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ABSTRACT Globally, wind energy is growing rapidly and has received huge consideration to fulfill global

energy requirements. An accurate wind power forecasting is crucial to achieve a stable and reliable operation

of the power grid. However, the unpredictability and stochastic characteristics of wind power affect the grid

planning and operation adversely. To address these concerns, a substantial amount of research has been

carried out to introduce an efficient wind power forecasting approach. Artificial Intelligence (AI) approaches

have demonstrated high precision, better generalization performance and improved learning capability,

thus can be ideal to handle unstable, inflexible and intermittent wind power. Recently, AI-based hybrid

approaches have become popular due to their high precision, strong adaptability and improved performance.

Thus, the goal of this review paper is to present the recent progress of AI-enabled hybrid approaches for

wind power forecasting emphasizing classification, structure, strength, weakness and performance analysis.

Moreover, this review explores the various influential factors toward the implementations of AI-based

hybrid wind power forecasting including data preprocessing, feature selection, hyperparameters adjustment,

training algorithm, activation functions and evaluation process. Besides, various key issues, challenges and

difficulties are discussed to identify the existing limitations and research gaps. Finally, the review delivers

a few selective future proposals that would be valuable to the industrialists and researchers to develop an

advanced AI-based hybrid approach for accurate wind power forecasting toward sustainable grid operation.

INDEX TERMS Wind power forecasting, artificial intelligence, machine learning, deep learning, optimiza-

tion, hybrid approaches.

NOMENCLATURE

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

ACF Autocorrelation Function

ACO Ant Colony Optimization

APE Average Percentage Error

BPNN Backpropagation Neural Network

BSA Backtracking Search Algorithm

CPU Central Processing Unit

CRO Coral Reefs Optimization

CNN Convolutional Neural Network

The associate editor coordinating the review of this manuscript and

approving it for publication was Dipankar Deb .

CSA Crow Search Algorithm

DBN Deep Belief Network

DE Differential Evolution

EMD Empirical Mode Decomposition

EEMD Ensemble Empirical Mode Decomposition

ELM Extreme Learning Machine

EWT Empirical Wavelet Transform

FS Feature Selection

FOA Fruit Fly Optimization Algorithm

FFBPNN Feed-Forward Back Propagation Neural

Network

FFNN Feed-Forward Neural Network
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FIS Fuzzy Inference Systems

FCM Fuzzy C-means Method

GA Genetic Algorithm

GPR Gaussian Process Regression

GRNN General Regression Neural Network

GMDH Group Method Data Handling

GP Grid Partitioning

HS Harmony Search

IMFs Intrinsic Mode Functions

IA Index of Agreement

ICS Improved Cuckoo Search

IMD Intrinsic Mode Functions

KMPE Kernel Mean P-Power Error Loss

KF Kalman Filter

LSTM Long Short-Term Memory

LM Levenberg-Marquardt

LSSVM Least Squares Support Vector Machine

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MLR Multilinear Regression

MF Membership Functions

MLP Multilayer Perceptron

NSFM Non-Symmetric Fuzzy Means

NWP Numerical Weather Prediction

PSO Particle Swarm Optimization

PCA Principal Component Analysis

PICP Prediction Interval Coverage Probability

PCC Pearson Correlation Coefficient

RMSE Root Means Square Error

RBFNN Radial Basis Function Neural Network

RF Random Forest

RNNs Recurrent Neural Networks

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit Function

SAE Stacked Auto-Encoders

SSA Singular Spectrum Analysis

SVM Support Vector Machine

SVR Support Vector Regression

SD Standard Deviation

SC Spatial Correlation

SC Subtractive Clustering

SCADA Supervisory Control and Data Acquisition

T2FNN Type-2 Fuzzy Neural Network

TS Tabu Search

TL Teaching Learning

VMD Variational Mode Decomposition

WT Wavelet Transform

I. INTRODUCTION

The demand for electricity generation has been raising signif-

icantly due to rapid urbanization and economic growth [1].

However, electricity production by fossil fuels contributes to

63% of the shares in global carbon emissions [2]. Due to

the reduction of fossil fuels reserve and carbon emissions

caused by them, renewable energy (RE) could play a crucial

role in mitigating global emissions as well as providing clean

and sustainable energy. RE is abundant and has the enor-

mous potential capacity to fulfill the increasing electricity

needs [3], [4]. Renewables made up a quarter of global elec-

tricity generation in 2020 [5]. Themain reasons involved with

a drastic increase in power generating capacity of RE refers

to cost competitiveness as well as performance optimization

technologies [6]–[9]. Nevertheless, several limitations can

hamper the development of RE-based power generation such

as poor infrastructure, limited technology, lack of financial

intensives, high investment cost and weather unpredictabil-

ity [10]–[12]. Therefore, it is important to carry out research

and development on RE not only to meet the growing elec-

tricity demand but also to achieve sustainable development.

Among the various RE sources, wind energy is one of

the major and growing sources of renewable energy [13],

[14]. Wind energy shares 5% of global electricity generation

with a capacity of 591 GW [15]. However, compared to the

traditional power sources, wind power is extremely unsta-

ble, random, intermittent and inflexible due to the impact of

meteorological and adjacent terrain environments [16], [17].

Various factors can influence wind power such as wind speed,

wind direction, temperature, humidity, atmospheric pressure

and altitude etc. [18]. These variables are also correlated

with each other that results in high wind power fluctua-

tion and eventually causes difficulties to achieve satisfactory

outcomes in wind power forecasting [19]. To enhance the

reliability of the power supply system as well as address

the intermittency characteristics of wind power, the reserve

capacity of the power supply must be ensured to deliver the

continuous power supply when the wind power is inade-

quate [20]. Nevertheless, the reserve capacity increases the

overall expenses of wind power indirectly, thus, it is necessary

to develop an efficient forecasting method for wind power

generation [21]. Accurate wind power forecasting helps to

make appropriate scheduling plan based on the variations

in wind power, reduces the standby capacity of the power

grid, decreases the operation cost of the power system,

allows flexible dispatch strategies, improves the power qual-

ity and ensures the stable and reliable operation of the power

grid [22]–[24].

Lots of efforts and approaches have been introduced

to address the wind power prediction issues. Wind power

forecasting can be categorized into physical-based meth-

ods, statistical-based methods and artificial intelligence (AI)

based methods [25]. Among the methods aforementioned,

AI approaches can self-adapt and self-learn, thus suitable

to handle the dynamic, non-linear and complex wind power

features [26]. Moreover, AI approaches have illustrated

improved learning capability, high precision and better gen-

eralization performance [27]. The various AI approaches

have been reported in the literature to evaluate the wind

power forecasting including backpropagation neural net-

work (BPNN) [28], radial basis function neural network

(RBFNN) [29], extreme learning machine (ELM) [30], sup-

port vector machine (SVM) [31], Gaussian process regression
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(GPR) [32] and adaptive neuro-fuzzy inference system

(ANFIS) [33]. Recently, deep learningmethods have received

wide attention due to their high computation intelligence

and accuracy which comprises long short-term memory

(LSTM) [34], convolutional neural network [35] and deep

belief network (DBN) [36]. Moreover, various optimization

algorithms are employed to determine the suitable parameters

of AI approaches including genetic algorithm (GA) [37],

backtracking search algorithm (BSA) [38], coral reefs opti-

mization (CRO) [39], particle swarm optimization (PSO) [40]

and fruit fly optimization algorithm (FOA) [41]. However,

the single AI approaches may provide unsatisfactory predic-

tion outcomes due to the inappropriate selection of features,

hyperparameters and functions. Thus, the hybridization of

AI methods has become increasingly popular not only in

improving the complexity of the algorithm but also enhancing

the forecasting of wind power generation [42]. Generally, the

hybrid AI models are designed by combining two or three

machine learning techniques [43] or integrating optimization

algorithms with AI approaches [44]. Hybrid AI approaches

have overcome the shortcomings of single AI approaches by

finding the optimal features, hyperparameters and training

algorithms [45].

So far, a few review papers related to wind power fore-

casting have been reported. Wang et al. [46] overviewed

the wind power forecasting based on short-term and long-

term approaches. However, the AI-based hybrid approaches

for wind power prediction were not examined in detail.

Hanifi et al. [47] conducted a survey focusing on the phys-

ical, statistical and hybrid methods for wind power fore-

casting. Nevertheless, the authors explored a few machine

learning approaches to predict wind power forecast. Besides,

the key issues and challenges were not explored explicitly.

Chang [48] delivered a classification of wind power fore-

casting based on different horizons. Nonetheless, the inves-

tigation of hybrid AI approaches, their implementations

and limitations are not discussed in detail. Dhiman and

Deb [49] reviewed the wind speed and wind power fore-

casting techniques. Nonetheless, the deep learning algo-

rithm approaches and their executions were not covered.

Maldonado-Correa et al. [50] presented a systematic litera-

ture review of wind power forecasting with various baseline

models and AI tools. However, the hybrid AI forecast-

ing approaches were not explored elaborately. Mao and

Shaoshuai [51] delivered the classification of wind forecast-

ing methods according to timescale, prediction models and

output data. Nevertheless, the hybrid AI approaches were not

studied comprehensively. Besides, the implementation fac-

tors of key issues of hybrid AI approaches were not outlined.

To bridge the existing research gaps, this review presents

an in-depth investigation of wind power forecasting using

AI based hybrid approaches. Besides, the paper showcases

the various combination of hybrid AI approaches, implemen-

tation factors, issues, limitations and suggestions of wind

power prediction. The main contributions of this review are

summarized as follows:

• The various hybrid AI-based wind power forecasting

approaches are explored in detail. Besides, the classi-

fication of AI-based hybrid approaches regarding their

structure, executions, benefits and shortcomings are

delivered.

• The influential factors in forecasting the wind power

based on the hybrid AI methods are discussed includ-

ing data preparation, feature selection, algorithm

functions, hyperparameters adjustment and evaluation

process.

• The key issues and limitations of AI-based on

hybrid methods for wind power forecasting are

outlined including data diversity, implementation

issues, optimization integration and hybridization

issues.

• The selective future prospects for the development of

advanced hybridAI approaches for wind power forecast-

ing are provided.

The rest of the paper is divided into six sections.

Section 2 presents the methods to conduct the survey.

Section 3 explains the detailed survey of hybrid AI methods

for wind power forecasting. Section 4 covers the various

implementation stages of AI-based hybrid wind power fore-

casting. The issues and challenges of hybrid AI methods are

explored in section 5. The concluding remarks with prospects

are highlighted in Section 6.

II. SURVEY METHODS

The target of this review is to gather all the latest infor-

mation, conduct analysis, provide the critical discussion

of AI-based hybrid approaches for wind power forecast-

ing. Accordingly, the authors have collected numerous key

literatures related to wind power prediction using various

databases such as Scopus and Web of science. Various plat-

forms are used to search for suitable studies including google

scholar, IEEE Xplore, ScienceDirect and ResearchGate. The

authors have utilized the keywords to explore the relevant

papers within the scope and target including wind power
forecasting, artificial intelligence, machine learning, deep
learning, optimization, hybrid approaches. The authors have
found several papers; nevertheless, the suitable studies are

chosen based on title, novelty, abstract, outlines, contribu-

tions. Finally, the authors adopted the journals quartiles, cita-

tion, novelty, impact factor to carry out the final selection

of articles. The results of the survey methods were divided

into four groups. Firstly, the AI-based hybrid wind power

forecasting was comprehensively reviewed. Secondly, imple-

mentation and influential factors were described. Thirdly,

the several issues and challenges of hybrid AI approaches

were identified. Finally, the conclusion along with selec-

tive prospects for further enhancement of AI-based hybrid

approaches toward sustainable wind power generation is

provided. The reviewing methodology is arranged into two

stages as depicted in Fig.1. The summary of results is outlined

below.
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FIGURE 1. Schematic diagram of the reviewing methodology.

A. SELECTION PROCEDURES

• In the first screening results, a sum of 557 papers were

found using various platforms such as google scholar,

IEEE Xplore, ScienceDirect, MDPI and ResearchGate.

• In the second assessment and screening results, a total

of 267 articles were analyzed using the proper keywords,

title, abstract, outlines and contributions.

• In the third evaluation results, a total of 140 references

were cited for review based on journals quartiles, cita-

tion, novelty and impact factor.

B. RESULTS OF THE REVIEW

• AI-based hybrid wind power forecasting and their clas-

sification, structure, benefits, drawbacks, performance,

error analysis, research gaps and future works were

broadly reviewed.

• The implementation and influential factors including

data preparation, feature selection, algorithm functions,

hyperparameters adjustment, validation and verifica-

tions were explicitly discussed.

• The key issues and challenges of AI-based hybrid wind

power forecasting approaches were explored.

• Selective future proposals and directions for the further

improvement of AI-based hybrid forecasting approaches

for wind power generation were provided.

III. PROGRESS OF ARTIFICIAL INTELLIGENCE BASED

HYBRID APPROACHES FOR WIND POWER FORECASTING

The AI approaches are becoming popular in renewable

power systems for example solar, wind, ocean, geo-thermal,

and hydro power to enhance the system efficiency. This

section provides a classification and explanation of differ-

ent AI-based hybrid approaches for wind power forecast

including neural network, classification and regression, deep

learning and rule-based algorithms, as shown in Fig. 2.

A. FEED-FORWARD NEURAL NETWORK-BASED HYBRID

APPROACH

The feed-forward neural networks (FFNNs) have demon-

strated high accuracy and robustness in predicting wind
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FIGURE 2. Classification of AI-based hybrid approaches for wind power forecasting.

FIGURE 3. FFBPNN structure for wind power forecasting [28].

power. This section classifies various neural network

approaches for wind power forecasting including feed-

forward neural network, radial basis function neural network,

extreme learning machine, generalized regression neural net-

work.

1) BACK PROPAGATION NEURAL NETWORK-BASED HYBRID

APPROACH

The feed-forward back propagation neural network

(FFBPNN) utilizes the artificial neurons, weight and bias

to form a three-layer structure including hidden layer, input

layer, and output layer, as depicted in Fig. 3. The hidden

layer activity is performed utilizing the suitable quantity

of activation functions, hidden neurons, hidden layers, and

network hyperparameters. The output layer determines the

prediction utilizing the data of the activation function and

hidden layer [52]. The expressions of output layer output,

netk, hidden layer output, netj, and sigmoid activation func-

tion are written in the following equations,

f (net) =
1

1 + e−net
(1)

{

netj =
∑

j wi,jxi + θi,j

netk =
∑

k wj,kOi + θj,k
(2)

where xi is the input vector. The weights are denoted as wi,j
and wj,k . The biases are represented as θi,j and θk,j. Oj is
the hidden layer outcome. The bias and weight values are

upgraded utilizing the following expressions,
{

δk = ek f
′(netk )

δj = f ′(netj)δkwj,k
(3)

{

wj,k = wj,k + αδkwj,k

wi,j = wi,j + αδjxi
(4)

{

θj,k = θj,k + αδk

θi,j = θi,j + αδj
(5)

where α is the learning rate, ek is the estimated output and Tk
is the true output.

FFBPNN has the strength to address highly non-linear and

complex wind power problems. Nevertheless, FFBPNN has

some drawbacks, for instance, local minimum trap, over-

fitting issues, less generalizing performance and slow con-

vergence speed.

Saroha and Aggarwal [53] proposed genetic algorithm

(GA) optimized FFBPNN technique to assess the multi-

ple steps ahead of wind energy forecasting. Here, GA was

employed to find the suitable values of weights and biases of

FFBPNN. This strategy demanded the input of previous esti-

mations for forecast and accordingly the inputs were selected

based on auto correlation function (ACF). The proposed

model was trained by Levenberg-Marquardt (LM) algorithm.

The GA-based FFBPNN algorithm provided better outcomes

than conventional FFBPNN with regard to mean absolute

error (MAE) and mean absolute percentage error (MAPE).

However, it is challenging to predict multiple time series

due to the larger prediction horizon. Moreover, it is crucial
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to select the appropriate time lag for data training. Hence,

in-depth exploration is required to overcome such problems.

Niu et al. [54] proposed FFBPNN integrated with singular

spectrum analysis (SSA) to predict multi-step-ahead wind

energy forecasting. The authors applied BAT optimization

to determine the optimal feature selection. The validation

was performed using different time horizons. The proposed

hybrid model worked effectively under different experiments

and the results indicated root means square error (RMSE)

of 1.7332 m/s, 1.6552 m/s and 2.0424 m/s in one-step, three-

step and six-step horizon, respectively under 60-min wind

speed series. Future research on multi-objective optimization

algorithms and the development of chaotic time series can be

employed to improve the accuracy of wind speed forecasting.

Jiao et al. [55] proposed a hybrid model for wind energy

forecasting based on the FFBPNN integrated with the stacked

auto-encoders (SAE) technique. Initially, three hidden layers-

based SAE was considered to extract the features from the

reference dataset. After, the subsequent loss data was utilized

in the pre-training cycle to obtain the connection weights of

the FFBPNN. Finally, the BP strategy was used to calibrate

the weights of the entire network. Moreover, particle swarm

optimization (PSO) was employed to find the suitable values

of hidden neurons and the learning rate of the proposed SAE-

based FFBPNN technique, as denoted in Fig. 4. TheMAPE of

the proposed hybrid approach was calculated to be 15.96%,

while that for SVM and BPwere 27.88% and 47.33%, respec-

tively. Even though the suggested model ensured improved

prediction compared to existing techniques, deep learning can

be considered in future research.

Zeng et al. [56] suggested a hybrid strategy incorporat-

ing differential evolution (DE) and FFBPNN technique for

wind power forecasting. The DE was used to determine the

appropriate value of thresholds and connection weights of

FFBPNN leading to an improvement in the wind forecasting

performance, as denoted in Fig. 5. The result indicated that

that the DE-based FFBPNN technique delivered better wind

power forecasting results than the other mainstream existing

strategies by reducing MAPE by 91.19% and 64.14% in

compassion to multi linear regression (MLR) and FFBPNN

technique. Although the proposed hybrid technique delivered

satisfactory results, a comparative analysis can be carried

out with other advanced optimization algorithms. Besides,

further studies are required to explore the appropriate param-

eters and structure of FFBPNN. Also, more validations are

necessary under real-world wind power data to reduce carbon

emissions.

2) RADIAL BASIS FUNCTION NEURAL NETWORK-BASED

HYBRID APPROACH

Radial basis function neural network (RBFNN) is in the cate-

gory of FFNN which comprises three layers known as input,

output, and hidden layer, as shown in Fig. 6. RBFNN is the

most utilized network for function approximation problems.

The hidden layer neurons consist of information of Gaussian

transfer functions. The output of Gaussian transfer functions

FIGURE 4. The execution of PSO in hybrid SAE based FFBPNN method for
wind power forecasting [55].

is inversely proportional to the distance of the neuron to the

center [29]. The real numbers and scalar input function vector

are presented as X ∈ Rn and ϕ : Rn → R, respectively. The
output of the network is expressed as,

ϕ(x) =

N
∑

i=1

aiρ( ‖x − ci‖) (6)

where N is the number of neurons in the hidden layer, ci
represents the neuron vector center and ai is the weight vector
of neuron i. In RBFNN, the output functions are solely based
on the distance of the neuron center. Apart from this, all the

inputs are directly associated with the hidden neuron.

There are several advantages of RBFNN that make this

network prominent than others including easy online learning

ability, strong tolerance to input noise, and strong generaliza-

tion. The characteristics of this network ensure its flexibil-

ity and precise control systems. Along with the advantages,

several drawbacks still need to be addressed. Although the
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FIGURE 5. Flowchart of DE based BPNN approach for wind power
prediction [56].

FIGURE 6. RBFNN structure for wind power forecasting [29].

training speed is faster, classification speed is slower due to

the fact of dependency of each node in the hidden layer [29].

Karamichailidou et al. [57] introduced RBFNN based

hybrid approach for wind turbine power curve modeling.

The authors trained the RBFNN model with non-symmetric

fuzzy means (NSFM) algorithm resulting in high accuracy

and low computation cost. The efficient training of dataset

FIGURE 7. The structure of ELM for wind power prediction [30].

with high dimensionality operation was ensured with the

integration of NSFM algorithm with tabu search (TS) algo-

rithm. The proposed technique can be utilized conveniently

for building wind turbine efficiency measurement tools. The

proposed hybrid approach measured MAE of 18.9955 kW

and 18.9325 kW for February and July, respectively. Since

the outcome of this technique is promising, hence this pro-

posed hybrid model can be further investigated to solve other

challenging applications in wind power.

3) EXTREME LEARNING MACHINE BASED HYBRID

APPROACH

The ELM is suitable for predicting results of non-linear

and complex systems. ELM demonstrates great adaptabil-

ity, higher predictability of any continuous operation, higher

learning speed and less calculation difficulty which help

to achieve good prediction outcomes over other AI strate-

gies [58]. The design of ELM is shaped using three layers

consisting of one hidden layer, input layer and output layer,

as shown in Fig. 7. The training activity of ELM is com-

pleted by assigning the hidden layer biases and input weights

randomly. The outcomes of the hidden layer in ELM are

expressed as,

Ñ
∑

i=1

βi fi (xi) =

Ñ
∑

i=1

βif
(

ai · xj+bj
)

= tj, j=1, 2, . . . ,N

(7)

f
(

ai ·xj+bj
)

=
1

1+e−(ai·xj+bj)
, i=1, . . . ,L, j=1, . . . ,N

(8)

The input hidden layer bias and weight vector are

expressed as βi and x = [xi1, xi2, . . . xiN ]
T respec-

tively. The concealed neurons are denoted as Ñ . ai =

[ai1, ai1, . . . , aiN ]
T presents the weight vector which inter-

acts the input nodes, and i-th hidden node. Bi =

[Bi1, βi2, . . . , βiN ]
T presents the outcomeweight which asso-

ciates the i-th output layer neuron and hidden layer neuron.

The sigmoid activation function is denoted as f ().
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ELM in deep networks has its benefits and drawbacks. It is

noticed that ELM requires many hidden neurons. Further-

more, ELM can achieve better and faster outcomes because

of the least square technique. One important advantage of

ELM is the short training time. However, the ELM has some

disadvantages such as the over-fitting problem [59].

Yang and Chen [60] proposed a hybrid technique combin-

ing ELM, SAE, and empirical mode decomposition (EMD),

aiming to predict wind energy proficiently and precisely.

The verification of the proposed hybrid approach was con-

ducted using wide-ranging investigations including the gen-

uine dataset. The assessment outcomes revealed that the

ELM-SAE-EMD technique delivered higher accuracy, indi-

cating 94.04% on the combined dataset and an average

of 93.73% on a single dataset in terms of 12 h predicting hori-

zon. Moreover, the evaluation report illustrated the capacity

of the shared-hidden-layer-based ELM in forecasting wind

power with ordinary computational intelligence. Although

ELM shows great potential in forecasting wind speed, further

investigation is required using the deep structure to address

the complex time-series problems.

Li et al. [61] suggested a hybrid wind energy forecast

strategy using the kernel mean p-power error loss (KMPE)

and ELM. Moreover, principal component analysis (PCA)

was utilized to remove few excess dataset features lead-

ing to a decrease in the computational burden of the huge

amount of dataset. The effectiveness of the suggested tech-

nique was checked with the real-world dataset. The exe-

cution of the proposed hybrid technique was performed

using five phases including data expansion, data prepro-

cessing, parameter optimization, time complexity and error

comparison. The outcomes demonstrated that the suggested

ELM-KMPE technique was dominant to the conventional

FFBPNN approach. Nevertheless, ELM-KMPE illustrated a

slower estimation speed due to the fixed-point cycle. Thus,

further examination is required to overcome the calculation

complexity issues. In addition, further studies can be carried

out using deep learning algorithms with better computer con-

figurations.

Qolipour et al. [62] suggested ELM and Grey model to

develop a hybrid machine learning model for long-term wind

speed prediction. The wind speed assessment was executed

using the Homer Pro programming software with the 10-year

data (2005–2015) in 24 hours. The proposed hybrid tech-

nique was excellent with respect to execution performance

and accuracy. The suggested hybrid technique with MSE

of 0.000376 m/s and co-efficient of determination (R2) of

0.99376 achieved better forecast results than the conventional

ELM model with MSE and R2 of 0.00720 m/s and 0.98075,

respectively. Future research direction includes the evaluation

of the hybrid model using different optimization algorithms

under a real-world dataset.

Salcedo-Sanz et al. [63] introduced a hybrid technique

for short-term wind speed forecasting including ELM, Coral

Reefs Optimization (CRO) and Harmony Search (HS) algo-

rithm. The effectiveness of ELM was enhanced by the

FIGURE 8. SVM strategy (a) the hyperplane(s) development that isolates
one class from the other with the partition edge is the biggest (b) The
largest division margin, M than the picture on the left side [64].

suitable input features found through the CRO. The verifi-

cation of the proposed hybrid technique was performed using

two meteorological towers located in USA and Spain. The

CRO-HS obtained better prediction results than HS and CRO,

achieving RMSE of 3.329 m/s. Table 1 shows the summary of

FFNN-based hybrid approaches for wind power forecasting.

B. CLASSIFICATION AND REGRESSION-BASED HYBRID

APPROACH

The classification and regression techniques are proven to

become effective in wind power prediction. A classification

strategy may forecast a non-discrete value; however, the con-

stant value is in the form of probability. On the other hand,

the regression techniques may forecast a non-continuous

value, yet the non-continuous as a number amount [19].

1) SUPPORT VECTOR MACHINE-BASED HYBRID APPROACH

The support vector machine (SVM) is a supervised AI strat-

egy that can be utilized for both regression and classification

difficulties. In the SVM technique, every dataset is plotted

as a point in n-dimensional space with the estimation of

each component being the estimation of a specific coordinate.

Furthermore, the classification is performed by extracting the

hyper plane that separates the two classes efficiently [31]. The

hyperplane of SVM to separate distinct classes is presented

in Fig. 8. The hypothesis operation is expressed as,

h(xi) =

{

+1 if w · x + b ≥ 0

−1 if w · x + b ≥ 0
(9)

[

1

n

n
∑

i=1

max(0, 1 − yi(w · xi − b)) + λ ‖w‖2

]

(10)

where x represents the points in the element space in the

hyperplane, n is the training dataset points, b is the offset of

the hyperplane, w is the ordinary vector to the hyperplane, λ

is the tradeoff among the margin size which ensure that the xi
lies on the right half of the edge.

SVM has been successful in higher dimensional spaces

where the quantity of measurements is more than the quantity

of sample. Nevertheless, SVM cannot assign the parame-

ters optimally for all the cases. In addition, SVM does not
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give probability measurements straightforwardly and these

are determined utilizing a costly five-overlay cross-approval

process. Also, it does not perform very satisfactorily when the

dataset contains more noise [65], [66].

Liu et al. [67] proposed Jaya algorithm-based SVM

method for short-term wind speed estimation. Here, Jaya

algorithm was applied to optimize the hyperparameters of

SVM. The performance of the Jaya-based SVM model was

compared with seven other techniques including granular

computing, stacked sparse autoencoder, gaussian process

regression, deep belief network, multi-layer perceptron

regression model, extreme gradient boosting model and least

absolute shrinkage and selection operator. The proposed

hybrid model delivered the best results in comparison to

other methods in terms of MSE, MAPE and R2. The report

stated that when the prediction step increased from 1 to 2,

the MSE estimation of the suggested technique also raised

from 0.6451 m/s to 0.8623 m/s, which was around 3% addi-

tion. Similarly, from step 2 to 3, MSE estimation increased

from 0.8623 m/s to 1.0154 m/s. The authors examined

the wind speed prediction without considering the seasonal

impact. Hence, further exploration is required to predict wind

speed under seasonal factors and wind direction predicting.

Li et al. [68] developed a hybrid model for short-term

wind power forecasting based on least squares support vector

machine (LSSVM) optimized by improved ant colony opti-

mization (ACO) algorithm. The LSSSVM can address the

problem of two quadratic programming problems of SVM.

The proposed hybrid technique was superior to FFBPNN

and SVM methods, indicating MSE, average absolute error

and average relative error of 1.6 m/s, 0.4 m/s and 6.65%,

respectively. The results of the proposed hybrid strategy were

promising; however, further analysis can be carried out using

other notable optimization techniques.

Wang et al. [69] proposed a hybrid technique for day-

ahead wind power forecast based on LSSVM integrated with

fruit fly optimization algorithm (FOA). LSSVM technique

was utilized to demonstrate the non-linear relationship among

atmospheric pressure, temperature, wind direction, and wind

speed. FOA was utilized to search for the ideal features of

LSSVM including kernel width parameter and regularization

parameter. The results illustrated that FOA had fast conver-

gence speed compared to PSO in finding the optimal param-

eters. The LSSVM with FOA had the lowest forecast error

over LSSVM-PSO and LSSVM, achieving RMSE and MAE

of 14.23% and 12.54%, respectively. The training periods

of the sample dataset for LSSVM with PSO and LSSVM

with FOA technique were estimated to be is 85s and 65s,

respectively. In future research, other regression methods can

be utilized to enhance the efficiency of forecasting error.

Qu et al. [70] established a hybrid model with FOA-

based support vector regression (SVR) to achieve precise

and reliable wind speed forecasting. The performance of

SVR was compared with RBFNN, General regression neu-

ral network (GRNN) methods. Due to the nonlinearity

and nonstationary of wind speed, the Ensemble Empirical

FIGURE 9. The step by step flow diagram of wind power forecasting using
EEMD-FOASVR hybrid algorithm [70].

Mode Decomposition (EEMD) was employed in the data-

preprocessing stage to decompose the original dataset into

a series of independent Intrinsic Mode Functions (IMFs).

The prediction performance of SVR, RBF and GRNN was

enhanced by FOA optimization. The methodological frame-

work of the proposed hybrid technique is shown in Fig. 9.

The experimental report illustrated that EEMD-FOASVR

outperformed single models as well as hybrid models such

as EEMD-FOAGRNN, EEMD-FOARBF, achieving the min-

imum statistical error with RMSE, MAE and index of

agreement (IA) of 0.1301 m/s, 0.0999 m/s and 0.9978 m/s

respectively in different seasons. Future exploration can be

conducted to solve the nonlinear approximation problems.

Tian et al. [71] combined the LSSVM and BSA meth-

ods for the short-term wind speed forecast. The BSA was

employed to explore the key parameters. The proposed model

was updated using the prediction error precision approach

integrated with the sliding window mechanism, thus avoid-

ing the mismatch issue between the prediction model and

actual wind speed data. The proposed hybrid model attained

MAE, MAPE, RMSE and R2 of 0.1374 m/s, 0.1248 m/s,

0.1589m/s and 0.9648%, respectively. Moreover, the average

value of absolute relative prediction error and the absolute

prediction error were 8.7111% and 0.1113 m/s, respectively

while the wind speed fluctuated from 0-4 m/s. Nevertheless,

the ideal parameters selection is a laborious task that needs
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human expertise as well as in-depth experiment. Thus, further

investigation is required to obtain the parameters of BSA

adaptively.

Li et al. [72] proposed cuckoo search optimized SVR

approach for short-term wind power forecast, as depicted

in Fig. 10. The improved cuckoo search (ICS) arithmetic was

developed to optimize the parameter of the SVR including

the penalty factor and kernel function. The ICS outperformed

GA, PSO and CS with regard to fast convergence speed,

high accuracy and outstanding global optimization capacity.

The ICS-SVR was proven to be effective in forecasting wind

power under volatile conditions with low RMSE, MAPE and

R2. The proposed hybrid model computed MAPE of 7.03 %

which was reduced by 11.14% and 14.51% from those

obtained from GA-SVR and CS-SVR, respectively. Figure a

presents the graphical flowchart of ICS algorithm. Future

works can be performed using an appropriate data processing

method and accordingly, validation can be analyzed under

more influencing factors.

Yang [73] proposed a hybrid technique based on the BSA-

based SVM approach. BSA was employed to update the

weights, leading to an increase in prediction effectiveness in

SVM. The performance of the recommended hybrid strat-

egy was evaluated using the wind energy data in China

between 2001 and 2013. The investigation outcomes demon-

strated that BSA-based SVM was superior to individual

SVM, FFBPNN and other regression algorithms, obtaining

the highest MAPE of 4.72%. However, the weight determina-

tion was a concern of the combined model since the weight

can be fixed and dynamic. Hence, further exploration with

the optimization method is required to overcome the weight

determination issue.

Wind energy forecasting is greatly affected by the sud-

den change in wind speed, resulting in major issues such

as excessive operational expenses, higher reserve capacity,

lower system reliability and the security of the power system.

When the wind power output of any specific wind turbine or

wind farm fluctuates over a predefined threshold value, those

rates of change event are called ramp events. The predefined

threshold value is normally 50% of the usual output. The con-

ventional wind prediction approaches fail to capture the ramp

event in wind speed time series. Hence, Dhiman et al. [74]
proposed hybrid intelligent methods based on several SVR

variants including Twin Support Vector Regression (TSVR),

ε-Twin Support Vector Regression (ε-TSVR), Least Square

Support Vector Regression (LS-SVR), and ε-SVR to solve the

ramp event issue of wind power forecasting. The investigation

was performed on the ramp events of five wind farms at

various hub heights and comparative analysis was carried out

based on the performance indices. The results demonstrated

that the TSVR and ε-TSVRwere effective in short-term wind

power forecasting while ε-TSVR exhibited low computation

speed and LS-SVR achieved the minimum central processing

unit (CPU) time. Additionally, ε-TSVR was dominant to

TSVR, LS-SVR and ε-SVR with regard to an absolute error

during wind power ramp events.

Another study by Dhiman et al. [75] developed a hybrid

forecasting approach in wind power applications compris-

ing Wavelet Transform (WT) and various forms of SVR

algorithm such as LS-SVR and ε-SVR, TSVR and ε-TSVR.

WT was utilized to remove the stochastic volatility from

the raw wind speed dataset. The authors trained and tested

all these approaches with the dataset from a wind firm in

Spain. The analysis revealed that WT-based ε-TSVR was the

best regressor while LS-SVR obtained the lowest CPU time

among all. In the future, the proposed hybrid algorithm may

utilize the wavelet packet transform and hyperparameters

optimization to achieve better efficient outcomes.

Another work by Dhiman and Deb [76] introduced a

hybrid model based on discrete wavelet transform (DWT),

TSVR, random forest (RF), and convolutional neural net-

works (CNN) to predict the wind power under the ramp

events for hilly, offshore, and onshore zones. DWT assisted

to extract features from wind speed. The outcomes illustrated

that SVR was the most appropriate forecasting approach in

comparison to other models and CNN provided better ramp

event prediction for larger training datasets. The proposed

SVR-based hybrid approach showed significant improve-

ment in forecasting the ramp events, reducing RMSE by

4.87% and 17.88% in comparison to RF and TSVR models

respectively. Furthermore, the randomness of the ramp event

was evaluated for all wind firms by utilizing the log-energy

entropy approach. The outcome demonstrated that EMD pro-

vided the least randomness compared to DWT. Apart from

the aforementioned studies, the various ramp event prediction

approaches are broadly discussed in the following book by

Dhiman et al. [77].

2) RANDOM FOREST REGRESSION-BASED HYBRID

APPROACH

Random forest (RF) is a supervised learning technique that

can be utilized for both regression and classification applica-

tions. The operation principle of RF initially starts with the

selection of a random sample from a given dataset. After,

RF strategy makes decision trees based on sample datasets

and afterward develops the forecast from each one of them.

Then, the selection is executed based on each forecasted

outcome. Finally, the highest voted outcome is chosen as the

final forecast outcome [78], [79].

RF offers very high dimensional feature data and high

training speed. Besides, RF balances the error for unbalanced

data sets. The accuracy of RF can still be maintained even if

a large part of the features is lost. Besides, RF illustrates bet-

ter performance in certain noisy classification or regression

problems. Nonetheless, RF creates a lot of trees and combines

their outputs, thus requires much more computational power

and resources [80], [81].

Sun et al. [82] suggested a hybrid intelligent method

combining optimized RF and deep belief network (DBN) to

forecast the multistep wind speed and wind power. Primarily,

DBN was used to achieve short-term wind speed prediction

and accordingly BAT algorithm was employed to update the
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FIGURE 10. Methodological flow diagram of cuckoo search optimized SVR approach for wind power forecasting [72].

parameters and improve the performance further. A weighted

voting technique and a data-driven dimension reduction pro-

cess were used in the prediction and training cycle, respec-

tively to improve the RF computational capability, as depicted

in Fig. 11. The effectiveness of the prosed hybrid method

was verified by different experiments and results revealed

that the optimized RF obtained RMSE, MAE, standard devi-

ation (SD) and average percentage error (APE) of 71.85 m/s,

44.04 m/s, 70.21 m/s and 0.69%, respectively under different

horizons. Nonetheless, the proposed approach has shortcom-

ings of a longer learning duration with a large amount of data.

Besides, it is difficult to determine the optimal number of

layers, neurons and epochs by BAT algorithm simultaneously

due to the varying parameters settings. Hence, in-depth explo-

ration is required to overcome the abovementioned issues.

3) GAUSSIAN PROCESS REGRESSION-BASED HYBRID

APPROACH

The Gaussian process regression (GPR) exhibits signifi-

cant features, for example, marginal log-likelihood function

expansion, logically tractable interpretation, explicit prob-

abilistic formulation, and straightforward parameterization.

The training operation of GPR is initiated using the train-

ing data and hyperparameters. The hyperparameters of GPR

are selected based on the conjugant inclination strategy

that decreases the negative marginal log-likelihood opera-

tion [32]. Lastly, the outcome is determined by assessing the

variance and mean difference of distribution which can be

determined by,

µ∗ = kT∗

(

K + σ 2
n I
)−1

y (11)

6∗ = σ 2
n + k∗∗ − kT∗

(

K + σ 2
n I
)−1

k∗ (12)

where k∗ = [k (x1, x∗) , . . . , k (xN , x∗)]
T , k∗∗ = ks (x∗, x∗).

µ∗ is the forecasting output. I denotes the identity matrix. y
is the training dataset output. K represents the kernel matrix.

K + σ 2
n I is the reversal matrix which is estimated using the

marginal loglikelihood function and its gradient.

GPR can provide accurate and robust predictions against

own vulnerability. Nonetheless, GPR loses efficiency in high

dimensional spaces when the number of features exceeds a

few dozen. As wind speed is unpredictable, GPR is intro-

duced recently to address the irregularity of wind power.

Nonetheless, the drawback of the GPR model is its inability
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TABLE 1. Summary Of FFNN-based hybrid approaches for wind power forecasting.

to adjust to time-varying frameworks and calculational diffi-

culty [83].

Liu et al. [84] introduced a novel hybrid technique based

on the combination of multiple imputation techniques and

GPR algorithm under missing data scenario. The expectation-

maximization calculation was utilized to tackle the missing

information. A new dataset was produced by utilizing multi-

ple imputation techniques. The GPR approach was developed

to execute the wind power forecasts for every individual of

these datasets. A final predictive strategy was designed by

utilizing the ensemble model. The outcomes demonstrated

that the proposedGPR-based hybrid strategywas dominant to

SVM and MLP technique for wind energy forecast for both

incomplete datasets with missing information and complete

datasets without missing information. As the performance of

this model is far better than other models, hence this proposed

technique can be investigated for other renewables prediction

applications.

Yan et al. [85] proposed a hybrid method to address

the unpredictable nature of wind speed using the teach-

ing learning (TL) optimized GPR approach. This novel

hybrid strategy demonstrated to be suitable for wind power

forecasting in terms of high accuracy, low computational

burden and fast convergence speed. The operational pro-

cess of TL-based GPR is displayed in Fig. 12. The accu-

racy and stability of the proposed approach can be further

analyzed under the uncertainty propagation with multi-step

forecasting.

Dong et al. [86] proposed a hybrid wind power forecasting
model based on GPR with Bernstein polynomial. The EMD

was used to decompose the actual wind power data series

into several IMD. After Bernstein polynomial-based GPR

was employed to forecast the wind power. Finally, a multi-

objective state transition algorithmwas established to find the

ideal parameters of the hybrid technique. The validation of

the proposed hybrid model was conducted through compre-

hensive experiments and wind data collected from the wind

farm, China. The hybrid model obtained RMSE and MAE

of 0.4922, and 0.3016, respectively. The experimental results

illustrated that the proposed hybrid model achieved accurate

and stable forecasting results in comparison to other popular

forecasting models. Hence, further investigation is required

to utilize the proposed algorithm under different forecasting

variables and geographical locations.

Hu et al. [87] suggested a short-term wind power fore-

cast using a hybrid method including numerical weather

prediction, spatial correlation (SC) and GPR technique.

Firstly, the optimal combination of different kernel functions-

based GPR models was developed. After, an automatic rele-

vance determination algorithm was used to revise the errors

in the primary numerical weather prediction. Then, data

were extracted using the SC technique. Finally, reliable and
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FIGURE 11. Training operation of RF to predict wind power [82].

accurate wind power was forecasted using the revised numer-

ical weather prediction and SC integrated with GPR. The

proposed hybrid approach improved the forecasting accu-

racy by 10.88–37.49% under different seasons. In future

research, the problem of automatic scene division of com-

plex input data can be addressed by the proposed hybrid

approaches. The summary of classification and regression-

based hybrid approaches for wind power forecasting is pre-

sented in Table 2.

C. DEEP LEARNING-BASED HYBRID APPROACH

Deep learning is new and advanced AI strategy that uti-

lizes the various layers to dynamically separate high-level

characteristics from the raw input data. Deep Learning

algorithms-based hybrid approaches have become popular

in renewable power predictions due to their high accuracy,

generalization and strong computation capability.

1) LONG SHORT-TERM MEMORY-BASED HYBRID

APPROACH

The long short-term memory (LSTM) algorithm is appropri-

ate to forecast, process, and classify time-series given delays

of unknown intervals. The performance of

conventional recurrent neural networks (RNNs) has short-

comings of the vanishing or exploding gradient during back-

propagation training. To handle this problem, LSTM can

capture the long-term conditions through the usage of mem-

ory units rather than conventional hidden layers [88]. The

structure of the LSTMmemory unit includes a series of gates

including forget gate, input gate, output gate and memory

units connected through nodes. The execution of LSTM cell

and output computation can be written as,

fk = σg
(

Wf xk + Uf hk−1 + bf
)

(13)

ik = σg (Wixk + Uihk−1 + bi) (14)

ok = σg (Woxk + U0hk−1 + b0) (15)

ck = fk ◦ ck−1 + ikσc (Wcxk + UChk−1 + bc) (16)

hk = ok ◦ σh (ck) (17)

where ck is the unit memory. hk is the hidden state. xk is the
input. b is the bias parameter. U and W represent the weight

matrices. ok , fk , and ik denote the activation function of the

output gate, forget gate, and input gate respectively. σh, σc
and σg denote the hyperbolic tangent, hyperbolic tangent and

sigmoid respectively.

LSTM is a very powerful technique that can be ideal

for wind power prediction. Relative insensitivity toward gap

length is an advantage of LSTM over RNNs, concealed

Markov algorithms and other group learning strategies in

various real-time applications. Another advantage of LSTM

cell compared to a typical intermittent unit is its cell memory

unit. One of the limitations of LSTM is that there is no

memory associated with the model which causes problems

for sequential data, like text or time series [89], [90].

Chen et al. [91] proposed a hybrid forecasting model

for short-term wind power generation based on LSTM. The

potential feature set was selected using the EEMD where

the original wind sequence was divided into several intrin-

sic mode functions (IMD). Then the appropriate sub-feature

was chosen using the genetic algorithm (GA). The proposed

hybrid approach demonstrated superiority under large-scale

wind dataset and achieved RMSE, MAE and MAPE of

0.1337 m/s, 0.057 m/s and 1.0662%, respectively. Neverthe-

less, there are a few research gaps that need to be explored

in the future including comparative analysis with other opti-

mization algorithms, the inclusion of more features and vali-

dation under different resolutions with other large-scale wind

datasets.

Yuan et al. [92] evaluated the interval of wind power

forecast using the hybrid technique with Beta distribution

based LSTM. PSO was used to optimize the parameters

of Beta distribution. A detailed comparative analysis was

carried out among the proposed Beta-PSO-LSTM model

and other methods including the Beta-LSTM, Beta-PSO-

BP model and LSSVM model. The results indicated that

the proposed hybrid model achieved accurate and reliable

results, indicating prediction interval coverage probability

(PICP), average bandwidth (1P), index (F) and sharpness

(Sα) of 95%, 540 KW, 4.32 and 84, respectively. The pro-

posed hybrid technique can be applied in optimal scheduling

and uncertainty of wind power in further research works.

Shahid et al. [93] predicted the short-term wind speed

forecast using the hybrid intelligent method using GA opti-

mized LSTM approach. GA was used to find the optimal
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FIGURE 12. The flowchart of the proposed variant GP based TL hybrid approach for wind power prediction [85].

values of neurons and window size in the LSTM network.

The proposed hybrid model delivered accurate and robust

predictions of wind power, improving the prediction accuracy

from 6% to 30% in comparison to the existing techniques.

Figure 13 denotes the working principle of the proposed

GA-LSTM model. Although the LSTM model provides a

better solution for learning hyper-parameters, it has two limi-

tations including time and computational resources. Hence,

in-depth investigation is required to address the above-

mentioned issues.

Liang et al. [94] designed intelligent wind speed predic-

tion models based on bidirectional (Bi)-LSTM based hybrid

techniques using the wind farm historical data under differ-

ent characteristic parameters. Transfer learning was used to

enhance the learning efficiency of the model. After, a new

multi-objective optimization algorithm was employed to esti-

mate the optimal values of weight. The experimental report

demonstrated that the proposed hybrid model produced bet-

ter prediction results than other methods with MAPE of

2.3604%. Although the proposed model illustrated enhanced

prediction results, it has shortcomings of slow convergence

speed. Hence, further investigation is required to overcome

the slow convergence issue.

Jaseena and Kovoor [95] suggested a decomposition

strategy-based hybrid forecasting approach for wind power

generation using Bi-LSTM technique. The authors used the

EMD, EEMD,WT and Empirical Wavelet Transform (EWT)

to denoise wind speed data into several high and low-

frequency signals. The analysis revealed that the EWT based

Bi-LSTM delivered more accurate and stable outcomes

FIGURE 13. The executions framework of the GA optimized LSTM
approach for wind power forecasting [93].

than other decomposition-based models. The performance

of the proposed approach was further verified by Bi-LSTM

with skip connections. The result indicated that hybrid
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TABLE 2. Summary of classification and regression-based hybrid approaches for wind power forecasting.

Bi-LSTM models offered excellent prediction results as

opposed to other methods. Nonetheless, further investiga-

tion is required to reduce the computational complexity

issues.

Memarzadeh and Keynia [96] proposed an improved short-

term wind speed forecasting method integrating LSTM,

feature selection (FS), WT, and crow search algorithm

(CSA). The entropy and mutual information techniques

were employed to find the appropriate feature selection.

The variation characteristics of wind speed were addressed

by WT. The ideal structure of LSTM was optimized by

CSA to determine the key parameters including learning

rate and batch size. The proposed hybrid approach out-

performed other methods including basic LSTM, WT-FS-

LSTMandWT-FS-LSTM-PSO. The results illustrated higher

forecasting accuracy, indicting MAE, MAPE and RMSE of

0.189 m/s, 2.588 m/s and 0.259 m/s, respectively. Due to

the accurate and reliable forecasting outcomes, the proposed

approach can be applied to forecast the power system includ-

ing load, price and reserve.

Hu and Chen [97] examined the wind power prediction

using a nonlinear hybrid approach integrating LSTM, ELM

and differential evolution (DE) algorithm. Firstly, the hys-

teretic character-based modified ELM was used to enhance

the forecasting accuracy. Secondly, DE was employed to

search for the optimal values of hidden layers and neurons of

LSTM. The effectiveness of the proposed hybrid model was

verified using two case studies under various experimental

cases based on various performance indices. The RMSE of

the proposed model in case study 1 and 2 was estimated to

be 0.658 m/s and 1.596 m/s, respectively. The performance

of the proposed hybrid approach can be further examined

using multistep ahead wind speed forecasting with more

interrelated features.
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FIGURE 14. The structure of CNN algorithm for wind power
prediction [98].

2) CONVOLUTIONAL NEURAL NETWORK -BASED HYBRID

APPROACH

In the family of AI, the CNN is used for image recognition

and processing. The CNN is a scheme of software and/or

hardware modeled according to the working principle of

neurons as per the human brain. The CNN algorithms are

constructed using several neurons along with learnable biases

and weights. Every single neuron receives multiple inputs

which are proceeded as the weighted sum of them. After, they

are carried through the activation function and accordingly

they respond with an output [98]. The structure of CNN is

shown in Fig. 14.

A CNN contains a hierarchical architecture that starts from

the input signal xi which is expressed as,

xi = ρWixi−1 (18)

where Wi denotes the linear operator and ρ represents the

non-linearity function. Usually, in CNN,Wi operates as con-

volution, and ρ represents as the sigmoid function.

There are several advantages of CNN algorithm that make

it viable than other methods. The primary benefit of CNN is

that it can detect the essential characteristics automatically

and can operate without any human supervision. Besides,

the computational capability of CNN is very efficient. How-

ever, CNN consists of several layers that take a lot of time

during training and testing procedures.

Ju et al. [99] proposed an advanced shot-term wind energy

forecasting method based on CNN and LightGBM classifi-

cation algorithm. At first, a new feature set was produced

through the proper examination of the raw time-series dataset.

Subsequently, CNN was employed to extract the useful data

from the input dataset. After CNN was combined with Light-

GBM algorithm to overcome the constraints of the single-

convolution technique. Lastly, the outcome of the proposed

hybrid method was compared with single CNN, SVM, Light-

GBM and the fusion model. The results revealed that the

proposedmodel had better effectiveness in terms of efficiency

and accuracy, improving MAE and MSE by 35% and 28.5%

in comparison to SVMalgorithm. Themethodological frame-

work of the proposed hybrid approach is denoted in Fig. 15.

Along with the advantages, the proposed algorithm exhibited

some limitations with regard to model robustness which was

FIGURE 15. Flowchart of the CNN and LightGBM based wind power
forecasting approach [99].

challenging to achieve due to the abnormal data and false

data.

Yildiz et al. [100] proposed a novel two-step method for

wind energy forecasting based on the deep learning tech-

nique. Primarily, the feature extraction and conversion of fea-

tures into images were executed using the variational mode

decomposition (VMD) technique. Subsequently, an enhanced

residual-based deep CNN was used to predict wind energy.

The recommended hybrid CNN model ensured promising

outcomes in short-term wind energy prediction compared

with several deep learning frameworks including AlexNet,

GoogLeNet, ResNet-18, VGG-16, SqueezeNet, indicating

RMSE, MAE and MAPE of 0.0499 m/s, 0.0376 m/s and

0.2535 m/s, respectively. Since the proposed model per-

formed better, the researcher can extend the investigation

in various decomposition methods to further enhance the

prediction accuracy.

3) DEEP BELIEF NETWORK-BASED HYBRID APPROACH

A deep belief network (DBN) is designed using the various

layers of hidden units that are connected among the layers

instead of connected among units inside each layer. Greedy

learning algorithms are utilized to pre-train DBN and provide

the optimal weight vectors of each layer [101]. The learning

happens on a layer-by-layer premise and each layer receives

an alternate adaptation of the information, and each layer

utilizes the outcome from the past layer.

The structure of a DBN is formed using stacked Restricted

BoltzmannMachine (RBM) and a regression layer. The input

dataset characteristics are extracted by the RBM and there-

fore, the output is assessed by the regression layer. The DBN
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FIGURE 16. The structure of DBN for wind power prediction [102].

is structured utilizing a hidden layer and a visible layer,

as shown in Fig. 16.

The RBM power capacity is calculated as follows [73],

E (V ,H | θ) = −

m
∑

i=1

aivi−

n
∑

j=1

bihi−

m
∑

i=1

n
∑

j=1

hjwj,ivi (19)

where the vector of the hidden layer and visible layer

are denoted as H = (h1, h2, . . . , hm)T and V =

(v1, v2, . . . , vm)T respectively. The bias term of the hid-

den layer and visible layer are represented as b =

(b1, b2, . . . , bm)T and a = (a1, a2, . . . , am)T respectively.

The weight is denoted as wj,i. i presents the visible unit

and j denotes the hidden unit. θ =
{

wij, ai, bj
}

represents

the parameters vectors of RBF. The numerical conditions of

the contingent probabilities and probability principle in the

hidden layer and visible layer can be written as,











p (V |H , θ) =
∏

i
p (vi| h)

p (H |V , θ) =
∏

j
p
(

hj
∣

∣ h
) (20)



















P
(

hj = 1 |V
)

= σ

(

bj +
m
∑

i=1

viwij

)

P
(

vj = 1H
)

= σ

(

aj +
n
∑

j=1

hjwij

) (21)

DBN has numerous layers as well as complex presentation

of input datasets which are suitable for unsupervised learning

techniques. Besides, DBN can be fine-tuned for a specific

assignment in a supervised style. Moreover, DBN is powerful

to address non-linear fitting issues. Nonetheless, DBN has the

weakness of having a complex structure with a hidden layer

and visible layer.

FIGURE 17. The flowchart of wind speed forecasting based on DBN with
GA approach [103].

Lin et al. [103] proposed GA-based DBN approach using

both time series data andmultivariate regression data for wind

power prediction. The SARIMA strategy and the LSSVR

for time series GA (LSSVR-TS-GA) were utilized to pre-

dict wind speed in a time series, and the LSSVR with GA

(LSSVR-GA) and DBN-GA strategies were utilized to fore-

cast wind speed in a multi-variate format. The flowchart

of the proposed wind speed forecasting approach is shown

in Fig. 17. The experiential outcomes demonstrated that

the wind speed prediction by the DBN-GA techniques was

superior to other forecasting strategies, achieving RMSE and

MAPE of 0.710 m/s and 15.597%, respectively. To increase

the forecasting accuracy, landforms characteristics can be

utilized. Moreover, the hidden layers and nodes in the fitness

function of GAmay be utilized to select the appropriate DBN

structure.

Hu et al. [104] introduced an enhanced hybrid wind fore-

casting method using DBN, SC, adaptive learning technique

and sliding window strategy. Gaussian-Bernoulli restricted

Boltzmann machine technique of DBN and adaptive learning

technique were implemented to enhance the convergence

speed. PCA was used to extract the high dimensional actual

dataset. Moreover, the fundamental features were extracted

from the high-dimensional actual dataset by PCA. The train-

ing data of the forecasting method was updated using the

sliding window strategy. Figure 18 presents the flowchart

of the proposed hybrid technique for wind power forecast.

The experimental outcomes ensured accurate prediction of
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FIGURE 18. Flowchart of the hybrid wind power forecasting technique based on DBN, spatial correlation, adaptive learning technique and
sliding window strategy [104].

wind power forecast compared to the conventional DBN,

enhancing the estimation precision by 15.8975%. However,

further studies are required to solve the redundancy problems,

computational complexity and lower forecasting accuracy.

Wang et al. [105] developed a hybrid forecasting method

integrating DBN with WT and spine quantile regression

(QR) approaches. The wind power raw data was decomposed

into various frequency series data by WT. The forecasting

accuracy of wind speed was improved by nonlinear fea-

tures extracted through the layer-wise pre-training of DBN.

Then, the wind speed uncertainties were evaluated by the

QR method. The proposed hybrid approach improved MAE,

RMSE and MAPE by 48.99%, 50.13% and 42.48%, respec-

tively in comparison to the FFBPNN method. Since the pro-

posed hybrid method assured superior high accuracy under

different seasons and prediction horizons, the method can

also be applied in electric power and energy systems. The

summary of deep learning-based hybrid approaches for wind

power forecasting is presented in Table 3.

D. RULE-BASED ALGORITHM-BASED HYBRID

APPROACHES

The principal rule-based algorithm is based on either heuris-

tics or human expertise. The rule-based algorithm exhibits

simplicity and flexibility; nonetheless, they need substantial

calibration attempts and optimal control to attain a satisfac-

tory outcome. Besides, they have a complex structure and

need a time-consuming computation process.

1) ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM -BASED

HYBRID APPROACHES

The adaptive neuro-fuzzy inference system (ANFIS) is

designed using the advantageous feature of fuzzy inference
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FIGURE 19. The five-layered ANFIS architecture for wind power
prediction [107].

systems (FIS) and neural networks. The ANFIS maps the

input dataset and outcome by utilizing the associated param-

eters and membership functions (MF). For instance, x and y

are considered as input variables and z is considered as the

outcome. The first order If-Then fuzzy rules are expressed

by,

First rule: f1 = p1x + q1y+ r1 (22)

Second rule: f2 = p2x + q2y+ r2 (23)

where x is A2 and y is B2, where MFs A1, A2 are the inputs

for x and B1, B2 are the inputs for y. On the other hand, p1,
q1, r1 and p2, q2, r2 are the related parameters [106]. The

five-layered ANFIS architecture is shown in Fig. 19. The

mathematical presentations of ANFIS in five stages are as

below,

µA =
1

1 +
∣

∣

x−c
a

∣

∣

2b
, µB =

1

1 +

∣

∣

∣

y−c
a

∣

∣

∣

2b
(24)

{

O4,1 =
⇀
w1f1 =

⇀
w1 (p1x1 + q1y1 + r1)

O4,2 =
⇀
w2f2 =

⇀
w2 (p2x2 + q2y2 + r2)

(25)

O5 =

2
∑

i=1

⇀
wifi =

2
∑

i=1

⇀
wifi

2
∑

i=1

⇀
wi

(26)

where µA and µB denote the bell-shaped fuzzy MFs. a, b and
c represents the characteristics that can change the size of

fuzzy MFs. wi is the firing strength; w̄i is the normalization

firing strength. fi stands for the first-order Sugeno model.

pi, qi and ri denote the shape characteristics.
The ANFIS has the fast-learning capacity, variation ability

and capability to capture the non-linear characteristics. How-

ever, ANFIS experiences problems with huge input data that

results in high computational costs.

Liu et al. [108] introduced a new hybrid technique

for short-term wind energy prediction, combining ANFIS,

FFBPNN, RBFNN and LSSVM methods. The Pearson

correlation coefficient (PCC) was applied in the dataset pre-

processing technique for choosing the appropriate input fea-

tures. Firstly, the individual statistical prediction models;

FFBPNN, RBFNN and LSSVM were used to obtain the

forecasted power values. Secondly, ANFIS algorithm was

utilized to combine the predicted energy of three individual

algorithms and yielded the last predicted wind energy. The

proposed hybrid model illustrated significant improvement

in wind power forecast, reducing RMSE of 30.27%, 21.32%

and 45.35% compared to FFBPNN, RBFNN and LSSVM

methods. Further analysis can be extended using the advanced

data preprocessing method with numerical weather predic-

tion data.

Moreno and Coelho [109] proposed a hybrid method for

wind power forecast based on ANFIS and Singular Spectrum

Analysis (SSA). Initially, the SSA was used to decompose

the actual wind speed into different features. Accordingly,

two types of the dataset were prepared, one is the prepro-

cessed data of actual wind time-series and the other was

the remaining features clustered as noise. The ANFIS tech-

nique was employed to both of these datasets to evaluate

wind speed in the next phase. The proposed hybrid model

was compared with group method data handling (GMDH),

Fuzzy c-means method (FCM)methods and obtained the best

results with MAE, RMSE and R2 of 0.2405 m/s, 0.452 m/s

and 0.9687%, respectively in one-step wind power predic-

tion. Further research can be extended by applying SSA to

GMDH algorithm. Moreover, the SSA-ANFIS-FCM method

can be developed and compared with the proposed approach

to achieve improved wind power forecasting results.

Adedeji et al. [110] introduced the PSO-optimized ANFIS

approach for short-term wind power forecasting. Three clus-

tering strategies including fuzzy-c-means (FCM), subtractive

clustering (SC) and grid partitioning (GP) were utilized in the

hybrid PSO-based ANFIS model. The results revealed that

the proposed approach clustered with SC delivered the best

results among the three hybrid models with RMSE, MAPE

and computational time of 0.127%, 28.11% and 30.23 s

respectively. Although the ANFIS tuned with PSO enhanced

the model accuracy, it had a limitation of lengthy computa-

tional time. Thus, there should be a trade-off between accu-

racy and computational time.

Zheng et al. [111] proposed a hybrid technique for short-

term wind power prediction based on ANFIS integrated with

GA and PSO, as shown in Fig. 20. The effectiveness of

the proposed hybrid method was tested using a case study

of microgrid framework in Beijing with real-world data of

wind energy production and climate conditions. The perfor-

mance of the proposed method was compared with conven-

tional ANFIS, FFBPNN, GA based FFBPNN methods. The

GA–PSO–ANFIS demonstrated excellent forecasting results,

achieving an average MAPE of 6.64% over the four seasons.

Moreover, MAEwas noted to be 45.73 in the proposed hybrid

approach, while it was 47.51, 50.66 and 49.9 in ANFIS,

FFBPNN, GA based FFBPNN methods, respectively.

The authors in [112] developed ANFIS based hybrid mod-

els for long-termwind power prediction at four different loca-

tions. The different optimization algorithms were combined

with ANFIS including GA, PSO and DE to tune the MF.

The proposed hybrid models were trained and tested with

different data sizes collected from meteorological stations.
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FIGURE 20. Flowchart of the hybrid technique based on GA–PSO–ANFIS
methods [111].

The results indicated that GA-based ANFIS and PSO-based

ANFIS delivered accurate forecasting results that outper-

formed the standalone ANFIS and DE-based ANFIS meth-

ods. Future works can be carried out using other optimization

algorithms using the real-world wind dataset under different

locations.

2) TYPE-2 FUZZY-BASED HYBRID APPROACH

Sharifian et al. [113] proposed a new intelligence model to

predict medium and long-term wind speed accurately based

on PSO optimized Type-2 fuzzy neural network (T2FNN).

T2FNN combines both neural network learning and expert

knowledge of the fuzzy system for precise wind power pre-

diction, as depicted in Fig. 21. The optimal parameters of

T2FNN were determined by PSO during the training phase.

The proposed T2FNN-PSO model can suitably address the

uncertainties datasets based on supervisory control and data

acquisition (SCADA) system and numerical weather predic-

tion (NWP) tools. The values of the MAPE and the RMSE

were estimated to be 13.37% and 3.35% respectively. The

structure of the proposed model was kept simple to reduce

the computational time in the training phase. Therefore, this

proposed method can be utilized for precise wind energy

forecasting and can provide a practical solution to the power

system control centers. Table 4 depicts the summary of

rule-based hybrid approaches for wind energy forecasting.

FIGURE 21. Proposed T2FNN structure for wind power prediction [113].

IV. IMPLEMENTATIONS OF AI-BASED HYBRID WIND

POWER FORECASTING

This section narrates the different factors in executing the

hybrid AI approaches including data development, algorithm

functions, hyperparameters adjustment, validation and verifi-

cations which are discussed below.

A. DATA PREPARATION

1) DATA PREPROCESSING

Data preprocessing is used to preprocess the original signal

that can increase the forecasting accuracy. Several techniques

can be employed in data preprocessing steps in wind power

prediction such as data division, data decomposition, data

standardization, data normalization. Generally, the dataset is

divided into two sets; training and testing. Wang et al. [114]
applied the 10-fold cross-validation to enhance the diver-

sity of the training subset as well as validate the perfor-

mance evaluation in hybrid wind power forecasting. Data

decomposition decomposes a high-dimensional dataset into

several low-dimensional sub-datasets and is often employed

in signal processing problems. Liu et al. [115] employed

the four signal decomposing algorithms in the multiple-step

wind speed forecasting. It was reported that the Fast EEMD

achieved excellent in the three-step forecasting results while

the Wavelet Packet Decomposition delivered accurate solu-

tions in the one-step and two-step forecasting results. Data

normalization is used to convert the dataset in different scales

so that all the variables in the input dataset can proceed to the

AI model under the same scales. Zameer et al. [116] used
the normalization approach to adjust the input measurements
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TABLE 3. Summary of deep learning-based hybrid approaches for wind power forecasting.

of wind energy between zero and one. Data standardiza-

tion converts the different sizes of data to the same scale

size while using Z-Score values to evaluate the data scales.

Manero et al. [117] used the z-standardization technique for

data normalization in forecasting wind energy using the deep

learning method.

2) DATA FILTERING

The data filtering can improve the accuracy and eliminate

systematic errors in wind power prediction. The Kalman fil-

ter (KF) is an effective technique that can adapt to any change

in observations leading to reduce the uncertainty of weather

prediction. Generally, KF uses a group of mathematical equa-

tions to merge recursively observations and mitigate the

corresponding biases resulting in optimal solutions. Several

studies have illustrated that KF has enhanced the accuracy

of wind power prediction. For instance, Louka et al. [118]
employed KF to reduce the learning time and increase the

performance in long-term wind power forecasting. A work

by [119] applied KF to improve wind power forecasting by

obtaining lower error rates and stable evolution. The authors

in [120] usedKF not only to assess the wind speed forecasting

error but also to reduce the systematic errors.

3) DATA SAMPLING, DOWNSCALING AND OUTLINER

DETECTION

The data sampling duration and sampling rate in wind power

prediction should not be either too short or too long. The

102480 VOLUME 9, 2021



M. S. Hossain Lipu et al.: AI Based Hybrid Forecasting Approaches for Wind Power Generation

short interval of wind data cannot provide sufficient infor-

mation for training the AI models while the long interval

cannot be representative of a large wind dataset. A work

by [121] evaluated wind power forecasting using the train-

ing dataset from the periods between 3 months and 2.5

years. The results demonstrated that the results were quite

similar with the dataset longer than one year; however,

accuracy declined with the dataset longer than two years

and shorter than one year. Data downscaling is an effective

strategy to enhance the quality of weather prediction data

leading to elevate the accuracy in wind power forecasting.

The downscaled weather prediction data employs higher-

resolution computations for wind speed estimation at wind

turbines location that eventually enhances the accuracy of

wind power prediction. The authors in [122] used downscal-

ing technique to improve the proposed model resolution to

7 km, thus reducing the wind power prediction error. Out-

liers of supervisory control and data acquisition (SCADA)

data can be caused by non-calibration of sensors leading to

deliver inaccurate results in wind power prediction [123].

A work in [124] introduced an effective approach for pro-

cessing raw SCADA data toward a reliable and cost-effective

wind turbine condition monitoring development. In [125],

the GPR was employed to identify and eliminate outliers

from SCADA data, indicating a reduction of RMSE by

25% in comparison to standard forecasting methods. In [23],

a deep learning approach was utilized to mitigate outlin-

ers from SCADA data resulting in accurate wind power

prediction.

B. FEATURE SELECTION

Selecting the right combination of input features is one

of the key factors in improving the accuracy of AI-based

wind power forecasting. Numerous input features have been

used in the reviewed literature for wind power forecast-

ing such as wind speed, wind power, temperature, pressure,

humidity, wind direction, location, blade pitch angle etc.

Among them, wind speed is the most widely used input

parameter for wind power forecasting. The authors in [126]

found that wind speed along with location was the most

important influencing parameter for wind forecasting accu-

racy enhancement using the LSTM and Gaussian mixture

model. Another literature [127] reported that wind speed

and wind detection were very sensitive to wind power pre-

diction using a multilayer perceptron (MLP) network. The

authors in [128] considered wind speeds, blade pitch angles,

temperature and nacelle orientation to predict wind power

at various heights and wind shear using deep learning neu-

ral network. The results indicated that blade pitch angle

was critical in wind power generation. A work by [129]

revealed that wind speed along with wind power density and

power output increased the wind power prediction accuracy.

A study by [130] illustrated that solar radiation, humid-

ity and temperature increased the wind power prediction

by 0.3%.

C. ALGORITHM FUNCTIONS AND HYPERPARAMETERS

ADJUSTMENT

1) TRAINING AND TESTING OPERATION

Generally, real wind farm dataset collected from the metro-

logical station are used for model performance assessment

and validation. The developed model is trained and tested

with a different subset of dataset. For instance, in [55], the

authors executed the training and testing operation with data

collected during the different timeframe. The 6057 samples

obtained from 1 May 2014 to 21 June 2014 were employed

for training operation while data samples collected from

22 June 2014 to 1 July 2014 were used to execute the testing

operation. In [110], the authors verified the model perfor-

mance by dividing the six-monthwind dataset into 70:30 ratio

to execute the training and testing operation, respectively.

In [58], the authors divided the dataset into two subsets in

which 2/3 data were used for training while the rest 1/3

data were used for testing. In [80], the authors divided the

whole dataset into training, verification and testing based on

6:2:1 ratio. In [99], the dataset was separated into 8:1:1 ratio

where 80% data were used for training, 10% data used for

validation and 10% data used for testing purposes. In [72],

the authors used 1000 datasets with a sampling interval of 10

minutes and accordingly 700 data points were used for train-

ing and 300 data points were used for testing.

2) ACTIVATION FUNCTIONS

The different training algorithms and activation functions

are employed to operate the AI-based hybrid algorithms

including Sigmoid, Gaussian, rectified linear unit func-

tion (ReLU) and hyperbolic tangent function (tanh). For

instance, FFBPNN [53], ELM [62] and DBN [103] use

Backpropagation and Sigmoid function while RBFNN [53]

uses stochastic gradient and Gaussian activation function to

execute the operation. In SVM [67], the Logistic regres-

sion, functional margin and Radial basis kernel functions

are utilized. In RF [84], Bootstrap aggregating, nonlinear

and differentiable functions are used for training and testing

purposes. The squared exponential kernel, marginal loglike-

lihood function and Kernel function are employed to imple-

ment GPR [86]. The training algorithm and testing activation

functions of LSTM [92] and CNN [99] include Gradient

descent-based backpropagation and Sigmoid, tanh functions

respectively.

3) HYPERPARAMETERS ADJUSTMENT

The selection of appropriate hyperparameters has a substan-

tial impact on wind power generation forecasting. The wrong

combination of hyperparameters results in inaccurate results

in wind forecasting. The trial and error approach is inefficient

and needs lots of time. Thus, optimization is employed to

find the best values of hyperparameters. Normally, the fore-

casting error functions are used as the objective functions in

optimization. Numerous optimization algorithms have been

employed to find the hyperparameters of AI models in wind
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TABLE 4. Summary of rule-based hybrid approaches for wind power forecasting.

power forecasting. Wu et al. [131] used multi-objective grey

wolf optimization to update the weight and threshold of ELM

model. Li et al. [132] introduced the improved dragonfly

algorithm to find the weights, position vector, step vector of

SVM method. Lin et al. [103] used GA to improve the wind

power forecasting accuracy by optimizing themomentum and

learning rate of DBN. Sun et al. [133] proposed BSA to obtain

the optimal values of input weights and hidden thresholds of

Regularized ELM. Li and Jin [134] employed multi-objective

PSO to determine the optimal parameters of the Least squares

support vector machine. Salcedo-Sanz et al. [135] utilized the
CRO algorithm to obtain the best values of hidden neurons of

ELM. Sameer et al. [116] designed GA optimized RBFNN

for wind power forecasting with the appropriate values of

center vector and spread of Gaussian function.

D. VALIDATION AND VERIFICATION

1) COMPUTATIONAL COST

The computational cost for wind energy forecasting is often

regarded as the duration required for training and testing the

AI model. The computational cost depends on the volume

of data, data acquisition rate, AI model complexity, training

algorithms, functions of AI model as well as host computing

power. The computational cost is crucial that can help to find

the ideal prediction model and suitability of AI models in

real-time, especially for short-term wind power forecasting.

Among the numerous AI models mentioned in the litera-

ture, ELM model in wind power forecasting has a lower

computational cost in comparison to FFBPNN and RBFNN

approaches [136]. In [120], the authors predicted short-term

wind power forecasting based on a statistical model with

72-h period simulations. The proposed model achieved a

computational cost of approximately 60–70 min that could

be employed in real-time execution. In [127], the authors

completed the training and testing operation of MLP network

in 30 min using the two months duration dataset and 10 min

sampling rate. It was also reported that a faster training

operation can be executed for each turbine rather than the

wind farm using a separate neural network due to the reduced

size and complexity of the network. In [128], the authors pre-

dicted the wind energy based on the deep learning algorithm

using high-frequency SCADA data with a computational cost

of 0.77 minutes.

2) FORECASTING EVALUATION INDICATORS

The testing and validation phase of AI-driven hybrid mod-

els for wind power forecasting is based on some standard

performance evaluation matrices. Different literatures have

reported different forecasting evaluation indicators to assess

the performance of AI-based hybrid techniques. The most

frequently used statistical error terms include MAE, MAPE,

MSE, RMSE and R2. The mathematical expressions of these

evaluation criteria are shown in the following equations,

MAE =
1

Nsample

Nsample
∑

i=1

(

Pmeasured − Ppredicted
)

(27)

MAPE = 1
Nsample

Nsample
∑

i=1

∣

∣

∣

Pmeasured−Ppredicted
Pmeasured

∣

∣

∣
(28)

RMSE =

√

√

√

√

√

1

Nsample

Nsample
∑

i=1

(

Pmeasured − Ppredicted
)2

(29)
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TABLE 5. Advantages and Disadvantages of Different AI Approaches Used In Wind Power Forecasting.

MSE =
1

Nsample

Nsample
∑

i=1

(

Pmeasured − Ppredicted
)2

(30)

R2 = 1 −

Nsample
∑

i=1

(

Pmeasured − Ppredicted
)2

Nsample
∑

i=1

(

Pmeasured − Ppredicted
)2

(31)

where Nsample is the number of datapoints. Pmeasured and

Ppredicted denote the measured value and predicted value,

respectively.

V. ISSUES AND CHALLENGES

Although hybrid AI algorithms have provided important con-

tributions toward accurate wind power prediction, they have

some shortcomings including algorithm framework, com-

plexity and integration issues.

A. WIND DATA DIVERSITY

The challenges in applying the AI model in wind power

prediction are the data variation and collection from different

locations. The variation of the wind data due to storms,

climate change and seasons results in inconsistency in the

steady electricity generation that further affects the power

system operations. The accuracy of wind power forecasting

based on hybrid AI methods depends on the accessibility

of abundant quality of wind data. Till date, various data-

preprocessing strategies have been applied to obtain sev-

eral high and low-frequency signals including EMD, EEMD,

WT and EWT. However, most of the strategies run slowly

and have unreasonable boundaries of the frequency domain

division. Thus, the verification ofAI algorithms under various

data preprocessing techniques needs further investigation.

B. AI ALGORITHM IMPLEMENTATION ISSUES

Although AI algorithms have been effective in wind power

forecasting, however, they have implementation issues. For

instance, FFBPNN can provide satisfactory outcomes; how-

ever, it has issues of long training duration. RBFNN has a

good global approximation, however, the execution of train-

ing can be trapped in a local minimum. Although ELM has

fast computation, it has shortcomings of over-fitting prob-

lems. SVM does not perform acceptably when the datasets

contain more noise. RF makes a huge number of trees

that demand more computational resources and power. GPR

can operate under the model uncertainty but its efficiency
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decreases in high dimensional spaces. The limitations of

LSTM include the long training duration and costly processor

to accelerate the training operation. CNN is powerful in

detecting key features, however, it is computationally expen-

sive. DBN has the capacity of powerful non-linear fitting,

nevertheless, it has a complex structure with hidden layer and

visible layer. ANFIS needs an appropriate MF as well as a

fuzzy rule for successful operation. The advantages and dis-

advantages of different AI approaches are shown in Table 5.

C. AI STRUCTURE AND HYPERPARAMETER TUNING

Another limitation with the implementation of hybrid AI

approaches is the selection of a suitable AI framework and

hyperparameter tuning. The AI is very sensitive to param-

eter selection and network architecture. To date, several

hyperparameters are adjusted to develop advanced AI-based

hybrid algorithms such as learning rate, weight, bias, hid-

den layer, hidden neurons, sampling interval, timestep, iter-

ations, batch size etc. Moreover, AI training and validation

are executed using various functions including Levenberg-

Marquardt, Gradient descent, Radial basis kernel, Tangent

and sigmoid. The ideal grouping of functions and hyperpa-

rameters can reduce the computational complexity leading

to reduce the issue of data underfitting and overfitting. The

trial and error-based hyperparameters and function selec-

tion need considerable duration and human energy. Hence,

AI framework and hyperparameters adjustment are crucial to

accomplish proper outcomes wind power forecast.

D. AI OPTIMIZATION INTEGRATION ISSUES

Although the integration of optimization into AI approaches

has demonstrated significant contributions in achieving pre-

cise, robust and productive wind power forecasts, they have a

few drawbacks concerning longer training duration and com-

putational complexity. For example, GA is computationally

time-consuming and costly [137] [137]. FOA can be trapped

in a local minima value at the later advancement stage and

has lower accuracy [138]. BSA needs a huge quantity of

memory space for collecting various state principles [139]

[140]. PSO can be trapped and converge prematurely into

a local minimum [56], [57]. Moreover, the combination of

AI and optimizations may deliver unacceptable results if the

dimension, search capacity, and convergence settings are not

assigned appropriately. Thus, the choice of appropriate opti-

mization in the AI approach is the key issue to be explored.

E. AI HYBRIDIZATION ISSUES

The hybridization of AI algorithms has demonstrated supe-

rior performance in wind power prediction over a single AI

algorithm. Generally, hybridization is designed by integrating

AI method with other methods and strategies. For example,

Yang and Chen [60] developed the AI-based hybrid method

using ELM, SAE and EMD. In [61], the AI hybridization

was formed using PCA, KMPE and ELM. Sewdien et al. [28]
designed the hybrid AI model with RF and DBN. Jaseena

and Kovoor [95] utilized EWT and Bi-LSTM to build a

hybrid AI framework. Kartite and Cherkaoui [38] intro-

duced a hybrid AI model using VMD and CNN. Gener-

ally, AI exhibits a complex computation process that needs

high computing power. The hybridization of AI with another

algorithm eventually leads to form complex configurations

and increases the computational burden. Hence, a trade-off

should be maintained between computational complexity and

prediction accuracy.

VI. CONCLUSION AND FUTURE PROSPECTS

Wind energy has received significant attention in generat-

ing electricity either in standalone or grid-connected mode.

However, due to the intermittency and stochastic nature,

the assessment of wind energy potential strength, as well

as wind power forecasting, becomes challenging. Hence,

an advanced and efficient approach is necessary to achieve

accurate wind power forecasting results. This review show-

cases the application of AI-based hybrid approaches in wind

power forecast highlighting various techniques, implemen-

tation factors, issues and limitations. As a first contribu-

tion, this review explores the recent progress of AI-based

hybrid approaches for wind power forecasting highlighting

their mathematical expressions, model developments, ben-

efits and drawbacks. Also, the classification of AI-based

hybrid approaches is provided and accordingly the compar-

ative analysis is performed based on time resolution, parame-

ters used, accuracy and research limitations. Although several

notable AI-based hybrid wind power forecasting methods

are reported in this review, all the hybrid approaches are

not good for the entire length of prediction. Few of them

are excellent in the short term, while others are effective

either in medium-term or long-term predictions. ELM with

CRO and HS, Jaya algorithm with SVM, LSSVM with BSA,

SVM with ICS, DBN with RF, GPR with SC, and EEMD

with IMD combinations achieve satisfactory outcomes in

short-term wind power prediction. In contrast, T2FNNmodel

is effective in medium-term forecasting while ELM with

Grey model, LSTM with RNN, ANFIS with GA, PSO,

and DE illustrate better accuracy in long-term prediction.

As a second contribution, the study highlights the various

implementation factors toward the development of hybrid AI

approaches. Various influential factors are discussed concern-

ing data preprocessing methods, sampling, downscaling, fea-

ture selection, algorithm functions, hyperparameters adjust-

ment, computational cost and performance indices. As a third

contribution, the existing challenges and issues are explored

such as wind data diversity, algorithm structure, implementa-

tion, hyperparameter tuning, optimization integration issues

and AI hybridization issues. As a fourth contribution, the

review provides some effective proposals and future oppor-

tunities for the development of an efficient AI-based hybrid

approach for wind power prediction which are presented

below.

• The AI-based hybrid methods require a large pool of

datasets as well as high computer configuration to pre-

dict wind power generation. Moreover, an effective
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data pre-processing strategy and error post-processing

approach are needed to obtain high-quality wind data,

leading to crate huge computational burden. Hence,

further studies are required on eliminating noise

from the raw data and developing a hybrid model

with a lower computational burden. An effective bal-

ance should be made between extensive computation

and accuracy.

• AI-based hybrid approaches demonstrate the bright

integrity in forecasting wind power in on-shore loca-

tions. However, in recent times, wind-farm installations

are shifted from onshore locations to offshore ones due

to the availability of high wind velocity. The offshore

wind turbine has different topography and weather pat-

terns. Thus, further exploration is required to validate the

hybrid wind powermethodwith offshoremeteorological

data.

• The integration of optimization algorithms in AI has

delivered substantial contributions in wind power fore-

casts. Nonetheless, the appropriate combination of opti-

mizations and AI is a laborious task and could lead

to inefficiency and higher computational cost. There-

fore, further examination is required to search for more

advanced combinations.

• The accuracy of wind power depends on various features

and it is challenging to select the ideal combination

of features. Thus, further attention is required to select

the appropriate features for the development of hybrid

approaches toward accurate wind power forecasting.

• Most of the authors assessed the performance of hybrid

methods with recently developed models with various

performance metrics. However, there has not been any

reliable benchmarking approach for wind power pre-

diction. Therefore, further investigation is required on

developing appropriate standard and evaluation systems.

• The limitations of hybrid AI approaches are the long

duration of training operation and calculation com-

plexity. The training and validation operation become

complex with the introduction of various features,

data pre-processing, optimization and hyperparameters.

Hence, further studies are required to improve the train-

ing execution.

• The accuracy and robustness of wind power forecast-

ing using the AI-based hybrid approach in real-time

can be enhanced by online wind measurement data

through cloud computing platforms. Cloud computing

technology helps in improving accuracy through the

usage of storage, servers, databases, networking, and

software. The wind speed, wind direction, temperature,

atmospheric humidity and atmospheric pressure are con-

stantly transferred to the main server. Subsequently,

AI methods can be trained in real-time and accordingly

can deliver better prediction results.

The outcomes of this research toward the enhancement of

AI-based wind power forecasting are:

• The information, analysis, critical discussion, issues and

challenges would serve as a useful forum and guide

for engineers, industries, decision-makers to encour-

age investments and carry out further research in wind

energy.

• The information provided may help researchers to select

the appropriate hybrid approaches that will improve the

wind power forecast toward reducing carbon emissions

and achieving the global decarbonization target by 2050.

• The suggestions offered would be significant in achiev-

ing accurate wind power forecasting using efficient

AI-driven hybrid approaches that can obtain a path-

way for future sustainable development goals (SDGs),

specifically SDG7, by 2030.
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