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The global COVID-19 (coronavirus disease 2019) pandemic, which was caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has resulted in a significant loss of human life around the world. The SARS-CoV-2 has caused
significant problems to medical systems and healthcare facilities due to its unexpected global expansion. Despite all of the
efforts, developing effective treatments, diagnostic techniques, and vaccinations for this unique virus is a top priority and takes
a long time. However, the foremost step in vaccine development is to identify possible antigens for a vaccine. The traditional
method was time taking, but after the breakthrough technology of reverse vaccinology (RV) was introduced in 2000, it
drastically lowers the time needed to detect antigens ranging from 5–15 years to 1–2 years. The different RV tools work based
on machine learning (ML) and artificial intelligence (AI). Models based on AI and ML have shown promising solutions in
accelerating the discovery and optimization of new antivirals or effective vaccine candidates. In the present scenario, AI has
been extensively used for drug and vaccine research against SARS-COV-2 therapy discovery. This is more useful for the
identification of potential existing drugs with inhibitory human coronavirus by using different datasets. The AI tools and
computational approaches have led to speedy research and the development of a vaccine to fight against the coronavirus.
Therefore, this paper suggests the role of artificial intelligence in the field of clinical trials of vaccines and clinical practices
using different tools.

1. Introduction

Virus-caused infectious diseases have long been the most diffi-
cult challenge in human health. High-infectivity and high-
mortality diseases are particularly feared, and in the past, people
viewed them as a tragedy or disasters (Hilleman et al., [1]).
Humankind has been able to overcome the irrational dread of
death because of advances in recognizing the etiology of viral
diseases and knowledge of microbiology, which were followed
by the creation of numerous vaccines. Vaccination is often
regarded as one of the greatest achievements in medical history.

Immunization has saved a lot of lives, and its significance con-
tinues to expand. Despite countless efforts to develop qualified
and efficient vaccinations, there are inadequate barriers in place
to protect populations from diseases that could produce epi-
demics or pandemics (for example, the Ebola virus epidemic)
(Kilbourne, [2]; Gostin et al., [3]). As a result, scientists are
working to expand the viral infection that may be prevented
by vaccinations, as well as the population groups that will ben-
efit from vaccination in the long term. As of now, Corona-
viruses (CoVs) are responsible for the causes of serious
illnesses in humans and a variety of animal hosts, including
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respiratory, gastrointestinal, and systemic diseases. Infections
with the CoVs have been found in cattle, swine, rats, cats, mink,
dogs, bats, palm civets, horses, camels, ferrets, rabbits, snakes,
and a variety of other wild mammals and bird species (Fehr
and Perlman [4], Kahn and McIntosh, [5]). Since the very first
outbreak in 2002, the Coronaviridae virus family, which causes
pneumonia-like symptoms, has been a global danger (Khan
et al., [6]). The infections including severe acute respiratory syn-
drome (SARS) and middle eastern respiratory syndrome
(MERS), which first occurred in 2002 and 2013, respectively,
caused respiratory and gastrointestinal problems (Hilgenfeld
and Peiris, [7]). SARS-COV-2, which has been identified as
the virus that causes COVID-19, having symptoms ranging
from a common cold to serious respiratory failure, was the
source of a third coronavirus episode in 2019 (Kong et al.,
[8]). Compared to the World Health Organization’s (WHO)
declaration of a pandemic, COVID-19 has started spreading
and has affected at least 20 million people, with a mortality toll
of around 5 lakh at the time of such an assessment (World-
ometer, [9]). Due to the inadequacy of lab-based high through-
put screening (HTS), virtual screening (VS) has emerged as a
preferred tool for discovering effectivemolecules while hospitals
continue to trial and error strategies for COVID-19 drug dis-
covery (Jin et al., [10]; Kandeel and Al-Nazawi, [11]). The strat-
egy of specifically targeting biomolecule (e.g., DNA, protein,
RNA, and lipid) by using a computer program, of a cell to sup-
press its growth and/or activity is known as rational drug dis-
covery which can be recognized by VS (Shoichet, [12]; Lionta
et al., [13]). Two significant subgroups of this form of screening
are ligand-based and structure-based drug design and discovery
(Lionta et al., [13]; Yu and Mackerell, [14]; KeshavarziArshadi
et al., [15]). Computationally and experiment-based access
can determine the viral protein structures and antiviral candi-
dates can be identified quickly and at a low cost using VS
(Senior et al., [16]; Zhang et al., [17]). Furthermore, traditional
vaccine development approaches are expensive, and developing
an effective vaccine against a specific virus might take many
years. COVID-19 vaccines have been developed and manufac-
tured with much effort, and the efforts to advance vaccine clin-
ical trials have been tremendous. Coronaviruses are positively
stranded RNA viruses that have their genome packaged into
the nucleocapsid (N) protein and are surrounded by the mem-
brane (M), envelope (E), and spike (S) proteins (Li, [18]). While
many coronavirus vaccine experiments targeting various struc-
tural proteins were done, most of these efforts came to an end
soon after the SARS andMERS outbreaks. The first human trial
of the mRNA-based vaccination targeting the SARS-CoV-2’s S
protein began on March 16, 2020, as an expedient response to
the COVID-19 pandemic. S protein is the coronavirus’s most
superficial and protrusive protein, and it plays a critical function
in the entry of the virus. Because of their capacity to induce neu-
tralizing antibodies that block host cell entry and infection, the
full-length S protein and its subunit S1 (which contains the
receptor-binding domain) have frequently been employed as
vaccine antigens in the development of SARS and MERS vac-
cines. Current coronavirus vaccines, particularly S protein-
based vaccines, may, however, have challenges with producing
complete protection and potential safety concerns (Roper and
Rehm, [19]; De Wit et al., [20]).

Nonetheless, sterile immunity and full protection are
desired outcomes of a COVID-19 vaccine. Furthermore, it
is becoming increasingly obvious that diverse immune
responses, such as those elicited by cell-mediated or humoral
immunity, are more important predictors of protection than
antibody titers alone (Ong et al., [21]). One of the technol-
ogy reverse vaccinology (RV), which is aimed at uncovering
viable vaccine candidates through bioinformatics analysis of
the pathogen genome, has transformed vaccine research in
recent years.

2. Reverse Vaccinology

Reverse vaccinology (RV) was introduced in the early 1990s
as a genome-based vaccine design approach (Rappuoli, [22];
Bullock et al., [23]) and attributed to the reason that bacte-
rial culturing was no longer needed for selecting vaccine tar-
gets; the field was transformed to a more efficient status
(Soria-Guerra et al., [24]; Heinson et al., [25]; Bruno et al.,
[26]). Its goal is to use bioinformatics to analyze the patho-
gen genome to find a good vaccination candidate. RV has
been used to develop vaccines against infections like Group
B meningococcus, which resulted in the approval of the Bex-
sero vaccine (Folaranmi et al., [27]). The research and appli-
cation of vaccine-like compounds to humans date back to
prehistoric times. Hilleman et al. drew a simple diagram to
show this history (Figure 1). We are living in the present
era of vaccine development, which is more effective and pro-
ductive than any previous period in history, according to
this diagrammatic overview. This advancement has been
achieved due to generous financial support as shown in
Figure 1 (Hilleman et al., [1]).

In recent decades and for future perception, AI is the
most emerging and demanding scientifically engineered
technique. Through this, the computational understanding
of machines can be obtained by incorporating intelligent
behavior to innovate intelligent and smart machines. AI
consists of various pieces of techniques, tools, and algo-
rithms such as neural networks, symbolic AI, deep learning,
machine learning, and genetic algorithms. These tools are
growing and showing impact in different fields like military,
space, robotics, and health. AI term was given by John
McCarthy while he was at a conference on this subject in
1956 (McCarthy, [28]; Turing, [29]; Russell et al., [30]). In
recent years, the advanced featuring tool of AI is machine
learning (ML) reorganized in different fields of engineering
and science. Nowadays, it is largely adopted in our daily
lives, but the ability to find out the conceptual abstract from
the large volume of data and feature learning is the most
powerful contribution of ML as a tool of AI (Lecun et al.,
[31]; Grover and Toghi, [32]; Sun et al., [33]). The sub-
branches of AI are depicted in Figure 2.

AI is applied to medicine and has two main divisions,
which are virtual and physical; the virtual part is acted by
ML (also called deep learning), and its representation is
achieved by mathematical algorithms, as a count of its expe-
rience; it improves learning. Based on ML algorithms, there
are three divisions:
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(1) Supervised (prediction and classification algorithms
based on former examples)

(2) Unsupervised (patterns finding ability)

(3) Reinforcement learning (rewards sequences and
punishments are used to build a scheme for opera-
tion in a particular problem)

Earlier, AI has raised and is still raising the impact of its
techniques in genetics and molecular medicine discoveries
due to algorithms of machine learning and management of
knowledge. A great example of success in the development
of medicine and vaccine is determined by unsupervised
protein-protein interaction algorithms, which can lead to
remedial target discoveries (Theofilatos et al., [34]). Adap-

tive evolutionary algorithms and state-of-the-art clustering
are the two methods used in the combination and that novel
methodology is named “evolutionary enhanced Markov
clustering.” More than 5000 protein complexes are under
this permitted prediction from which at least one gene
ontology function phrase reinforced over 70% of the results.
The development of a novel computational methodology is
permitted to identify single-nucleotide polymorphisms
(SNPs) of DNA variants to predict the traits or diseases by
employing revolutionary evolutionary. This works by
embedding algorithms that are more robust and less prone
to over-fitting problems that occur when a model has too
many parameters with the number of observations
(Rapakouliaet al., [35]; Theofilatos et al., [34]). According
to the predictions, the most effective method for drug
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development is the Graph Convolution Neural Network
(GCNN) (Duvenaud et al., [36]; Kearnes et al., [37]). These
networks can retain graphs and extract properties from the
information encoded within the compound characteristics.
AI contributes to learning which can be successfully done
by GCNN for a molecule and compound’s prediction such
as property and protein interface estimation (Fout et al.,
[38]; Liu et al., [39]). Some models are sequence-based like
proteomics, transcriptomics, and genomics. They have
shown an impact in recent years because of natural language
processing (NLP) domain advancement, but more advanced
generation models are context-based models which gain the
attention from sequence-based models (Devlin et al., [40]).

Furthermore, vaccine development techniques are being
adapted to certain countries’ economic and health needs.
This tendency has a direct impact on the goods in develop-
ment as well as the quantity and types of clinical studies con-
ducted. This chapter briefly summarizes the role of AI-based
models in COVID-19 drug discovery or research and vac-
cine development (clinical trials). It is to be proposed that
a concentrated effort be made to use AI methodologies to
utilize information from preexisting data.

2.1. Coronavirus Structure. Coronavirus’s basic structure is
made up of five proteins, which are named as follows: spike
proteins (S), Membrane proteins (M), envelope glycopro-
teins (E), nucleocapsid proteins (N), and hemagglutinin
esterase (HE). Spikes are thought to have three heads (S1)
and a trimeric stalk, according to several studies (S2). S1
connects to a host cell’s particular surface receptors for viral
attachment, whereas S2 binds to the viral and host mem-
branes at the time of virus penetration. This makes it possi-
ble for the virus to infect the cells of the host (Li, [18]). The
structural proteins are M proteins that aid in the determina-
tion of a virus’s shape (Neuman et al., [41]). These are the
most common proteins in CoVs. These proteins are primar-
ily responsible for RNA packing (Tang et al., [42]). The pro-
tein E is extensively produced inside the infected cell during
the replication cycle (Venkatagopalan et al., [43]). Further-
more, E protein is involved in viral budding, assembly, and
morphogenesis (Nieto-Torres et al., [44]). Phosphoproteins
with the ability to attach to the RNA genome are known as
N proteins (de Haan and Rottier, [45]). The N protein is
required for virion assembly, replication, and CoVs tran-
scription. It aids in the budding and assembly of viruses
(Tooze et al., [46]). Certain enveloped viruses have a glyco-
protein called HE. The host cell surface receptor is a sialic
acid derivative, and HE aids in its adhesion or recognition.
It is the one who is responsible for the receptor’s demise
(de Groot, [47]; Zeng et al., [48]).

2.2. COVID-19: Molecular Mechanisms and Target Selection.
The spikes on the coronavirus bind to a receptor present on
the surface of a cell. After fusing with the cell membrane, the
virus releases its RNA genome into the cell. The cell then
produces copies of RNA as well as structural proteins
required for the assembly of new virus particles, which are
then discharged into the body. The role of the immune sys-
tem is to destroy pathogens such as bacteria and viruses that

are causing disease. Its first step is an innate immune
response that is to send a variety of weapons to fight infec-
tion. But if the pathogens are new to the body and this
response does not work to fight infection then, an adaptive
immune response comes into action. During the adaptive
immune response, specialized cells envelop the virus and
deliver antigens, which activate immune cells. The two types
of white blood cells are B cells and T cells which play a role
in adaptive immunity. Antibodies are specialized proteins
that are produced by B cells that bind to pathogens and pre-
vent them from infecting healthy cells. T cells can destroy
virus-infected cells that prevent them from replicating the
virus. Meanwhile, memory B and T cells record the antigens,
ensuring that the body responds rapidly if the coronavirus
encounters again (Waltz, [49]). B cells are important in
humoral immunity because they can secrete antibodies that
neutralize the antigen. The ElliPro web tool (http://tools
.iedb.org/ellipro/) was used to forecast both discontinuous
and linear B cell epitopes. B cell epitopes assist in the detec-
tion of viral infections in the immune system. At the 0.51
threshold, ABCpred (http://crdd.osdd.net/raghava/abcpred/)
was utilized to forecast 14-mer B cell epitopes for target
proteins (Saha and Raghava, [50]; Ponomarenko et al.,
[51]; Rafi et al., [52]). T cell epitopes are important in the
development of vaccines. It saves money and time as com-
pared to laboratory experiments. 8–11 mer MHC class-I
and 11–14 mer MHC class-II epitopes were predicted using
the IEDB consensus technique (http://tools.iedb.org/mhcii/)
(Zhang et al., [53]; Tahir ulQamar et al., [54]).
Figure 3(a) shows a schematic representation of adaptive
immunity targeting pathogens for killing.

2.3. COVID-19: Vaccines. A vaccine usually contains an
agent that looks like a disease-causing germ (microorgan-
ism) and is manufactured from weakened or destroyed
microbes, one of their surface proteins, or their toxins. The
agent induces the body’s immune system to detect the agent
as a threat as well as any microbes connected with it (Melief
et al., [55]; Bol et al., [56]). Vaccines can be used as preven-
tive or therapeutic measures (Brotherton, [57]; Frazer, [58]).
Vaccines are the most significant public health measure
against COVID-19 around the world as SARS-CoV-2 is a
highly contagious virus infecting people all over the globe
(Amanat and Krammer, [59]). Figure 3(b) shows the role
of the vaccine in preventing the spread of a virus. COVID-
19’s spread shows no signs of halting, and its fatality rate is
relatively high when compared to other viral-based infec-
tions; the development of vaccines and antiviral treatments
against SARS-CoV-2 is very critical and essential. Most vac-
cines take years to develop ranging from 5 years for Ebola
and 40 years for polio. On average, vaccines took 15 years.
The vaccine trial process consists of various steps that must
be followed quantitatively and systematically. The length of
this process is proportional to the vaccine’s purpose and
nature, which is to protect healthy people from pathogen
infection (Deb et al., [60]; Thanh Le et al., [61]). As this virus
is fatal, our societies and economies are unlikely to return to
normal until a highly effective vaccination has been given to
a large section of the world’s population.
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The hunt for a safe and effective vaccine was grown to
be a massive project involving thousands of researchers
working in laboratories pursuing different platforms for
COVID-19 vaccine all over the globe. COVID-19 vaccine
development platforms include several novel technologies.
Vaccines work by presenting antigens that cause the
immune system to respond without getting the individual
sick. Vaccines come in a variety of forms, including weak-
ened versions of the complete virus, DNA or RNA, and
specific virus fragments that drive a cell to produce a spe-
cific virus fragment. The costly and long process of vac-
cine development can be accelerated using computational
methods. However, because of the urgent necessity and
deteriorating situation worldwide, some scientists (Pfizer)
raced to develop COVID-19 vaccines. The pharmaceutical
industry incorporated artificial intelligence in several areas
of the development of vaccines and trials during the pro-
cess. The scientists need to go through each data set for
checking errors and other irregularities that occur natu-
rally while collecting millions of data points. Advanta-
geously, technology helped to reduce the effort smoothly.
As reported by Cohen in Science magazine [62], the
American company Moderna has reduced the time it takes
to develop a human-testable vaccine prototype by utilizing
bioinformatics technologies in which AI looks to play a
crucial role. Moderna was one of the first to introduce a
COVID-19 vaccination that was effective. Moderna is also
utilizing artificial intelligence to aid in the development of
mRNA sequences. Dave Johnson, an AI Officer, and Mod-
erna’s Chief Data show how robotic automation and AI
algorithms allowed them to go from manually creating
roughly 30 mRNAs per month to being able to manufac-
ture over 1,000 per month. Its use of AI to speed up
development was one of the reasons it was able to achieve

this breakthrough so swiftly (Gast, [63]). AstraZeneca, a
major contributor to the COVID-19 vaccine, is employing
artificial intelligence not only in the development of the
Covishield vaccine but also in drug discovery. AstraZeneca
was one of the first companies to use artificial intelligence
in the healthcare sector. To make the drug-making
method less expensive, safer, and faster, the company has
introduced AI into each step of the research and develop-
ment process. AstraZeneca has combined knowledge graph
and image analysis to get new insights into diseases and
detect biomarkers 30% faster than human pathologists
(Beatrice, [64]). Thermoregulated storage is required for
the entirety of COVID-19 vaccinations. Covishield from
Oxford-AstraZeneca and Covaxin from Bharat Biotech,
for example, demand a storage temperature of 2–8°C.
IoT based on sensor technology, which allows for contin-
uous real-time data monitoring, can help to ensure a reli-
able storage system. If the temperature changes, the
sensors will detect it and issue a device alert for the next
vaccination shipment (Kumar and Veer, [65]). AI was suc-
cessfully employed by Pfizer to run vaccine trials and
expedite distribution. Pfizer, on the other hand, used AI
throughout the vaccine development process to ensure that
the COVID-19 vaccine met the needs of individuals. Pfizer
began automating its research and development activities
and incorporating artificial intelligence into its working
system even before the epidemic. The company employed
artificial intelligence algorithms to help identify signals
amid millions of data points in its 44,000-person research
during the vaccine trials. AI was applied in several aspects
of vaccine development and trial during the vaccine devel-
opment process by the pharmaceutical industry. After sat-
isfying the key efficacy case counts, the data were analyzed
and made available in approximately 22 hours with the
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help of an ML tool, i.e., Smart Data Query (SDQ).
Throughout the study, the ML technique assured data
quality, requiring very little human interaction (Beatrice,
[66]). Table 1 shows the implications of AI/ML in some

of the vaccines for SARS-COV-2. Live attenuated, inacti-
vated, and inactivated with adjuvant vaccines are still
being developed using the traditional process. Recombi-
nant subunit vaccines as well as more advanced

Table 1: Implications of AI/ML in some of the COVID-19 vaccines.

S. No. Vaccines with manufacturer Use of AI/ML References

1.
AZD1222/Covishield

AstraZeneca/Oxford University

Used graphical-based knowledge and image analysis to
get new clues into illnesses and detect biomarkers 30 percent

faster than human pathologists.
ML techniques were recently used by AstraZeneca in

pathology to speed up the assessment of tissue samples.
With the use of big data analysis, AstraZeneca makes it
much easier to mine electronic health records (EHR) to

optimize clinical trial patient recognition and recruitment.
ML and AI were already being used during clinical trials for
event assessment to improve the process at various stages
with the goal of lowering total duration. ML and AI were

already being used during clinical trials for event assessment to
improve the process at various stages with the goal of

lowering total duration.
IoT based on sensor technology came into use that allows
for continuous real-time data monitoring and can help to
ensure a reliable storage system. If the temperature changes,
the sensors will detect it and issue a device alert for the

next vaccination shipment.

Weatherall, [68],
Kumar and
Veer, [65],

Sachdeva, [69]

2 mRNA-1273 Moderna

To aid in the designing of mRNA sequences,
Moderna employs AI.

They went from manually creating roughly 30 mRNAs
(a molecule essential to the vaccination) per month to

being able to generate almost 1,000 per month because of
AI algorithms and robotic automation.

Gast, [63]

3
BNT162b2/Comirnaty

BioNTech/Pfizer/Fosum Pharma

Clinical trial data of the COVID-19 vaccine was open to
being evaluated 22 hours after reaching the primary efficacy

cases counts, due to Pfizer’s new ML technology, SDQ.
Using the technology, the team was able to maintain a high
level of data value throughout the trial, with just minor

differences to fix in the latter stages.
They used AI and MI to forecast product throughput

and yield, which enables for more consistent production
and predictability in our manufacturing, which is critical given

the urgency of ramping up our vaccine production.
The company utilized ML and AI to anticipate product

temperatures and enable preventative maintenance for the
over 3,000 freezers that store our vaccine doses, and

we employ IoT and sensors to track and monitor vaccine
deliveries and temperatures with near-perfect precision.
Supercomputing was used to run molecular dynamics

simulations to determine the best mix of lipid nanoparticle
features for reducing allergic responses, resulting in a
vaccination that is both safe and effective. To manage

patient reporting more efficiently throughout clinical trials,
the business introduced an upgraded adverse event portal

with AI capabilities.

Peckham, [70]

4. BBV152/Covaxin Bharat Biotech

A storage temperature of 2–8°C is required. Hence,
IoT based on sensor technology came into use that
allows for continuous real-time data monitoring and
can help to ensure a reliable storage system. If the

temperature changes, the sensors will detect it and issue a
device alert for the next vaccination shipment.

Kumar and Veer, [65],
Sachdeva, [69]
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approaches along with DNA and RNA-based vaccines are
also being used (Thanh Le et al., [61]; Zhang et al., [17];
Lurie et al., [67]).

3. AI in Vaccine Research

Studying the proteins that make up the virus, such as the
spike protein (S), is one of the roles and functions of AI in
vaccine development. An AI system can sort through thou-
sands of components in a complicated structure to find the
ones most likely to elicit a strong immunological response.
To ensure that a vaccine remains effective over time, AI sys-
tems must identify components that are unlikely to change
or mutate. In the search for a vaccine, a crucial role has been
seen for computational analyses and machine learning algo-
rithms. These technologies are helping in assisting
researchers in better understanding the virus with its struc-
ture and predicting which of its components will elicit an
immune response, which is an important and main stage
in vaccine development. These techniques can assist
researchers in selecting the components for possibly poten-
tial vaccines and making sense of experimental data. By
merging data from numerous experimental and real-world
sources, AI allows scientists to derive insights. They also help
in tracking the virus’s genetic alteration (mutation) over
time, which will determine the value of any vaccine in the
future time (Waltz, [49]).

4. Different AI Tools

It has been documented that the National Institute of
Allergy and Infectious Diseases funded the first clinical trial
of an AI-based flu vaccine in 2019 in the United States
(Ahuja et al., [71]). Flinders University scientists created
the vaccine with the use of an AI tool called synthetic chem-
ist, which generated trillions of synthetic chemical com-
pounds. The researchers next used the Search Algorithm
for Ligands (SAM), an AI program that sifts through tril-
lions of molecules to determine which one might be a good
vaccine adjuvant candidate (Park, [71]). This method can
lessen the time it takes to develop a vaccine by several years.
Screening compounds as potential adjuvants for the SARS-
CoV-2 vaccine as well as a screening of new compounds
based on modeling of probable changes or mutations to
the novel coronavirus is easier with an AI-based approach.
As the virus is having the potential to mutate, this will aid
in the development of vaccines (Ahuja et al., [71]). It has
never before been seen in human history for such a race to
develop a vaccine against a virus. But by utilizing the power

of AI, the velocity of discovery can be greatly enhanced.
Figure 4 shows the process of discovering vaccine candidates
via the AI/ML method.

Over the last two decades, machine learning has also aided
vaccine development. Machine learning-provided ligand-
protein interaction, reaction prediction (Fooshee et al., [72]),
activity prediction (Zhavoronkov et al., [73]), and compound
property prediction (Ma et al., [74]) are the most affected
domains of vaccine and drug discovery (Chen et al., [75]).
RV is a technique for developing novel vaccines that begin
with pathogen genome sequencing. Through bioinformatics
analysis of the pathogen genome, RV tries to identify potential
vaccine candidates. By selecting epitopes and screening vac-
cine candidates in silico, RV can be used to choose an antigen
for a novel vaccine that can elicit an immunological response
and also speed up and lower the cost of the process of vaccine
development (Rappuoli et al., [22]; Mora et al., [76]; Hwang
et al., [77]).

VaxiJen was the first application of machine learning in
RV methods, and it has shown encouraging antigen predic-
tion outcomes (Doytchinova and Flower, [78]; Heinson
et al., [79]). Vaxign, the first web-based RV program (He
et al., [80]), has been used to predict vaccine candidates
against a variety of viral and bacterial infections (Xiang
and He, [81]). Vaxign’s first generation uses a filtering-
based strategy to choose vaccine antigen candidates based
on the user’s past knowledge of the pathophysiology of the
target pathogen (Ong et al., [21]). Recently, Vaxign-ML, a
machine learning approach, has been developed to enhance
prediction accuracy (Ong et al., [82]).Vaxign-ML used the
biological and physicochemical properties of protein
sequences as input variables to train five different machine
learning models. The input protein sequences were taken
from the Protegen database, which has been collecting and
annotating experimentally confirmed protective antigens
for the past ten years (Yang et al., [83]; Ong et al., [21]). In
a study, data was gathered from the Immune Epitope Data-
base (IEDB), the Virus Pathogen Resource, and the National
Center for Biotechnical Information by a team from the
University of Southern California. Over 600,000 epitomes
from 3,600 distinct species are stored in the IEDB. When
applied to SARS-CoV-2, the AI model immediately ruled
out 95% of the elements that could be COVID therapies,
highlighting the best alternatives. This AI tool predicted a
total of 26 possible potential vaccines to combat the deadly
infections. The researchers chose 11 of the 26 to use in the
development of a multiepitope vaccine that targets the viral
spike proteins that are important for replication. The sug-
gested vaccine design framework can address the three most

Screening

Resolving

Predicting

Select

Analyze and docking

Designing

Screening of
target virus

The sequence is
retrieving of antigenic

proteins
Prediction of T and

B–cells epitopes

Selection of
epitopes for vaccine

development

Structural prediction
and

molecular docking
SARS–CoV–2
vaccine design

Figure 4: Process of vaccine discovery by AI/ML method.
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commonly observed mutations and may be expanded to
include other potentially unknown mutations. Several vac-
cines have been in use now, but in case the mutation occurs
and possibly reduces the effectiveness of vaccines in use, the
AI-assisted method will be able to provide quick results to
design other preventive mechanisms. Currently, AI technol-
ogy only employs B cell and T cell epitopes to generate find-
ings. IgPred is a tool that predicts when immunoglobulin
subclass a B cell epitope is capable of. The tool was trained
using the support vector machines (SVM) method on over
14,000 epitopes and can be used to detect epitopes that
induce IgG and IgA antibodies (Gupta et al., [84]; Khairkhah
et al., [85]). NetCTLpan has been used in multiple SARS-
CoV-2 vaccine development studies, and it provides end-
to-end cytotoxic T cell epitope predictions (Mishra, [86];
Ayyagari et al., [87]). AI technology can create a stronger
and faster vaccine if given more datasets and viable combi-
nations. This approach is thought to be capable of accurately
predicting over 700,000 distinct proteins (Komarraju, [88]).
It is critical to forecast the peptides that bind multiple
human leukocyte antigen (HLA) molecules to build and
develop an effective vaccine for a large population (Brusic
et al., [89]). MHC-I and MHC-II proteins encoded by the
HLA gene present epitopes as antigenic determinants.
Recursive feature elimination (RFE), SVM, and random for-
est (RF) are examples of machine learning algorithms that
have been used to identify antigens from protein sequences
(Bowick et al., [90]; Rahman et al., [91]). Detecting the pres-
ence of antigenic peptides presented by MHC-II is one of the
most straightforward applications of ML and other AI-based
technologies in vaccine development. The examples which
can predict antigen presentation are MoDec and MARIA
(major histocompatibility complex analysis with recurrent
integrated architecture). To better understand natural
immunity, various AI-related technologies have been
employed to examine SARS-CoV-2 viral peptide presenta-
tion on MHC molecules from patients. Thus, it could aid
either directly or indirectly in the discovery of COVID-19’s
unique immune response and the development of a success-
ful vaccine. MARIA improves HLA-II prediction by inte-
grating better training data with a novel supervised
machine learning model that uses a multimodal recurrent
neural network. (RNN). A similar technique to the convolu-
tional neural network (CNN) is a motif deconvolution tech-
nique known as MoDec. It has been used to find out peptide
cleavage and MHC-II binding motifs from MS-based pepti-
dome datasets that compromises HLA-DP, HLA-DQ, and
HLA-DR alleles. To detect B cell and T cell epitopes of
SARS-CoV-2, Fast et al. [92] used two artificial neural net-
work techniques known as MARIA and NetMHCPan4.
The technique discovered 405 T cell epitopes with high
MHC-I and MHC-II presentation scores, as well as two
putative neutralizing B cell epitopes on the S protein. This
discovery will aid in the development of effective COVID-
19 vaccines and neutralizing antibodies (Racle et al., [93];
Chen et al., [94]; Moore et al., [95]; Arora et al., [96]). A
recent study has used a combination of computational tech-
niques and immunoinformatics, thus identifying antigenic
epitopes in the structural proteins of SARS-CoV-2 (S, E,

M) and suggested a plausible multiepitope-based subunit
vaccine (MESV). MESV has sufficient structural and physi-
cochemical characteristics to activate all components of the
host immune system. It also seems to have a very stable
interaction with the innate immune receptor toll-like recep-
tor-3, making it more likely to enter the host immune sys-
tem. By the use of computational tools, this study could
help researchers save time and money when studying exper-
imental epitope targets (Tahir ulQamar et al., [54]). The
development of AI algorithms for determining whether a
peptide binds numerous HLA molecules is extremely impor-
tant in making the design of vaccines more time-efficient.
The proposed systems include systems based on hidden
Markov models (HMMs), artificial neural networks (ANNs)
(Brusic et al., [97]), and SVMs (Bozic et al., [98]). SVM has
been used to predict antigens in an RV problem (Heinson
et al., [79]). For both MHC-I AND MHC-II binding pep-
tides, RANKPEP provides a position-specific score matrix
(Reche et al., [99]). MHCnuggets is a neural network model
based on MHC binders that have been trained on common
and rare alleles (Shao et al., [100]). Lopez-Rincon et al.
[101] proposed a CNN to classify 553 genome sequences
with promising accuracy results for analyzing COVID-19
gene sequences. By giving a wide range of T cell epitopes,
Monte Carlo-based simulation has been applied to forecast
blueprinting for SARS-CoV-2 vaccines (Malone et al.,
[102]). It has been documented that the neural network
method, NetMHC, predicts which peptides will bind and
hence identify epitopes for the SARS-CoV-2 vaccine (Pra-
char et al., [103]). The application of AI in the research of
vaccines and COVID-19 treatment is gaining a lot of atten-
tion due to international projects such as CoronaDB-AI, a
data collection with genomic features that can be used to
train AI models for COVID-19 treatments (KeshavarziAr-
shadi et al., [104]; Liu et al., [105]). Figure 5 shows AI-
based vaccine development for COVID-19. Recent studies
have used hidden Markov models, Monte Carlo-based sim-
ulation, and neural network approaches to predict epitopes,
the portion of an antigen that might stimulate an immune
response, as a potential target in the development of a vac-
cine (Crooke et al., [106]; Prachar et al., [103]; Malone
et al., [102]). A deep learning approach (DeepVacPred) has
been used for predicting and designing a multiepitope vac-
cine that could predict 26 different SARS-CoV-2-spike-pro-
tein sequence vaccine components (Yang et al., [83]). Deep
convolutional neural networks have proven to be a more
reliable alternative for predicting MHC and peptide binding
(Han and Kim, [107]). Deep learning autoencoders have
shown promise in extracting features of human Leukocyte
Antigen (HLA-A), which could be used in the development
of a vaccine (Miyake et al., [108]). The network of long
short-term memory has also shown some encouraging
results. This type of RNN was used to predict epitopes for
spikes (Abbasi et al., [109]). Malone et al. [102] used a sim-
ilar strategy, employing deep learning RNN and simulated
spike sequences to discover potential vaccination targets.
RNN gave sequences for a protein of interest with a high
degree of sequence identity. Malone et al. [102] used
BepiPred, IEDB, and NEC Immune Profiler tools to create
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an epitope map for different HLA alleles and studied the
complete SARS-CoV-2 proteome beyond spike, to give a
comprehensive vaccine design blueprint for SARS-CoV-2.
For the development of a vaccine for COVID-19, NLPmodels,
notably language modeling techniques, have made a great
impact. Pretrained transformers were utilized in carbohydrate
chemistry to predict protein interaction (Nambiar et al., [110])
and model molecular processes (Abbasi et al., [109]), which
can be applied in the vaccine development process. The trans-
formers were employed to repurpose commercially available
medications by anticipating their interactions with SARS-
CoV-2 viral proteins (Beck et al., [111]). Researchers at the
University of Basel in Switzerland utilized a protein-

modeling tool called the Swiss Model to anticipate the archi-
tectures of proteins on the outer surface of the SARS-CoV-2
virus when the pandemic struck. DeepMind, a London-
based AI firm, used its AlphaFold neural network to predict
the three-dimensional form of SARS-CoV-2 proteins based
on the virus’s genomic code (Waltz, [49]). Their predictions
turned out to be accurate when compared to the virus’s actual
protein structures. Table 2 shows some of the common tools
for the prediction of epitopes and their evaluated accuracy or
reported accuracy, if available.

Therefore, the AI-powered technology offered a ray of
hope by assisting scientists and medical health providers in
dealing with this deadly disease. To summarize the role of

Table 2: Some tools for the prediction of epitopes.

Technique Method References

RANKPEP
Prediction of MHC binding peptides,

for MHC-I accuracy, is 80% and MHC-II is 0.96 AUC
He et al., [112]; Yazdani et al., [113]

MHCnuggets
A neural network (LSTM) model based on MHC
binders that have been trained on common and

rare alleles and self-reported accuracy of 0.924 AUC
Campbell et al., [114]

NetCTLpan1.1
Prediction tool for MHC-I epitopes and
self-reported accuracy of 0.976 AUC

Ayyagari et al., [87]; Mishra et al., [86];
Safavi et al., [115]

BepiPred (2.0)
RF-based and ML-based models trained on epitopes

and self-reported accuracy of 0.62 AUC
Rahman et al., [116]; Ayyagari et al., [87];
He et al., [112]; Khairkhah et al., [85]

DeepVacPred Prediction and designing of a multi-epitope vaccine Yang et al., [83]

IgPred
SVM-based B cell epitope prediction tool can be used to

remove candidates with a high resemblance to IgE epitopes
Gupta et al., [84]

Host cell
Viral entry

+5' AAA-3'Translation

ACE2 receptor

RBD TMPRSS2

B–cell

T–cell

Macrophages

Targets like S–Protein ACE2ProteaseRdRPTMPRSS2

Database like Zinc database FDA approved drugs Corona database–artificial intelligence

Recurrent neural network (RNN)

Feature recognition

Docking Epitopes of B–cellEpitopes of T–cell

Vaccine

B-cell T-cell
recognizing viral

Virtual Screening with DL Models

Figure 5: AI-based vaccine development for COVID-19.
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AI in research, AI helps in gathering and synthesizing the
information, determining the cause of the disease, and
selecting and developing potential drug/vaccine candidates.
Furthermore, after the selection of a potential candidate,
AI helps in clinical trials of the vaccine.

5. AI in Clinical Trials of the Vaccine

The most time-consuming aspect of vaccine research and
development is the testing of a vaccine. To acquire a better
knowledge of the disease and for the research of a potential
vaccine candidate and accelerate its speed, computational
approaches and AI techniques have been developed as
shown in Figure 6. Several applications of AI help in the
rapid classification of novel viruses by detecting their intrin-
sic genomic structures and can be used to recognize similar-
ities with other pathogens (Randhawa et al., [117]). Only one
out of ten molecules get approved for entering into the clin-
ical trials, which is a huge loss for the industry (Hay et al.,
[118]). The reason for these failures can be caused by a lack
of technical needs or infrastructure and poor patient selec-
tion. However, with a large amount of digital medical data
available, AI can help in reducing these failures (Harrer
et al., [119]). Moreover, different AI algorithms help in iden-
tifying the potential candidate for clinical trials of the vac-
cine in an efficient time after the screening of several
candidates. Some researchers applied SDQ for reviewing
the data of clinical trials in less than 24 hours for the same

type of evaluation instead of more than 30 days. The rapid
data access was accompanied by exceptional levels of good
data quality resulting in a dependable outcome. As a result,
the time between molecules to market was reduced from
ten years to one year (Kulkarni et al., [120]). After the
research for a novel vaccine candidate, it has to undergo a
development process. The process is divided into preclinical
and clinical trials by regulatory bodies all around the world
(Singh and Mehta, [121]). The World Health Organization
(WHO), the US Food and Drug Administration (USFDA),
and the European Medicines Agency (EMA) have issued
guidelines to plan the clinical development path of a poten-
tial vaccine candidate. Each vaccine develops in its way,
based on the factors including the type of vaccine (peptide/
DNA/RNA/inactivated/live), target population, and disease
epidemiology. A vaccine candidate normally undergoes
three phases of human development known as clinical trials,
which are Phase I, Phase II, and Phase III trials before regu-
latory approval. To monitor the safety and efficacy in the
population Phase IV trial is used after the completion of
Phase III trials (Farrington and Miller, [122]; WHO techni-
cal report, [123]; Hudgens et al., [124]; Collins, [125]).

5.1. Different Phases during Clinical Trials of Vaccine

5.1.1. Phase I (20-80 Subjects). The phase I trial involves
healthy subjects. It consists of the administration of the vac-
cine to subjects. The aim of this trial is the detection of safety

Prospects and challenges in vaccine design with computer methods as a tool of artificial intelligence

In vitro & pre–clinical
Viral genome modelling
Prediction of dose and
treatment regimen
Appurtenant design

Phase I & Phase II
Prediction of efficacy

Phase III
Prediction of efficacy

Licensing & post–licensing
Observing efficacy
Multi–omics vaccinology
Modeling of vaccine
–induced amplification

Invitro Pre–clinical Phase I Phase II Phase III Approval

Development
of vaccine

with artificial
intelligence

Traditional
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development
of vaccine

Time frame
(Years)

0 1 5 10

Prediction
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Figure 6: Benefits of employing computational methodologies in vaccine development. The bottom box outlines the points of view and
issues raised at each stage of the proposed computational design tools. Processes connected with reverse vaccinology are shown in orange
boxes at the bottom.
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and collection of an immune response. The immunization
schedule, model of vaccine administered, and dose are often
evaluated (Who technical report, [123]; Hudgens et al.,
[124]; EMEA, 2005).

5.1.2. Phase II (100-300 Subjects). After reaching a successful
outcome in the phase I trial in terms of both immunogeni-
city and safety, a vaccine candidate should proceed to phase
II clinical evaluation. The goal is to provide more informa-
tion on safety, immunogenicity, and data on the optimal
dose, vaccine preparation, and schedule of the vaccine to
be taken up for the phase III confirmatory trial (Artaud
et al., [126]).

5.1.3. Phase III (Large-Scale Population, 300-3000 Subjects).
The effect of a final formulation is assessed in the phase III
trial and is very important for the registration and approval
of a vaccine to market. Safety and efficacy are the main goals
of these trials. If the vaccine’s efficacy and safety are demon-
strated in the phase III trial, the manufacturer of the vaccine
can submit an application to the national regulatory author-
ity for a license and commercialize the product (Singh and
Mehta, [121]).

5.1.4. Phase IV (Several Thousand People). It is also known
as postmarketing surveillance studies (PMS). This trial is
used to continue to monitor the vaccine for safety and effec-
tiveness in the population. It is carried out after the success-
ful completion of phase III trials and following licensure of
the product (Singh and Mehta, [121]).

The various vaccine candidates are classified according
to the technology used for the vaccine development. The list
of a few vaccines with their characteristics, manufacturer
name, phase 3 trial data, and efficacy data are presented in
Table 3 (Kyriakidis et al., [127]).

The majority of the work turns to testing once a vaccine
candidate has been designed and developed. Vaccines are
initially evaluated in the lab on cells and animals known as
preclinical trials, then on human beings known as clinical
trials. Unfortunately, AI tools cannot take the place of those
time-consuming procedures. However, by applying patient-
specific genome-exposome profile analysis, AI can help
choose only a certain diseased population for engagement
in Phase II and III clinical trials, allowing for early prediction
of the viable therapeutic targets in the chosen patients (Mak
and Pichika, [128]; Harrer et al., [119]). Predicting lead com-
pounds and preclinical discovery of molecules before the
start of clinical trials using AI tools such as predictive ML
aid in the early prediction of lead molecules that will pass
clinical trials with a selected population of the patient (Har-
rer et al., [119]). AiCure helps in monitoring the regular
medication intake by patients with schizophrenia in phase
II trials, resulting in a 25% increase in patient adherence
and ensuring the clinical trial’s success (Mak and Pichika,
[128]). NLP can help in extracting and analyzing important
data from patients’ EHR records, can compare it to eligibility
criteria for ongoing trials, and suggests matching studies. AI
tools might be able to forecast which antigens the immune
system will encounter, but what the immune system will

do in a live human is beyond today’s computer capabilities.
Because the human body is so complex, AI tools cannot pre-
dict what the vaccine candidate will do for the body with
reliable data. However, there was no evidence found that
clinical trials were conducted using computational supervi-
sion. Although AI cannot anticipate the outcome of clinical
trials, it can make sense of the mountains of data generated
by these trials by analyzing all the factors and identifying
patterns that a human brain might miss. As thousands of
patients will be engaged as the vaccine candidate progress
to the second and third phases of clinical testing, AI tools
or systems will be very much critical in quickly assessing
clinical and immunological data (Waltz, [49]; Piccialli
et al., [129]). To summarize the role of AI in clinical devel-
opment, it helps in trial planning, optimizing the recruit-
ment process, risk monitoring, toxicity prediction, and also
monitoring of drug adherence.

6. Conclusion

This paper summarized the application of AI/ML in the field
of research and development of the SARS-COV-2 vaccines.
AI has been shown as an emerging and promising technol-
ogy for detecting early coronavirus infection and monitoring
the state of affected individuals. AI techniques including ML
and DL have shown to be beneficial to aid in the study of the
virus by examining the data available and assisting in the
development of proper treatment regimens as well as in
the development of a novel vaccine candidate. The AI algo-
rithms have become more important for advanced analysis
and translation of basic discoveries into novel vaccine candi-
dates due to the large accessible amount of data. However,
AI approaches cannot replace the time taking tasks such as
laboratory experimentations and clinical trials, but they
can aid in the planning of a trial, monitoring, and predic-
tions of deleterious and risk factors. This paper suggested
the various computational tools and techniques developed
based on AI and ML which can anticipate complicated
immune system activities, such as B cell and T cell epitope
prediction. With the help of computer-based tools and algo-
rithms, it considerably improves decision-making, and treat-
ment uniformity, and resulted in the speedup in vaccine
development and research to fight against the SARS-COV-
2 virus.
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