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ABSTRACT Modern power systems require increased connectivity to implement novel coordination and

control schemes.Wide-spread use of information technology in smartgrid domain is an outcome of this need.

IEC 61850-based communication solutions have become popular due to amyriad of reasons. Object-oriented

modeling capability, interoperable connectivity and strong communication protocols are to name a few.

However, power system communication infrastructure is not well-equipped with cybersecurity mechanisms

for safe operation. Unlike online banking systems that have been running such security systems for decades,

smartgrid cybersecurity is an emerging field. A recent publication aimed at equipping IEC 61850-based

communication with cybersecurity features, i.e. IEC 62351, only focuses on communication layer security.

To achieve security at all levels, operational technology-based security is also needed. To address this need,

this paper develops an intrusion detection system for smartgrids utilizing IEC 61850‘s Sampled Value (SV)

messages. The system is developed with machine learning and is able to monitor communication traffic

of a given power system and distinguish normal data measurements from falsely injected data, i.e. attacks.

The designed system is implemented and tested with realistic IEC 61850 SV message dataset. Tests are

performed on a Modified IEEE 14-bus system with renewable energy-based generators where different fault

are applied. The results show that the proposed system can successfully distinguish normal power system

events from cyberattacks with high accuracy. This ensures that smartgrids have intrusion detection in addition

to cybersecurity features attached to exchanged messages.

INDEX TERMS Smartgrid cybersecurity, SV message security, IEC 62351, intrusion detection, artificial

intelligence, IEEE 14-bus system, renewable energy.

I. INTRODUCTION

Integration of Information Technology (IT) with power sys-

tems gave birth to smartgrids [1]. In this fashion, more

measurement can be done, and better operational decisions

can be made. Power systems are operated more efficiently

with smaller margins, in contrast to traditional procedures.

Additionally, such connectivity enables novel applications

that require coordination of more than one equipment in

the system [2]. For instance, coordination of electric vehi-

cles with renewable energy-based generators to mitigate

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

their intermittency requires continuous message exchanges

between these entities [3]. Alternatively, virtual power plant

concept where different generation and storage devices act

collectively to represent a much larger generation plant

heavily relies on successful communication between these

devices [4].

Adaptive protection is, especially, became a very active

field [5]. Recent advances in power generation technology

such as inverter-interfaced generators, novel storage devices

and smart inverters created a much more dynamic power

system [6]. Ensuring safe operation in such complex systems

where there is bilateral power flow and many active compo-

nents is a very tall task. Therefore, power system protection
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strategies started employing more measurement and commu-

nication [7], [8]. This is the cost of having active devices

at distribution network which effect the traditional power

flow assumptions. Since novel protection schemes heavily

rely on measurement values and other data exchanged over

communication networks, they are also very prone to cyber-

attacks such as false data injection (FDI). Protection systems,

also energy management systems, can be manipulated by

injection false data [9]. Thinking that something drastic is

happening in the power network, protection measures can

be activated, or non-optimal energy dispatch decisions can

be made. These will cause financial losses as well as power

system interruptions.

As the enabling technology, IEC 61850 communication

standard has emerged as the leader in this field due to sev-

eral advantages [10]. It offers a robust structure that allows

object-oriented modeling. Thanks to its standardized data

object approach, interoperability is ensured regardless of

device model or manufacturer. Finally, it has fully developed

message exchange protocols that can be used for different

purposes such as periodic message update or event-triggered

messages [11]. Literature sees a constant influx of device and

system modeling based on IEC 61850 standard and this is

only expected to increase [12].

However, it has been reported in the literature that this

high connectivity creates many cybersecurity vulnerabilities

in smartgrids [13]. Until very recently, communication in

power systems was utilized in very exclusive and limited

contexts. It was not open to third-party connections and the

possibility of an outside connection was minute. Therefore,

cybersecurity measures that are well-known in other domains

are currently being deployed in power systems for the first

time. Recently published IEC 62351 standard aims at equip-

ping IEC 61850 messages with cybersecurity features such

as message integrity and encryption [14]. There are different

studies that focus on how these two standards can be merged

and secure IEC 61850 messages can be sent [15]–[18].

These IT measures are excellent towards securing message

exchanges. However, holistic cybersecurity design requires

that additional schemes are also implemented [19]. For

instance, currently, IEC 62351 does not have any recom-

mendation towards intrusion detection in smartgrids. The-

oretically, if a hacker successfully penetrates the first line

of defense set by IEC 62351 measures, there is no system

in place to detect this intrusion. To address this need, this

paper proposes a machine learning based intrusion detection

for IEC 61850 Sampled Value (SV) messages. As the name

implies, thesemessages carry periodic samples of critical grid

parameters such as bus frequency, voltage etc. Due to critical

nature of the places of their use, e.g. measurements for power

system protection, frequency and voltage control as well as

energy management, SV messages can be exploited to render

significant damage on the power system infrastructure.

There are different works in the literature that focus on

IEC 61850-based communication security. There are works

that focus on implementation of IEC 62351 recommendations

such as authentication and message integrity [20]. In addi-

tion, there are works that focus on extending these security

measures and investigate possibility of using other algorithms

or encryption [5]. Nevertheless, all of these works focus

on developing a first line of defense against manipulations

such as man-in-the-middle attacks, replay and masquerade

attacks. Holistic cybersecurity defense approach requires

there are different mechanisms to prevent, detect and divert

an attack.

Although there are some intrusion detection systems

proposed in the literature [21], [22], these works focus

on Supervisory Control and Data Acquisition Systems

(SCADA). The works in [23], [24] develop an IDS for IEC

61850 SV messages. However, they only make use of some

information carried within SV messages. This provides IT

level security. Thorough cybersecurity requires a solution

using Operational Technology (OT), i.e. involving the opera-

tional parameters when the messages are exchanged. Recent

work in [25] focuses on IEC 61850 SV messages and uses

machine-learning approach to detect spoofed packets with

OT. However, there is no accuracy and timing tests performed

which makes the reliability and feasibility of the proposed

work dubious. The individual plots shown in that work have

very high error rates. This is due to the fact that in [25] neural

networks are used which is not a good selection for power

system protection applications. This is also confirmed in the

results section of this paper where neural networks algorithm

has the lowest accuracy rate. Finally, there is no test under

fault conditions which makes it very hard to predict the power

system behavior in an accurate manner.

Following from the above, currently, there is nomechanism

for detecting intrusion in power system communication net-

works employing SV messages. To address this knowledge

gap, this paper proposes an intrusion detection system for

SV messages. Needless to say, power systems always have

events that require different equipment to respond. How-

ever, this natural behavior is different than the behavior of

an attacker who has acquired access to critical infrastruc-

ture and intends to do as much harm as possible. The sys-

tem employs machine-learning and is trained to discern this

natural behavior of a power system from cyberattacks.

The major contributions of this work are as follows:

(a) A novel machine-learning based intrusion detection

system is developed for IEC 61850 SV messages.

(b) Modified IEEE 14-bus system is utilized to obtain

a dataset that represents operation with renewable

energy-based generators under normal and fault condi-

tions. This data set is used to train the proposed system.

Then, the performance of the system is tested with test

data where cyberattacks are included.

(c) Symmetric and asymmetric fault conditions are added

to the dataset. The system is trained and tested for

normal and attack conditions both with and without

faults. Symmetric and asymmetric faults are success-

fully distinguished from false data injected by the

intrude.
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FIGURE 1. IEC 61850 communication stack.

(d) Different machine-learning algorithms are utilized, and

their performances are contrasted. Results are reported

to discuss which one of these algorithms is more suit-

able for intrusion detection in power system communi-

cation based on IEC 61850 SV messages. Evaluations

are done in terms of training and attack detection times

as well as attack detection accuracy.

The rest of the paper is organized as follows: Section 2 gives

an overview of IEC 61850 SV messages, their structure

and operation style. Section 3 presents the proposed intru-

sion detection algorithm. Section 4 gives details about per-

formance experiments, sample data and test data. Finally,

conclusions are drawn in Section 5.

II. IEC 61850 SV MESSAGES AND CYBERSECURITY

VULNERABILITIES

IEC 61850 communication standard was initially developed

to establish communication between substation devices [10].

However, it has received a lot of attention from researchers,

engineers, and companies alike. Its initial domain is extended

several times so that it can be used for power system com-

munication with a much larger pool of available devices.

Researchers have worked towards developing models for

novel devices such as electric vehicles (EVs) [26] and

smart meters [27] or new smartgrid applications such as

virtual power plants [4], EV charging coordination schemes

[3]. The main reasons behind such a positive uptake are

object-oriented modeling that allows for simple yet strong

device modeling, interoperable communication systems that

do not depend on certain company or a technology as well

as robust message exchange services that are developed for

power system applications [28]. As shown in Figure 1, there

are three services utilized. Generic Object-Oriented Substa-

tion Event (GOOSE) message is developed, as the name

implies, as a means of exchanging information regarding an

event that took place in the substation while Client-Server

communication is used for ad-hoc message exchanges,

notifications, and reporting.

FIGURE 2. SV message exchange between a publisher and a subscriber.

As shown in Figure 2, Sample Value messages are used

for periodic reporting of measurement values. Recently, their

use has been extended to different smartgrid applications,

yet the operational principles stayed the same. SV mes-

sages are preconfigured and, then, continuously transmitted

from monitoring location to data processing point. Unlike

GOOSE messages that are triggered when a predetermined

event occurs, SV messages do not need a trigger to start

transmission. Furthermore, they are designed to sample the

target value with equal time windows. Therefore, the time

period between two SV messages is always equal at pub-

lisher, although during transmission some delays may be

introduced.

SV messages are traditionally used for substation protec-

tion devices. Due to high number of SVmessages exchanged,

handshaking procedures between sender and receiver are out

of the question. This is not an issue in traditional substations

that operate with exclusive communication networks that are

not open to outside connection. However, recent advances

in smart grid domain brought along novel uses of SV mes-

sages such as in demand side management or electric vehi-

cle smart charging systems [3], [25]. The current structure

of SV messages and the way in which these messages are

transmitted have various cybersecurity vulnerabilities [29],

[30]. The original use envisioned for these messages was

limited to a proprietary substation that is not open to com-

munication with the outside world. As the power system

communication evolved and IEC 61850 standard is applied to

information exchanged outside substation environment, these

vulnerabilities became more apparent and relevant [31].

For instance, as shown in Figure 1, SV messages are

directly mapped onto Ethernet layer, skipping TCP/IP, and

making transmission much faster. However, the downside

is that there is no traditional sender and receiver addresses

that can be used to protect messages and prevent cyberat-

tacks. It is true that the SV message structure as shown

in Figure 3 includes destination and sources addresses, but
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FIGURE 3. Message structure of SV.

TABLE 1. GOOSE and SV messages target address ranges.

these cannot be used for such purposes. The reason is that,

firstly, these are Media Access Control (MAC) addresses and

self-declared. Secondly, the destination address is not a real

device’s address. It is utilized to differentiate SV streams from

each other and can take any value within the range specified

in IEC 61850 standard as shown in Table 1.

Thirdly, these messages do not include any cybersecurity

mechanism whether it be message integrity, authentication or

encryption. They are exchanged over the net with full visibil-

ity and can be read and viewed by any party [32]. The mes-

sages do not have any built-in mechanism to authenticate the

sender which leaves the doors open for any imposter attack

[33]. Similarly, there is virtually nothing stopping an entity

from capturing an SV message exchanged in the network,

editing its contents and retransmitting it as a part of a replay

or masquerade attack [33]. Some of these issues are identified

and IEC 62351 Cybersecurity standard has been issued as a

complementary to IEC 61850 communication standard. The

proposed cybersecurity mechanisms are still in their infancy

and require a lot of work to be widely implemented in power

system communication infrastructure.

Nevertheless, IEC 62351 cybersecurity standard only rec-

ommends use of communication layer security mechanisms,

such as implementing hash algorithms to check message

integrity or using digital signatures to authenticate senders.

There is no input on operational layer security. To ensure fully

secure communication, a holistic cybersecurity approach is

needed. For instance, if a hacker circumvents the security

checks implemented at communication layer and gains access

to the network, there is no system in place to detect this

breach. Considering the sensitive nature of SV message con-

tents and that they are used to trigger actions in devices, this is

a big problem. They can be utilized by parties with malicious

intent to inject false data into the system with the aim of

FIGURE 4. Machine learning-based intrusion detection system for SV
messages.

disrupting desired operation. In order to fill this knowledge

gap, a machine-learning based intrusion detection algorithm

is developed in the next section.

III. MACHINE-LEARNING BASED INTRUSION DETECTION

ALGORITHM

SVmessages are giving a snapshot of the entire power system

by continuously sampling system parameters and sending

them to control centers. These system parameters change

with respect to events taking place in network such as load

increase, generation loss or faults. However, these changes

are not arbitrary and depend on the system topology, operat-

ing conditions and components. In other words, similar events

under similar conditions should trigger reactions that resem-

ble each other. Furthermore, an event at a certain location,

e.g. generation loss or load increase at a certain bus, not only

effects SV messages sent from that particular location but

from neighboring sampling sites as well. Therefore, there is

a certain behavioral pattern that every power system has for a

particular event. This can be observed, reported and detected.

On the other hand, hackers launch cyberattacks from a point

where they can breach and gain unauthorized access. It is

inconceivable that a hacker gains access to all measurement

devices in a network. Therefore, when a hacker launches

FDI attack at the compromised access node, incoming SV

values would be inconsistent with the rest of the SV streams

present in the network. This discrepancy shows that there is

an intruder in the system who is trying to inflict some damage

with falsely injected data.

Based on these facts, it is possible to design an intru-

sion detection system as shown in Figure 4. SV streams are

constantly supplied for measurement and control purposes.

In parallel with power system operation, an event analysis

is performed for these streams. Based on the event history,

i.e. previous events, SV streams are subjected to scrutiny

and compared with the regular behavior of the power sys-

tem. If the event history shows that this event is likely to

be a legitimate event, then the normal operation continues.

VOLUME 9, 2021 56489



T. S. Ustun et al.: Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values

FIGURE 5. Decision tree operation structure.

Otherwise, the accumulating evidence indicates that there is

an intruder in the system and the alarm is raised.

It goes without saying that every power system, or sub-

system such as a microgrid or a sub-station, has different

behavior. Therefore, comparison performed in Figure 4 needs

to be particular to each system, not generic. This requires

analyzing the past events and developing a behavior model as

shown in the middle. Machine learning is utilized to develop

a pattern for any given power system. To add to diversity,

machine learning algorithm is trained with data pertaining

to system with and without fault conditions. If there is a

fault, these are also not trivial three-phase to ground faults

that are mostly used in power flow simulations. In real life,

asymmetric faults are more common than symmetric ones.

Therefore, the algorithm is trained with asymmetric fault data

as well as symmetric fault data. As a result, the developed

detection system can distinguish between no fault operation,

fault operation and FDI attack situations. In case of a fault,

system can also detect what type of a fault is observed.

Several machine learning algorithms are utilized, and their

performances are compared in the next section. Before get-

ting into test results and their analysis, an overview of these

algorithms is given in the next sub-section.

A. DIFFERENT MACHINE LEARNING ALGORITHMS

UTILIZED

In order to measure success of prediction and contrast their

performances, several algorithms are utilized in the proposed

system. These are Decision Tree (DT), Random Forest (RF),

Extremely Randomized Trees (XRT) and Artificial Neural

Network (ANN) algorithms.

Shown in Figure 5, DT algorithm utilizes decision tress

with branches and leaves. In this fashion, it extracts conclu-

sions from observations related to a particular item. In this

approach, observations are represented as branches while

the conclusions are the leaves. The algorithm is designed to

progress towards the leaves. Since the goal of DT is to draw

some conclusions and estimate the value of a target node, it is

deemed suitable for the developed intrusion detection system

where values for SVmessages are estimated in a broad sense.

FIGURE 6. A random forest with several decision trees.

A collection of DTs constitutes a RF. In other words, RFs

utilize several DTs to make a decision and individual deci-

sions from each DT are processed to reach a final conclusion

in RF, as shown Figure 6. Decisions are made by following

the most efficient path in each DT. RF is a bagging algorithm

and it can be utilized to address over-fitting or accuracy issues

encountered in DTs. The number of DTs is not limited and

can be set as wished. In this particular study, 100 trees are

used in RF.

XRT is similar to RF in the sense that an ensemble of trees

is used instead of a single one. Certainly, there are differences

between the two. Firstly, XRT uses the entire sampling data

while RF allows for bootstrap data use. The more structural

difference is that RF chooses the optimum cut points to split

nodes whereas XRT does this randomly. XRT selects the best

cut point among the randomly split nodes. This approach

makes XRT both randomized and optimized.

In some XRT and RF implementations, bagging and boost-

ing ensemble methods are utilized. This stems from the prin-

ciple that many learners perform better than a single one.

By combining them, it is possible to create a better learning

algorithm. As shown in Figure 7, the approach is very similar

for these two methods. Individual weak learners are trained,

and a collective decision is made to reach the output. Only

difference is that bagging trains the learners separately while

boosting does this sequentially. Output of bagging relies on

the mean prediction and cannot give precise values for the

model. But it can reduce over-fitting and maintain accuracy

for data that is not available. On the other end of the spec-

trum, boosting increases accuracy but is prone to overfitting.

An approach where these two are combined can be used to

attain high accuracy and avoid overfitting. In this study, XRT

uses bagging mechanism as it is more suitable for FDI attack

on power system values. Boosting may fail in this application

since it is more fit for cases where data add on each other.

ANN models biological neural networks in an artificial

way; hence the name. It utilizes artificial neurons that process

the input and provide an output. All the processing is done

inside the algorithm called hidden layer which can include

only a single set of neurons or more. The non-linear functions

embedded inside the neurons help model a certain behavior

and create a relationship between input and output data. Con-

sidering that the proposed intrusion detection system is also
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FIGURE 7. Bagging and boosting methods used in XRT.

FIGURE 8. Modified 14-bus system with renewable energy based
generators.

trying to achieve this between SV stream data and operating

conditions, ANN is selected as one of the tested machine

learning algorithms.

Next section presents the training data, test data and the test

results for all the algorithms discussed above.

IV. INTRUSION DETECTION PERFORMANCE TESTS

In order to investigate the accuracy of the proposed intru-

sion detection system for SV messages, several tests have

been performed. As shown in Figure 8, a modified IEEE

14-bus system is obtained by deploying some renewable

energy-based generators. These distributed generators create

a more dynamic power system operation profile and makes it

more difficult to successfully predict accurately. Considering

the current trends for increased renewable energy share in

generation portfolio, such systems will become more com-

mon in the future. Therefore, the tests are performed on this

difficult yet more realistic topology.

Firstly, the system is run under normal conditions without

any faults or FDI attacks. System parameters are sampled

so that a normal operation model can be constructed. Then,

random faults are applied to one of the five designated fault

locations shown in Figure 8. There is only one fault at a single

location, if a fault is applied. Since symmetric faults account

for only 2-5 % of all faults in the grid [34], asymmetric faults

are also considered. The fault type is randomly selected from

any one of the following:

FIGURE 9. Frequency at bus 9 for LG fault at different locations.

FIGURE 10. Voltage at bus 9 for LG fault at different locations.

FIGURE 11. Voltage phase angle at bus 9 for LG fault at different
locations.

1. Three phase line to ground fault (3L-G, symmetric)

2. Line to ground fault (LG, asymmetric)

3. Line to Line fault (LL, asymmetric)

4. Double line to ground (2L-G, asymmetric)

Data collected under these conditions represent the sys-

tem behavior with different faults at various locations.

Figures 9-11 depict impact of LG fault at different locations

on frequency, voltage value and phase angle of bus 9. It can

be observed that the same event has different repercussions at

different measurement locations.

Once this aggregated dataset is acquired, FDI attack data

is injected to replicate a scenario where a hacker has gained

unauthorized access to the system. In that case, a hacking

algorithm has been developed to find a gap and crack the

security system. However, this is not blind random value

injection. The developed attacking algorithm takes original

data and injects the hacked data based on this real value. Then,

based on the output of ML-based detection system, the attack

algorithm tweaks this attack data. If it is easily detected,
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FIGURE 12. Random value FDI attack on voltage values in SV values.

FIGURE 13. Cross validation approach with several iterations.

then a random value closer to real value is injected. This is

repeated until the hacked data can pass through detection.

This trains the detection algorithm and increases its predic-

tion success. In order to evaluate this performance, one of the

three system parameters (bus voltage, phase angle and fre-

quency) is selected at random, and random value FDI attack

is applied as explained above and depicted in Figure 12.

This final dataset has normal operation, fault operation

and FDI attack data inside. The algorithms are trained and

tested with this dataset. In order to increase the reliability

of test results cross validation is performed with a cross

validation value of 5. This means executing five distinct

iterations on the dataset. This PSCAD-Python co-simulation

creates 21600 data points. Almost %10 of all columns has

been attacked on different time zones and different bus loca-

tions. However, ML algorithms tend to memorize the dataset

instead of learning and predicting process. This is called over-

fitting. In order to avoid this problem, cross validationmethod

has been applied as shown in Figure 13.

As shown, the overall data is split into seven equal portions.

In each iteration a different portion is designated as the test

fold while the rest is used as training data. The benefit of this

approach is that it mixes the training and test folds over the

TABLE 2. Accuracy precision and F1 scores for different FDI attack and
fault combinations.

entire dataset. This eliminates the possibility of any lucky

situations that may arise from a specific way of splitting

the dataset. Every portion gets to be utilized as a test fold,

thereby subjecting the proposed intrusion detection system

to all possible combinations.

Performance tests have been performed in Python on a

platform with Intel Core i7 @ 2.80 GHz with 32 GB RAM

and the results are reported in Table 2 and 3. Firstly, it is safe

to say that the proposed intrusion detection system is vali-

dated with these results. Regardless of the machine learning

algorithm used, the system distinguishes regular operation

from cyberattacks regardless of there being a fault in the

system. The accuracy of the used algorithms has been amixed

bag where ANN and DT had about 85 % accuracy for no

attack situations. This value dropped all the way down to

around 83 % where there are attacks and faults simultane-

ously. On the other hand, RF and XRT reported very high

accuracy values where XRT had 97.7 % and 94.7 % for no

attack case and the case where both attacks and faults are

present, respectively.

Precision and F1 Scores are also shown in Table 2. These

results are exactly as expected. For example, if the model

marks the signals that need to come to monitoring system as

attack (false positive = FP), the power system will always

raise an alarm. However, filtering the correct it is important

is correct signal must be filtered. In this case, the high/low

precision value is an important criterion for choosing the

model as presented in Figure 14. Receiver Operating Charac-

teristic(ROC) curve has been created for binary classification

and shows that the accuracy is the best option.

The poor performance of ANN is due to the nature of the

implementation. The input values are not complex, power

system parameter readings sent by SV values, and outputs

are pretty straightforward. ANN is more suitable for more

stochastic and complex applications such as image process-

ing. DT is a very simple machine-learning algorithm and its

performance is similar to that of ANN. RF and XRT, on the
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FIGURE 14. ROC curve.

TABLE 3. Training and FDI detection times of different algorithms.

other hand, are improved implementations of DT and this can

be clearly observed from the reported high accuracy values.

XRT’s randomized node splitting has given it an edge over

RF where this is done optimally.

Timing performances are reported in Table 3 for the case

where both FDI attack and fault are present. Most important

aspect of the test results is the times required to train the

system, i.e. training time, and the time required to run the

algorithm and detect an attack, i.e. attack detection time.

These two times are completely distinct and relate to different

steps of operation. Training can be done offline or before

the deployment of the system. Therefore, it does not have

a direct impact on the system operation when SV messages

are received in real-time. On the other hand, attack detection

time pertains to real-time operation of the proposed system.

It corresponds to the time it takes for the system to process

an incoming SV message and decide whether it is a normal

message or an attack message, as shown in Figure 4.

IEC 61850 standard does not stipulate a certain time

required for SV messages to be sent. That’s because the sam-

pling rate may differ from application to application. In cases

where SV is used for slowly changing values, e.g. state of

charge in EV battery, sampling rate can be one in several min-

utes [35]. However, this arbitrary definition of SV messages

has been hard to implement in the field. IEC 61850 users’

group has agreed on a lighter edition of SVs, IEC 61850-

9-2LE, where the sampling rate is limited to two choices:

80 and 256 samples per cycle [36], [37]. For a 60 Hz system

this means the time between two SV messages is 208 µs for

80 samples and 65.1 µs for 256 samples.

Analyzing the performance test data in Table 3, it can be

observed that DT can be used for intrusion detection in a

system running 9-2LE SV messages. For 80 samples, there

is ample time for processing the incoming SV messages

in real-time for a possible attack. If 256 samples are used,

the window is much smaller but still the processing time is

less than separation between the messages. ANN and RF

cannot be used for either 9-2LE sampling rate in real-time.

XRT, which has the highest accuracy rate, can be used for

9-2LE SV messages if sampling rate is 80. In this case,

XRT needs half of the time required for an SV message to

arrive before the next SV message comes. This is the best

combination of accuracy and speed for the tested cases.

It is also possible that attack detection can run in real-time

as SV messages arrive and every nth SVmessage is subject to

scrutiny. For instance, if RF is used for 9-2LE SV message

with 256 samples, it can process every 5th SV message to

check for possible FDI attack and intrusion. When and if

any attack is detected, alarm can be raised, and SV stream

is blocked. Only a couple messages will slip through until

an attack is detected. This approach is especially important

where the users may opt to use a much higher sampling rate

than 9-2LE, at least in theory IEC 61850-9-2 (not LE) allows

that. In such cases, the proposed intrusion detection system

can be used in an asynchronous fashion. Still, any FDI attack

can be successfully detected and system operation can be

secured.

Finally, all of the algorithms have relatively short training

times, considering that training is done offline. This opens

a path to pseudo-online training approach where the system

may collect data and retrain itself on a specific time win-

dow, e.g. 1 month or 3 months. This will add value to the

proposed system as it can learn the changing behavior of the

power system and adjust its training. This will create a much

more dynamic intrusion detection system that can respond to

changing trends in the power system.

Test results show that DT and XRT have much smaller

training and detection times. However, DT’s accuracy is low

whereas XRT reported excellent accuracy values. Therefore,

XRT can be deemed as the most suitable algorithm for

proposed intrusion detection system since it offers the best

combination of higher accuracy and less time required.

V. CONCLUSION

Smartgrid applications are getting more popular where dif-

ferent devices need to communicate and coordinate. For this

to happen, a reliable infrastructure is needed. There have

been efforts towards providing an interoperable communica-

tion platform for such purposes. However, implementation of

cybersecurity mechanisms to secure information exchange on

such large-scale has lagged behind. There is imminent need

for achieving cybersecurity in power system, a cyber-physical

system where message exchanges may have real, physical

implications.

IEC 61850‘s SV messages are widely used for sampling

and reporting system parameters. This makes them highly

critical in cybersecurity assessments. This paper develops a

machine learning-based intrusion detection system for SV

messages. Based on the nature of SV messages, the system
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is able to differentiate between usual operation from attacks.

The resilience of the system is high since it is not affected

by the presence of a fault current in the system. Furthermore,

the system is able to distinguish between a symmetrical

and asymmetrical fault as well. Performance tests have been

performed with realistic smartgrid communication dataset.

Differentmachine-learning algorithms are utilized to see their

suitability for such use. Results show that the developed

system can successfully detect cyber-attacks based on SV

messages. Although the performance of algorithms differs,

all machine-learning algorithms yield acceptable results and

no over-fitting is observed.

Using algorithms other than the ones in this paper or

using different parameter values can be a future extension

of this work. Nevertheless, the current results show that the

proposed intrusion detection system can successfully detect

unauthorized access via SV message analysis. Future work

may focus on integrating this system with a honeypot.
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