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ABSTRACT So far, the handoff management involved in the wireless local area network (WLAN) has

mainly fallen into the handoff mechanism and the decision algorithm. The traditional handoff mechanism

generates noticeable delays during the handoff process, resulting in discontinuity of service, which is more

evident in dense WLANs. Inspired by software-defined networking (SDN), prior works put forward many

seamless handoff mechanisms to ensure service continuity. With respect to the handoff decision algorithm,

when to trigger handoff and which access point to reconnect to, however, are still tricky problems. In this

paper, we first design a self-learning architecture applicable to the SDN-based WLAN frameworks. Along

with it, we propose DCRQN, a novel handoff management scheme based on deep reinforcement learning,

specifically deepQ-network. The proposed scheme enables the network to learn from actual users’ behaviors

and network status from scratch, adapting its learning in time-varying dense WLANs. Due to the temporal

correlation property, the handoff decision is modeled as the Markov decision process (MDP). In the modeled

MDP, the proposed scheme depends on the real-time network statistics at the time of decisions. Moreover,

the convolutional neural network and the recurrent neural network are leveraged to extract fine-grained

discriminative features. The numerical results through simulation demonstrate that DCRQN can effectively

improve the data rate during the handoff process, outperforming the traditional handoff scheme.

INDEX TERMS Deep reinforcement learning, handoff, SDN, WLAN.

I. INTRODUCTION

IEEE 802.11 based Wireless Local Area Network (WLAN)

has gained popularity due to its simplicity of deployment

and broadband connectivity [1]–[3]. With the proliferat-

ing demands for wireless access, more and more access

points (APs) are deployed in a specific scenario, which may

lead to a dense WLAN [4]. It is inevitable for the mobile

stations (STAs) to traverse diverse basic service set (BSS)

areas covered by APs. Due to the limited coverage of AP,

the STAs will be subject to frequent handoffs [5].

The handoff process refers to the mechanism of mes-

sages exchanged by APs and STA, resulting in a transfer

of physical layer connectivity from one AP to another [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tallha Akram.

The traditional WLAN handoff scheme generally takes the

received signal strength (RSS) as the criterion. To be specific,

the process can be divided into three logic steps: 1) Handoff

initiation: it is based on real-time and reliable detection of

RSS, e.g., the handoff will be triggered when the RSS falls

below a pre-configured threshold. 2) Discovery process: the

STA performs channel scanning for target APs by listening to

the beacon messages or dwelling on each channel for a while

to wait for probe response. 3) Re-authentication: it involves

an authentication and a re-association to the target AP. The

wireless link is finally transferred from the previous AP to

the target one [7]. During the handoff process, no data frame

can be transmitted, and the interruption is called handoff

delay [8]. In the initial design of the IEEE 802.11 protocol,

the primary is to provide broadband wireless access for users

through a single AP. The 802.11 standard lets STAs make AP
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associations on the basis of locally made decisions. However,

there are no mechanisms for ensuring the seamless hand-

off. Typically the handoff delay in WLAN is approximately

300 ms or more [6]. The real-time services represented by

Voice over Internet Protocol (VoIP) are so demanding on the

instantaneity of transmission that the handoff delay inWLAN

will seriously degrade the user experience (UE).

Recently, software-defined networking (SDN), which

allows administrators to manage network services through

the abstraction of lower level functionality, has been widely

used in the field of wireless communication [9]. SDN offers

innovation by providing centralized view of entire network

where intelligence is shifted towards SDN controller. The

controller interacts with data forwarding nodes (switches)

to simplify the network management. It operates on Open-

Flow protocol [10] and deploys forwarding rules into pro-

grammable switches in order to alter network behavior in

real-time [11]. In SDN-based WLAN, a logically centralized

controller is employed to manage and configure the network

by programming network applications. The SDN controller

has two interfaces: southbound and northbound. The south-

bound interface is standardized [12] and it controls data plane

in the network. The northbound interface is determined for

services in the form of applications on the top of the SDN

controller. These applications are independent from infras-

tructure and network devices. The controller has a global

view of the network so that the real-time network status

and statistics can be detected through southbound interface.

From the perspective of the network administrators, vari-

ous STAs connected to the same physical AP are regarded

as a set of logically isolated STAs which are connected to

diverse ports of a switch [9]. Mobile STAs, therefore, are

enabled to handoff seamlessly by tracking the location of

users and migrating the virtual APs accordingly [13]. Due to

the changes in channel conditions, along with the dynamics

of each new connection or disconnection, the system state of

WLAN evolves over time. The seamless handoff mechanism

ensures the continuity of service, but the AP connected pre-

viously might not provide the best service at the next instant

during data delivery. Therefore, with respect to the handoff

decision algorithm, when to trigger handoff and which AP to

reconnect to are still tricky problems.

With the RSS in MAC (Media Access Control) layer as

a case, it is widely adopted for handoff decision-making in

commodity 802.11 devices [14]. In the handoff initiation,

the parameters (e.g., the pre-configured thresholds) rely heav-

ily on specific network scenarios, without universality or

adaptability. In various WLAN scenarios, it is generally true

that one handoff scheme exhibits diverse performance. The

personnel responsible for network planning and deployment

have to set corresponding parameters manually according

to the realistic environment. However, the parameters set

in a previous scenario fail to apply to new one, leading

to the extra rounds of network testing and configuration,

which enormously augments the deployment workloads [15].

On other hand, it is hard to accurately characterize the STA’s

state by taking into account merely two or less indicators.

For SDN-based WLAN, there is no channel scanning in

discovery process. The generality of decision logic, however,

becomes an obstacle to inferring the AP status, e.g., RSS

or its variants based scheme could not reflect the reliability

of wireless link due to the lack of the interference expres-

sion. Mobile STAs which are programmed to access to the

network with the largest RSS may drain the single AP’s

bandwidth [16], [17]. In addition, the network, by itself, may

be subject to changes, e.g., a certain AP fails to work prop-

erly or new APs are deployed to enhance coverage areas.

Therefore, in SDN-based WLANs with dynamic variability,

traditional handoff scheme cannot adjust parameters or deci-

sion logic adaptively, which puts forward challenges to oper-

ate the handoff management effectively [18]. The wireless

link is often inferior in quality during the handoff process.

Unreasonable decision-making may give rise to a low data

rate, which will also degrade the UE to a certain extent [19].

In brief, the fundamental problem with such an oversimpli-

fied strategy lies in its inability to ensure the effectiveness

and reliability of handoff, which may even lead to handoff

failure [20]. In this context, it is of paramount importance

to optimize the handoff algorithm with the goal of data rate

maximization.

A. MOTIVATIONS

Reinforcement learning (RL) puts forward a promising solu-

tion to the aforementioned problems. By enabling an agent

to learn in interaction with the environment, an optimal

policy capable of maximizing the long-term accumulated

returns is eventually obtained [21]. RL based handoff scheme

has obvious superiorities in terms of generality to vari-

ous WLAN scenarios and adaptability to network transfor-

mations. This significant performance gain comes at the

cost of the self-regulated learning individual going through

a learning phase to obtain the decision policy. RL also

embodies the properties of on-line learning [22]. In the case

of network deployment changes, previously learned pol-

icy is no longer the optimal one. The accumulated returns

will be potentially declined. On-line learning can definitely

perceive this declination and the optimal policy will be

refreshed through another round of training. Q-learning,

a branch of RL, has been applied to the field of wireless

communication to deal with the problems related to pol-

icy optimization [17], [23], [24]. However, Q-learning is in

demand for a two-dimensional Q-table to store all affirma-

tory states and the Q-values of actions for each state in the

environment [25]. It is worth noting thatQ-learning is unable

to make appropriate decisions on state beyond the Q-table.

As for the WLAN handoff management, due to the immense

state space caused by the mobile STA, it is impractical to

store the Q-values of all the state-action pairs by means of

Q-table. Even though the hardware could satisfy the stor-

age constraints for states, querying for state in such a large

Q-table is quite time-consuming. Therefore, it is challenging

to apply Q-learning to the WLAN handoff scheme directly.
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With the rapid development of artificial intelligence,

machine learning represented by deep learning has made

great breakthroughs in recent years. Deep learning could

explore the distributed features of data by combining

low-level features into more abstract high-level represen-

tations (e.g., attributes, categories or states) [26]. In 2015,

Volodymyr Mnih et al. [27] from Google’s DeepMind team

combined deep learning with RL and put forward the con-

cept of Deep Q-Network (DQN). By integrating both the

extraction of deep learning and decision making of Q-

learning, DQN is able to output control signals directly for

high-dimensional environments. Benefits promised by DQN

have addressed the problems including the state representa-

tion, the feature extraction along with the mapping of state

to action. By establishing neural networks to estimate the

Q-value function, the limitations of Q-learning can be elim-

inated eventually [27]. Since then, DQN has been widely

used in various fields [28], [29]. Naparstek and Cohen [30]

applied deep RL (DRL) theory to deal with the problems of

accessing to distributed dynamic spectrum in multi-channel

wireless networks with the goal of maximizing network util-

ity and finally achieved desired effects.We focus on this state-

of-the-art paradigm to incorporate learning for the handoff

decision-making in WLAN. Moreover, the motion of STAs

leads to obvious fluctuation in RSS during propagation. Note

that there are significant correlations between the consecutive

wireless signals for some time. Motivated by above intrinsic

properties, we turn to convolutional neural network (CNN)

and recurrent neural network (RNN) to extract the spatial and

temporal features of wireless signals, thereby inferring the

mobile velocity, moving direction or relative location of the

STA [31].

B. CONTRIBUTIONS

In the paper, we propose DCRQN, a DQN-based handoff

management scheme for dense WLANs. Due to the temporal

correlation property, the handoff decision-making is modeled

as the Markov Decision Process (MDP).In modeled MDP,

the handoff scheme depends on the real-time STA’s state

at time of decisions. Focusing on improving the data rate

during handoff process, DCRQN aims at learning the opti-

mal handoff decision algorithm to ensure UE. The principal

contributions of the paper are as follows:
• A self-learning architecture which is applicable to the

SDN-based WLAN frameworks is designed. DCRQN

working as a novel management scheme enables the net-

work to learn from actual users’ behaviors and network

status from the scratch, setting the network free from

parameter configurations.

• The uplink signal-to-interference-plus-noise ratio

(SINR) is leveraged to characterize the STA’s state.

DCRQN extracts the spatial and temporal features of

wireless signals by means of CNN and RNN, which

can well express the location and movement informa-

tion of STA. With generality and adaptability, DCRQN

can effectively improve the data rate during handoff

process, outperforming the traditional scheme. In addi-

tion, the proposed scheme is software-based so that

our work presented can be extended to various network

scenarios.

C. PAPER ORGANIZATION

The remainder of the paper is organized as follows. Section II

gives the related work. Section III provides the system model

for dense WLANs, and section IV provides the technical

description of the proposed scheme. Section V presents the

experimental investigation and sectionVI gives the cost effec-

tiveness. Concluding remarks are introduced in section VII.

II. RELATED WORK

So far, much literature has focused on the research of the

handoff management in WLAN, including the handoff deci-

sion algorithm and mechanism. As for the former, a cross-

layer approach has been presented in [2], enabling transport

layer to perceive the wireless link so as to avoid perfor-

mance degradation. The probe-wait time which makes up

the probe phase is discussed in [6] to help reduce handoff

delay. Shin et al. [32] adopt neighbor graphs and non-overlap

graphs to reduce entire probe time spent dwelling on chan-

nels. Also, a feasible fast handoff scheme is proposed in [33]

to reduce the handoff delay, which adopts a novel zero-

channel-dwell-time architecture when probing each channel

without dwelling to wait for probe response. The manners

in [2], [6], [32], and [33] can lower the delay involved with

handoffs by STAs but cannot work around it. Besides, they

are all decentralized which are not conducive to the con-

centrated management and to make full use of network

resources. As for handoff mechanism, several SDN state

of the art solutions improve user mobility. The work pre-

sented in [9] abstracts the connections between the STAs

and APs by means of software APs, which are migrated

between physical APs to realize seamless handoff. However,

its protocol restricts APs from working on the same channel,

considering no carrier-sense multiple access with collision

avoidance mechanism (CSMA/CA) [34], which constitutes

a severe limitation for its use in real deployments. In [12]

and [35], seamless handoffs between APs in different chan-

nels are realized, maintaining the Quality of Service of

real-time services. The potential scalability issues associated

to the beacon generation and channel assignment have been

addressed. However, both solutions are suffering from similar

drawbacks usage of separated control channels for manage-

ment. Reference [36] bridges virtual and physical APs in

order to achieve clean and transparent architecture of SDN

network, resulting in the incorporation of control channels for

wired portion of the network to one control channel. But the

handoff decision algorithm still leaves much to be optimized.

By combining SDN, Zhang et al. [8] propose a pre-scan based

fast handoff algorithm for the SDN-based WLAN system,

where the STA performs the authentication and re-association

process towards the alternative AP directly. Zhang et al. [37]

exploit the scan based on information of neighboring APs,
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RSS, and variable bitrate video coding to reduce handoff

delay. The schemes in [8] and [37] have a centralized view

of the network but they also introduce handoff delay and

bring in hidden costs. Therefore, in this paper, we propose

DCRQN to optimize the handoff decision algorithm using

SDN to address aforementioned shortcomings.

III. SYSTEM MODEL

Analysis in the paper considers a SDN-based WLAN that

consists of M APs and N STAs, in which mobile STAs

access to network with specific logic. The STAs could gen-

erate uplink traffic continuously and each is only permitted

to connect to one AP simultaneously. The downlink traffic

transmitted by APs can be neglected, i.e., the paper focuses

on the handoff scheme under the condition of saturated uplink

traffic. APs are in different channels to reduce the scalability

issues caused by the beacon generation for each STA. The

CSA (Channel Switch Announcement) element in the AP

beacon of 802.11 standard is carried out (as done in [38]) to

move the STAs associated to an AP with a specific channel,

without any change on the client side. Refer to the SDN

framework in [35], an extra interface can be established for

each AP to monitor traffic in other channels, without inter-

rupting the normal operation of APs. According to the work-

ing channel of STA’s serving AP, the SDN controller makes

all APs switch their auxiliary interfaces to the channel and

continuously listen to packets originated by the STA. In this

case, the proposed scheme runs on SDN controller in the form

of application, depending on the real-time network status

(e.g., STA’s state) perceived through southbound interface at

time of decisions.

In this paper, the Log-distance Path Loss Model is lever-

aged to serve as the channel transmission model. The uplink

RSS detected on APj at the distance d ij from STAi can be

assigned by:

Pdij = Ptx + Gt + Gr − 20 log10(4π fdref
√
L/c)

−10δ log10(dij/dref ). (1)

where Ptx represents the transmitting power of STAs,

Gt and Gr are the transmitting and receiving antenna gain

respectively. f denotes the frequency band, d ref is the ref-

erence distance to calculate the loss. L is the system loss,

c corresponds to the light velocity and δ represents the path

loss factor. In this case, the uplink SINR from STAi to APj is:

SINRij =
Pdij

Ir + σ 2
. (2)

where Ir =
∑

k∈N ,k 6=i
Pdij (1 ≤ k ≤ N , 1 ≤ j ≤ M )

indicates the cumulative interference caused by other STAs,

and σ 2 is additive white Gaussian noise. In wireless networks,

SINR gives theoretical upper bounds on channel capacity or

the rate of information transfer in wireless networks, which

can measure the quality of wireless connections. Therefore,

we take the uplink SINR on each AP to jointly characterize

the STA’s state for a handoff.

IV. THE PROPOSED SCHEME

In this paper, we propose DCRQN to cope with the problems

aforementioned. The section that follow presents the descrip-

tion of proposed scheme, including the basic theory of RL,

the self-learning architecture along with the implementation

of DCRQN in detail.

A. RL THEORY

RL falls into machine learning. The problem it mainly deals

with is how an autonomous individual (i.e., agent) can learn

the optimal policy that maximizes a specific metric by adapt-

ing its behavior within the environment. Fig.1 shows the

basic form of RL. MDP defines the general form of the

problems involved in RL [39]. In MDP, the agent is enabled

to perceive the diverse state space S in the environment, with

an executable action space A. At each time slot t, the agent

senses the environment by identifying the current state st ∈ S
and then selects the action at ∈ A to execute. The environ-

ment subsequently feeds back a return rt = r(st , at ) while

transitioning into a successor state st+1 = ϕ(st , at ) with

the probability P(st , at , st+1), in response to the action at .

The goal is to learn a policy π : S → A that maximizes the

accumulated rewards. Given a policy π , the expectation of

accumulated rewards from state st can be defined as:

V π (s) = Eπ [

∞
∑

i=0
γ irt+i|st = s]. (3)

FIGURE 1. The basic component and form of RL.

where rt+i indicates the reward by following π to take actions

from the state st . In stochastic environment, the sequence of

reward varies for same actions, and the more agent sees into

the future from time t , the more it may diverge. Therefore,

γ ∈ [0, 1] is leveraged to discount future reward. The optimal

policy π∗ learned by the agent is:

π∗ ≡ argmax
π

V π (s),∀s ∈ S. (4)

The function V π (s) of π∗ can be denoted as V ∗(s) =
max

π
V π (s),∀s ∈ S. However, the optimal policy through

learning V ∗ is definitely premised on the fact that the agent

grasps immediate reward function r and the state transition

function ϕ, i.e., it is demanded to predict the immediate

reward and subsequent state of any state transition with

precision. In many practical problems, however, the agent
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is not well aware of r and ϕ in a stochastic environment

(e.g., handoff decision-making in WLAN). Therefore, learn-

ing V ∗, in default of r and ϕ, is not conducive to making the

optimal decisions.

The state-action value function, i.e., Q-function, works

by improving evaluations of the quality of an action at

particular states iteratively, leaving its learning free from

function r and ϕ. The Q-value of a state-action pair (s, a)

by policy π , denoted as Qπ (s, a), represents the expected

discounted reward given an initial action a at state s and

following the policy π thereafter, which can be assigned by:

Qπ (s, a) = Eπ [

∞
∑

i=0
γ irt+i|st = s, at = a]. (5)

According to the Markov transition model of the state,

the equation above can be expanded:

Qπ (s, a)

= Eπ [rt |st = s, at = a]+ Eπ [

∞
∑

i=1
γ irt+i|st = s, at = a]

= R(s, a)+ γE[

∞
∑

i=0
γ irt+1+i|st = s, at = a]

= R(s, a)+ γ
∑

s′∈S
P(s, a, s′)Q(s′, a′). (6)

It is the basic form of the Bellman Equation, where R(s, a)

is the expectation of reward r(s, a). The Q-function of the

optimal policy is Q∗(s, a) = max
π

Qπ (s, a), according to

equation (6):

Q∗(s, a) = R(s, a)+ γ
∑

s′∈S
P(s, a, s′) max

a′∈A
Q(s′, a′). (7)

Due to V ∗(s) = max
π

V π (s), ∀s ∈ S, the V ∗(s) in

Q-function can be expressed as:

V ∗(s) = max
a∈A

Q∗(s, a)

= max
a∈A

[R(s, a)+ γ
∑

s′∈S
P(s, a, s′)Q(s′, a′)]. (8)

Once Q∗(s, a) is derived, for any state s ∈ S, the optimal

action is the one with the largest Q∗(s, a) value. That is,

π∗ ≡ argmax
a∈A

Q∗(s, a),∀s ∈ S. (9)

Q∗(s, a) learning amounts to the optimal policy learn-

ing. The recursive definition of the Q-function provides

the foundation for the iterative approximation of Q∗(s, a).
In Q-learning, each state-action pair (s, a) in the Q-table has

an entry to store itsQ-value. Among the commonQ∗ approx-
imation algorithms, the Q-table is generally initialized at

random. The process of sensing state st , selecting an action at ,

and obtaining a reward rt = r(st , at ) along with a next state

st+1 = ϕ(st , at ) repeats. Then the updating rule ofQ-values

with learning rate α(0 ≤ α ≤ 1) is given as follows:

Q(st , at ) ← Q(st , at )

+α(r(st , at )+ γ max
a′∈A

Q(st+1, a
′)− Q(st , at )). (10)

Extensive literature [17], [40] has proved that the formula

above can definitely converge to the Q-function of opti-

mal policy. The idea behind Q-learning is to successively

approximate the Q-function in accordance with Bellman

Equation which says that the expected long-term rewards for

a given action is equal to the immediate reward from the

current action combined with expected reward from the best

future action taken at the following state [22]. In the context

of handoff decision-making in WLAN, the problem can be

converted to an MDP, then Q-learning can be incorporated in

this case.

Q-learning operates well on the premise that the state

space is small, using a look-up Q-table to update Q-values.

However, Q-learning cannot achieve desired results in

the case of the infinite numbers of state space. To be

specific, it is impractical to store the Q-values of all

state-action pairs in the form of Q-table. Even if such a

massive storage capacity is provided, the prohibitive com-

putation complexity problems of querying for state-action

pairs matter as well. Besides, the sample is too sparse

for the sampling based algorithm to converge. As a

result, the effectiveness of Q-learning will be degraded

seriously.

Referring to human learning methods, it is impossible to

undergo all circumstances in life as well. We are more likely

to compare the new situations encountered with the experi-

ences stored in memory. The similar actions are supposed

to be taken for the similar cases, providing the reference to

processing policies for the agent in RL. By creating functions

to predict the Q-values, the corresponding decision could be

obtained for any input state. In this way, the Q-table updating

problem is transformed into a function fitting problem. Deep

RL, in particular DQN, does apply this idea, taking forward

neural networks as the Q-network. In such cases, Q-learning

are approximated by neural network that takes the state s

as input and the Q-value Q(s, a) for all probable actions as

output [26]. Theoretically, it turns out that neural network can

approximate any function as long as its depth and width are

sufficient [41].

B. DQN-BASED SELF-LEARNING ARCHITECTURE

The DQN-based architecture, which can be mainly divided

into the network environment and the decision brain,

is designed in Fig. 2. Its core is to provide a universal data

access and instruction execution interface to decision brain.

The decision brain is in charge of obtaining and converting the

data to instructions, and operating the environment platform

thereafter. The decision brain consists of three parts: the

agent module, the feature extraction module and the decision

module.
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FIGURE 2. The DQN architecture applicable to the SDN-based WLAN.

To be specific, the agent module is an entity that per-

ceives current state and takes actions in WLAN. Its principal

functions are as follows:

• Perceive the network state (i.e., STA’s state) through

southbound interface;

• Preprocess the state information, then feed it to the

feature extraction module;

• Take actions output by the decision module and get

reward from environment.

To achieve the fine-grained attributes of wireless signals,

the preprocessed state is fed to CNN submodule, followed

by an RNN submodule. In general, the network density and

layout of APs are inconsistent in diverseWLANs, which may

have a direct impact on the handoff decision-making. The

CNN is adopted to extract relative locations properties of

STA in WLAN. In the case of the same other run conditions,

to exemplify this, the decision module tends to handoff to the

nearest AP for the STA. Note that ‘‘the nearest AP’’ is the

true feature we need. The output of CNN can characterize

the spatial location of the STA at a certain time, which

will be fed to RNN submodule. In WLAN, the motion of

STA leads to obvious fluctuation in received signals during

propagation. In addition, there are significant correlations

between consecutive wireless signals for some time. Inspired

by the intrinsic properties above, we turn to RNN to extract

temporary features of the affected wireless signals, thereby

inferring the mobile velocity or moving direction of the STA.

The temporary features integrate the spatial features, serving

as the input to the decision module. The major functions are

summarized:

• Read the preprocessed state from the agent module and

take it as the input;

• Sequentially extract the spatial and temporary features

of wireless signals;

• Read the cost returned by the decision module

and update neural networks with back-propagation

algorithm.

The decision module which is essentially a deep neural

network (DNN) is leveraged to realize the mapping of state to

actions. In other words, the optimal policy corresponds to the

optimal decision-making function. By virtue of its nonlinear

attribute, the model can approximate any function as long

as the network is wide and deep enough [24]. Similarly, its

major functions are as follows:

• Read the output of the feature extraction module and

take it as the input;

• Use DNN instead of Q-value function to output actions’

values for input state;

• Make decisions, and then notify the agent module to

execute it accordingly;

• Read reward from the agent module. Calculate and feed

the cost to the feature extraction module to update neural

networks.

In summary, only the agent module needs to interact with

the real environment, whereas other modules are irrelevant

to the application scenarios. The role of the agent mod-

ule is to package data and execute instructions, so it is

in essence a middleware between the environment and the

decision-making network. This module can be easily applied

to diverse scenarios and tasks bymodifying the date type. Due

to the fact that deep learning can easily accommodate hetero-

geneous inputs, thework presented can be extended to various

scenarios with slight modifications to reflect the change in the

input size. In addition, the architecture is adaptive to users.

Although there is a gap in the absolute range scale of the data

for diverse users, our proposed scheme does depend more on

the relative changes of the data (e.g., upward or downward

trend). Therefore, the DQN-based architecture has generality
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and adaptability in terms of application scenarios or

users.

C. DCRQN-BASED HANDOFF DECISION-MAKING

The main idea of DCRQN is to model the SDN controller as

the RL agent and the WLAN scenario as the environment.

Three main aspects about the MDP model, theQ-network for

DCRQN along with the Q-network update are described in

the following.

1) MDP MODEL

MDP is a mathematical framework that are used for model-

ing decision-making problem in which outcomes are partly

random and partly depends on the action of agent. Due to

the temporal correlation property, the handoff management

is modeled as an MDP which is the dominant analytical

approach in RL. The state, action, and reward are defined in

the part that follow. Environment can be defined as the region

of physical or virtual space with characteristic state space S.

As mentioned in section III, the tuple composed of uplink

SINR on APs is to jointly characterize the STA’s state for a

handoff. At time n, the state Sn ∈ S perceived by the agent

module is defined as:

Sn = {s1, s2, . . . , sm, . . . , sM−1, sM }. (11)

where sm ∈ Sn(0 < m ≤ M ) is the state information

(i.e., SINR) perceived on APm and M is the number of APs.

The agent module termly refreshes the state at a time

interval τ , and preprocesses state Sn to an image-like tensor,

φ(Sn)={Sn−l+1, Sn−l+2, . . . , Sn−l+j, . . . , Sn−1, Sn}T. (12)

where l is the time length for perceiving, indicating the size of

the reformulated tensor φ(S) for feature extraction. It depends

on the actual networks.

Besides, an action space A for agent is defined to interact

with the network. The control action is denoted by a ∈ A

and takes on one of the values 1, 2, ...,M , determining the

handoff to target AP. That is

A = {a1, a2, . . . , am, . . . , aM−1, aM }. (13)

In such case, the handoff to APm is taken as the action

am, am ∈ A. Meanwhile, we adopt the model-free method

meaning that there is no knowledge of transition probabilities

P(st , at , st+1). In modeled MDP, the agent tries to maximize

the accumulated rewards. With the goal of average data rate

maximization, we take the real-time uplink throughput as

the reward r . It is considered as a positive handoff when

a relatively higher value of throughput compared to other

actions is returned, and a negative handoff when a lower value

is returned. Considering that the proposed scheme is based on

reward-driven, the APwith the largest SINR is not necessarily

the target AP at time of handoffs.

2) Q-NETWORK FOR DCRQN

TheQ-network acts as the decision-making functionmapping

the input state φ(S) to the Q-values of actions. In the pro-

posed scheme, the Q-network adopts CNN and RNN for the

fine-grained feature extraction of wireless signals, and DNN

for the handoff decision.

Two successive convolutional layers are constructed to

perform convolutional operations on the tensor φ(S). The first

layer consists of 16 kernels that each size is 5 × 5, with

‘‘ReLU’’ activation function. And 32 kernels that each size is

3× 3, are set up for the second layer, with ‘‘ReLU’’ function

as well. For the generalization of model, we resort to max

pooling function for dimensionality reduction. Each pooling

kernel is 2×2 and the size of output feature map is maintained

with zero padding. In that case, the convolutional layer and

pooling layer work alternately. The CNN is in essence a

nonlinear function with self-learning parameters, which can

be defined as:

C = fC (φ(S);ϑC (k, p;βC )). (14)

where fC (·) is the nonlinear mapping function of CNN, ϑC (·)
is the parameter set. k and p indicate the parameters in con-

volutional and pooling layers, respectively. βC denotes the

variable parameters such as weights and biases.

Through convolutional processing of tensor φ(S), a 3D

feature map C is obtained. The RNN submodule contains

two RNN cells that each size is 256, with ‘‘Tanh’’ activation

function. To cater for the RNN structure, the feature map C is

reformulated to a 2D feature map C ′. Likewise, the mapping

function of RNN is assigned by:

χ = fR(C
′;ϑR(u;βR)). (15)

where fR(·) is the nonlinear function, ϑR(·) is the parameter

set, and u indicates the layer size of RNN cells. The vari-

able parameters are denoted by βR. The state vector χ is

a summary of tensor φ(S) of the whole feature extraction

module. It can not only reflect the spatial properties of STAs

in WLAN, but also reflect the temporary properties about the

mobility information.

The decision module by itself belongs to DNN, containing

two fully connected layers, which is backward connected

to a softmax classifier to compute Q-values of M available

actions. L2-norm regularization with weight decay of 0.001 is

leveraged to avoid over-fitting [42]. Given an input χ , the

Q-values of actions can be calculated by:

Q(χ, ai;ϑD(v;βD)) = fD(χ, ai;ϑD(v;βD)), ai ∈ A. (16)

where fD(·) is the nonlinear function approximator in the

decision process, ϑD(·) is the set of parameters and v is related

to themodel scale.βD, similarly, indicates the variable param-

eters in DNN. The decision-making action can be identified

following the policy:

π (a) = argmax
ai∈A

Q(χ, ai;ϑD(v;βD)). (17)
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TABLE 1. Parameters of the Q-network for DCRQN.

The decision module will instantly inform the agent mod-

ule of the decisions for the handoff management. The Q-

network for DCRQN is illustrated in Table 1.

3) Q-NETWORK UPDATE

Three types of neural networks are involved in the

decision-making process. For the sake of simplicity, they are

integrated into an integral Q-network. Based on this obser-

vation, the mapping from tensor φ(St ) to Q-values can be

expressed:

Q(φ(St ), ai; θ ) = FN (φ(St ), ai; θ ). (18)

where FN (·) is the joint nonlinear function of CNN, RNN

along with DNN. The parameter θ is the variable parameter

set including βC , βR and βD. Likewise, Q(φ(St ), ai; θ ) is

the Q-value of action ai given the input φ(S) at time t ,

i.e., it denotes the preference degree of action ai. Correspond-

ingly, the decision-making action can be identified as:

π (a) = argmax
ai∈A

Q(φ(St ), ai; θ ). (19)

For the optimal mapping policy of state to action, FN (·)
is supposed to optimize Q-network parameters through train-

ing. However, traditional RL is considered unstable or even

diverged when using a nonlinear function approximator such

as neural network to represent the Q-value function [43].

To cope with it, we turn to the following twomethods to make

the learning more stable and efficient.

During each mapping, Q-network generates a piece of

memory consisting of current state st , current action at ,

instant reward r , the next state st+1 and stores it into the replay
memory D. The form of D is:

D = {. . . , (φ(St ), at , rt , φ(St+1)), . . .}
︸ ︷︷ ︸

ω

T. (20)

where ω is the capacity and t indicates the historical memory

at time t . During the training process, each generatedmemory

tuple is stacked into D. In this case, Q-network can upset

the correlations between memories, thereby improving the

learning efficiency.

There are two Q-networks in DQN actually, Q-evaluation

network and Q-target network. The evaluation network is

used for learning and updating parameters including weights

and biases in real time. The ‘‘temporarily frozen’’ target net-

work Q̂(φ(S), a; θ̂ ) is established to decouple the action deci-
sion process. At each time step, the target network together

with memories randomly sampled from D calculates the cost

and trains the evaluation network.

For each sampled tuple like (φ(Sj), aj, rj, φ(Sj+1)), the cost
function Cost(θ ) can be defined:

Cost(θ ) = Ed [(yj − Q(φ(Sj), aj; θ ))2]. (21)

where yj is the target Q-value and calculated by:

yj = rj + γ max
a′∈A

Q̂(φ(Sj+1), a
′; θ̂ ). (22)

FIGURE 3. Q-network training process for DCRQN.

Fig. 3 depicts the overall training process of Q-network.

The network state St is perceived and then preprocessed as

tensor φ(St ). The evaluation network then generates a piece of

memory and stores it into D. Only when the memory storage

is large enough, the target network samples a mini-batch

d with size of ℓd and calculates the cost together with the

evaluation network. According to the cost, gradient descent

algorithm is leveraged to train the evaluation network each

step to minimize the cost. For each G iterations, the target

network is copied from the evaluation network. Therefore,

it is said to be ‘‘temporarily frozen’’.

Besides, we leverage the ǫ-greedy policy to improve the

learning ability in breaking away from the local optimum.

DQN is an on-line learning scheme that allows the simultane-

ous performance of two tasks: exploration and exploitation.

In ǫ-greedy, with probability ǫ ∈ [0, 1], the agent will select

an action a ∈ A at random (exploration), or with probability

1−ǫ it will select according to the policy π (a) (exploitation).

As the training proceeds, the policy will gradually converge.

Hence a linear function to decrease the exploration rate ǫ

from initial value ǫi to final value ǫf is set up to stick to our

decisions, represented as: ǫ = ǫ− (ǫi− ǫf )/ζ , where ζ is the

iteration cycle and the initial value of ǫ is ǫi.

To be specific, the DCRQN can be divided into the training

phase (Algorithm 1) and the inference phase (Algorithm 2).

In training phase, the parameters related to WLAN scenario

and Q-networks are initialized first. The training iteration

cycle ζ is determined, working as the condition derived from

the training that trigger the inference phase. The agentmodule

reads the state information St and reformulates it to φ(St ). The

evaluation network takes φ(St ) as input. Q-values of actions

are output through the feature extraction module and deci-

sion module. Following the ǫ-greedy, the decision module

selects a random action at ∈ A with probability ǫ, or selects
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Algorithm 1 DCRQN Training Phase

Input: State information, φ(St ).

Output: Handoff decision to the target AP, at .

1: Initialize the scenario parameters M , A, l, τ

2: Initialize the statistic parameters ζ , ǫ, ǫi, ǫf , ω, ℓd , α, G

3: Initialize the Q-evaluation network with random param-

eters θ

4: Initialize the Q-target network with θ̂ = θ

5: Read the state St and preprocess it to φ(St )

6: for episode = 1 to ζ do

7: Input φ(St ) to the evaluation network and output the

Q-values of actions

8: With probability ǫ select a random action at ∈ A
9: Otherwise select at = argmax

a∈A
Q(φ(St ), a; θ )

10: Set ǫ = ǫ − (ǫi − ǫf )/ζ

11: Execute action at , obtain reward rt and next state St+1

12: Reformulate state St+1 to φ(St+1)
13: Store experience tuple (φ(St ), at , rt , φ(St+1)) into D
14: Sample a mini-batch of (φ(Sj), aj, rj, φ(Sj+1)) from D

15: Set yj = rj + γ max
a′∈A

Q̂(φ(Sj+1), a′; θ̂ ))
16: Perform gradient descent on (yj−Q(φ(Sj), aj; θ ))2 with

respect to θ

17: Reset φ(St ) = φ(St+1)
18: Every G steps, update the target network with θ̂ = θ

19: end for

at = argmax
a∈A

Q(φ(St ), a; θ ). ǫ is reset by ǫ = ǫ −
(ǫi − ǫf )/ζ each step. The agent module takes action at
to operate the network. The reward rt and next state St+1
are gained thereafter, followed by the preprocessing from

St+1 to φ(St+1). The evaluation network stacks the memory

tuple (φ(St ), at , rt , φ(St+1)) into D. At each step, the target

network randomly samples amini-batch fromD and performs

a gradient descent step on the cost calculated together with

the evaluation network. For each G steps, the target network

is updated with θ̂ = θ . The optimal handoff policy can be

obtained through massive training iterations (to be explained

in section VI). In inference phase, however, there will be no

need to introduce ǫ-greedy and target network for training.

We just need to be firm in decision-making. And the perfor-

mance of the policy gained will be verified next.

V. EXPERIMENTAL INVESTIGATION

The WLAN system model is established by means of

Mininet-WiFi emulator [44]. Mininet-WiFi is an extension

of the SDN simulator Mininet, with additional standard

Linux wireless drivers and 80211_hwsim wireless simula-

tion drivers. It is thus probable to set up APs and STAs

and their communication process can be emulated thereafter.

In addition, we could define the node’s location, AP’s work-

ing mode, STA’s moving direction and velocity in the form

of scripting. These attributes help to realize the fine-grain

Algorithm 2 DCRQN Inference Phase

Input: State information, φ(St ).

Output: Optimal handoff decision to the target AP, at .

1: Read the model saved in the training phase

2: Read the state St and preprocess it to φ(St )

3: for episode = 1 to ζ do

4: Input φ(St ) to the evaluation network and output the

Q-values of all actions

5: Select at = argmax
a∈A

Q(φ(St ), a; θ )
6: Execute action at , obtain reward rt and next state St+1

7: Reformulate state St+1 to φ(St+1)
8: Reset φ(St ) = φ(St+1)
9: end for

control on the underlying wireless network packets. The

learning phase is implemented on TensorFlow, a Google’s

open source platform for deep learning.

FIGURE 4. The WLAN scenario set up in Mininet-WiFi.

All the simulations used to verify the policy performance

were done in theWLAN scenario as shown in Fig. 4. Analysis

considers a dense WLAN consisting of nine APs and twelve

STAs, where all APs are distributed at random and OpenFlow

enabled by using Open vSwitch. Among the STAs, one serves

as a mobile object observed by the agent module, while

others are stationary to produce background traffic. Note

that all APs are open authentication to STAs. The observed

STA moves randomly throughout the radio coverage areas.

Besides, uplink SINR can be gained according to the RSS and

interference through the auxiliary interfaces on APs. Iperf,

a survey instrument for network performance, is leveraged

to measure the throughput between two ports by creating

data streams. Moreover, tcpdump command is adopted to

capture the time stamp of packets to depict the variations in

throughput. The widely used utility iw is adopted, in response

to the handoff instructions made by the decision module:
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iw wlan connect or disconnect (SSID (Service Set Identi-

fier)) (MAC). In that case, handoff process can be operated by

disconnecting the old link and then connecting to the target

AP. The SDN-based implementation ensures the seamless

handoff.

The paper takes the following three representative handoff

schemes as the control group, and carries out two experiments

E1 and E2 to demonstrate the effectiveness of DCRQN.
• RSST based handoff scheme: It is the traditional WLAN

handoff scheme which contains the handoff initiation,

discovery process and re-authentication. In order to

avoid the ping-pong effect, the scheme comes equipped

with two RSS thresholds T1 and T2. T1 is the triggering

threshold to initialize the discovery process, i.e., the

handoff will be triggered when the RSS drops to T1;

When the difference value of uplink RSSs between

the largest one from neighboring APs and serving AP

exceeds T2, the largest one serves as the target AP.

• RSSS based handoff scheme: It is the SDN-based

RSST scheme, with the same pre-configured thresh-

olds T1 and T2. The STA needs no channel scanning

(i.e., discovery process) when performing handoff, and

the handoff can be considered seamless.

• DQNH based handoff scheme: Similar to DCRQN,

DQN-based DQNH makes use of neural networks to

map the state to handoff decisions. DCRQN turns to

a feature extraction module to extract fine-grained fea-

tures of wireless signals. In order to compare scheme

effectiveness, DQNH involves no feature extraction

modules. To control condition variables, the structures

of the agent module and decision module of DQNH are

the same as those of DCRQN.

TABLE 2. Network system model parameters.

The network system model parameters are specified

in Table 2, and the parameters regarding DCRQN are illus-

trated in Table 3. In particular, the input of neural network is

φ(S) with size of 64× 9, and the output size is 9 for handoff

decision-making. Each value in φ(S) is a tuple composed of

nine SINRs. The agent module refreshes φ(S) every 0.5 s

which will not bring lots of load, i.e., the time length of input

tensor is 32 s. The whole iteration cycle is set as 200,000 steps

and capacity of memory D is 20,000 units. The initial

TABLE 3. Parameters regarding DCRQN.

exploration rate ǫi and final rate ǫf are set as 0.4 and 0.01 to

stick to our decisions as learning proceeds. During training

phase,Q-target network is copied fromQ-evaluation network

every 20 steps. Meanwhile, the learning rate α is 0.01 to

optimize the network parameters. During simulation, all APs

comply with IEEE 802.11g protocol. All the measurements

are averaged over thirty runs.

A. EXPERIMENT E1

To have an intuitive comparison between the RSST scheme,

RSSS scheme, DQNH scheme and the proposed scheme

aforementioned, we compare the trend of throughput varia-

tion in the case of a single handoff. With AP 5 and AP 6 in

Fig. 4 as a case, according to the moving track, the STA

moves at a constant velocity of 0.4 m/s between the APs.

In particular, within 0-30 s, the STA was in the coverage area

of AP 5; within 30-200 s, the STA was in the overlapping

areas; Eventually, the STA entered the coverage area of AP 6.

FIGURE 5. The variation of throughput during a single handoff process.

Fig. 5 shows the variations in throughput under each hand-

off scheme, respectively. Experimental results show that:

1) The RSST has an obvious handoff delay which is mani-

fested by a throughput reduction to zero as shown at 181 s.

In contrast, the RSSS, DQNH and our proposed scheme do

not introduce any delay. 2) It can be seen that the throughput
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curves depicted are almost coincidence when STA was only

in the coverage area of AP 5 or AP 6. With the move-

ment of STA away from AP 5 to the overlapping area,

the throughput value continues to decline as the channel

condition deteriorates. When the value drops to a certain

extent, at 112 s, the proposed scheme triggers the handoff at

the earliest. The throughput afterwards gets a relatively gentle

rebound. The DQNH makes the handoff decision somewhat

delayed, at 138 s. The throughput does not pick up in the

face of uncompleted handoff. While the RSSS makes the

STA handoff significantly delayed, at 180 s, which tends to

leave the STA to subject to low data rate for some time.

The handoff timing performed by RSST leaves much to be

desired, at 181 s, which results in the curve dropping to

the nadir, followed by a sharp increase. The RSST is not

only postponed but also introduces obvious handoff delay.

By contrast, the throughput under the proposed scheme is

more stable during handoff process, without massive jitters.

It can be concluded that the lagging handoff decision prolongs

the time when the throughput decreases continually, leading

to a low data rate state for long during the handoff process.

From the above results, the RSST serving as the traditional

WLAN handoff scheme does not trigger handoff until the

RSS values satisfy the conditions regarding the thresholds,

which generally leaves the handoff timing too late. Com-

pared to RSST, the advantage of RSSS is being software-

based, i.e., the handoff is considered seamless. It can be seen

in the figure, however, when to trigger handoff and which

AP to reconnect to are still problems to be addressed. The

DQN-based DQNH could make relatively accurate handoff

decisions to some extent through a learning phase. However,

in default of the feature extractions, it cannot achieve the

desired results. The proposed scheme first introduces SDN

to implement seamless handoff in WLAN. Meanwhile, CNN

and RNN are used to extract the spatial and temporal charac-

teristics of wireless signals. DNN is then leveraged to make

handoff decisions using the extracted results. In brief, the pro-

posed scheme has a facility to make the optimal decisions

with respect to the network state, which avoids the throughput

dropping a lot.

B. EXPERIMENT E2

Without loss of generality, the effectiveness of DCRQN is

further analyzed in the entire WLAN. We take the Random

Way Point Movement Model as the mobile model for STA.

Similarly, a constant velocity of 0.4 m/s to traverse the net-

work is provided. And again, the throughput is counted for

20,000 s under each handoff scheme.

Fig. 6 depicts the Cumulative Distribution Function (CDF)

of the throughput, where each curve corresponds to each

scheme. It can be observed from the figure that the probability

of acquiring a higher throughput (8 to 10 Mbps) for the

proposed scheme is around 53%,whereas the respective prob-

abilities for DQNH, RSSS and RSST based scheme are 48%,

40% and 30%, respectively. The statistics above demonstrate

the effectiveness of DCRQN. From another point of view,

FIGURE 6. The CDF of throughput by traversing the WLAN.

FIGURE 7. The throughput averaging E2 over thirty runs.

when the CDF value is around 0.5, the throughput of proposed

scheme is 0.9 Mbps higher than that of RSST and 0.5 Mbps

higher than that of RSSS. Similarly, it is also greater than

that of DQNH by 0.3 Mbps. Note that STA moves along

a consistent path each time (controlled by random seed).

Therefore, the fundamental reason for these diversities lies

in the diverse handoff schemes adopted by the network. For

RSST based scheme, the specified parameters like T1 and T2
are challenging to apply to the global network due to the irreg-

ular distribution of APs. Besides, it may introduce noticeable

delays during the handoff process, which can be reflected

from the curve with zero value. The RSSS based scheme

could ensure the continuity of service. However, the timing

to trigger handoff and the selection of AP remain to be

optimized, which emphasizes the necessity of studying new

handoff algorithms. For DQNH based scheme, a handoff

policy applicable to the WLAN can be gained through a

learning phase, without configuring parameters. Its ability to
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FIGURE 8. The complexity comparison in training and inference phase.
(a) Time cost. (b) Memory footprint. (c) CPU occupancy.

extract features, however, remains to be improved, and the

necessity on sufficiency for feature extraction is underlined

here.

For more impressive reflection of gain in throughput, anal-

ysis considers the throughput by averaging E2 over thirty

runs, which is shown in Fig. 7. It can be seen that proposed

scheme has obvious superiorities in throughput gains, 21%

improvements to RSST, 9.5% and 3.8% to RSSS and DQNH,

respectively. In addition, the stability of DCRQN is better

than other schemes, which is reflected in smaller standard

deviation. In brief, DCRQN considers both the spatial and

temporal features of wireless signals by means of CNN and

RNN. Together with the goal of average throughput maxi-

mization, the optimal handoff policy can be gained.

VI. COST EFFECTIVENESS

Due to the random distributions of APs, STA needs to traverse

most of theWLAN for optimal handoff policy. In theDCRQN

training phase, the neural networks are trained for around

36 hours, with CPU. Considering that RL belongs to on-line

learning, the overall time cost can be divided into the time for

STA traversing and time for neural network computing.

The gain of throughput achieved by DCRQN comes at the

cost of complexity. Therefore, a detailed analysis of the com-

plexity is given in Fig. 8 to prove the feasibility of DCRQN.

Fig. 8(a) depicts the time cost in training and inference phase

under each handoff scheme. RSST or RSSS needs no learn-

ing, and its cost is so small that it can be ignored. For DQNH,

the cost in training phase is about 14.15 ms and in infer-

ence phase is 1.36 ms. This is because there are additional

parameters iterative update steps in training phase than in

inference phase. For proposed scheme DCRQN, the cost in

training phase is 306.9 ms which is much higher than that of

others. Actually, the extra cost is spent optimizing the feature

extraction module. Next to the inference phase, the cost is

reduced to 4.43 ms, which is within acceptable range. More-

over, tensor calculation and neural network update can be

accelerated greatly for more than 8 times by using GPU.

Fig. 8(b) and 8(c) depicts the memory footprints and CPU

occupancy in the two phases, respectively. The test environ-

ment is Ubuntu 16.04 system with Quad Core CPU (the CPU

full occupancy is 400%) and 7.5GB memory. It can be seen

that in training phase, the complexity of DCRQN is much

higher than that of others, but in inference phase, the value

is again reduced to a tolerable range. Note that we are more

concerned about the performance in practical applications,

i.e., the inference phase. It is worthwhile to sacrifice a small

amount of complexity in exchange for a significant gain in

throughput. Therefore, DCRQN trades off the complexity and

gain, with practical feasibility.

VII. CONCLUSION

In this paper, we focus on the handoff management scheme

in the SDN-based WLAN. In order to cope with the defects

of the traditional WLAN handoff scheme, we first design a

self-learning architecture which is applicable to SDN-based

WLAN frameworks. Moreover, we propose DCRQN, a novel

DQN-based handoff decision algorithm where SINR is lever-

aged to characterize the STA’s state. The proposed scheme

enables the network to learn from the real users’ behaviors

and the network status from the scratch, setting the network
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free from parameter configurations. Besides, CNN and RNN

are resorted to extract the fine-grained features of the wireless

signals, respectively. The experimental results show that the

proposed scheme can significantly improve the data rate dur-

ing the handoff process, outperforming the traditional handoff

scheme. However, the shortcoming of the paper is that the

WLAN scenario is built with simulator, which may devi-

ate from the actual situations. And the work only considers

one observed agent. In our future research, actual scenarios

together with DRL with multiple STAs (i.e., multiple agents)

will be taken into consideration.
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