hidden layers.

In the future, we plan to investigate other machine and deep learning techniques
for accurately identifying human activities from sensory, image, and video data. Further
evaluations in different scenarios will be conducted to improve the algorithm’s reliability
and efficiency. Additionally, the proposed Bi-LSTM model, with a test accuracy of 98.1%,
can be implemented on various micro-controllers, micro-processors, FPGA boards, and
other devices for prototyping and to validate these results via hardware as part of the
development of Edge AI. After successful implementation, the cost of the product (a com-
prehensive HAR system) can be reduced by creating a custom chip for commercialization.
This HAR system has potential applications in areas such as healthcare and surveillance.
By adopting cloud-based techniques, smartphones, appliances, vehicles, computers, and
other devices can be made more efficient, faster, and safer.
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