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Abstract: Object recognition and tracking is a challenge for underwater vehicles. Traditional algo-
rithm requires a clear feature definition, which suffers from uncertainty as the variation of occlusion,
illumination, season and viewpoints. A deep learning approach requires a large amount of training
data, which suffers from the computation. The proposed method is to avoid the above drawbacks.
The Siamese Region Proposal Network tracking algorithm using two weights sharing is applied to
track the target in motion. The key point to overcome is the one-shot detection task when the object
is unidentified. Various complex and uncertain environment scenarios are applied to evaluate the
proposed system via the deep learning model’s predictions metrics (accuracy, precision, recall, P-R
curve, F1 score). The tracking rate based on Siamese Region Proposal Network Algorithm is up
to 180 FPS.

Keywords: underwater robot; deep learning; object tracking; mechatronics

1. Introduction

In recent years, there has been an increasing interest in Autonomous Underwater
Vehicles (AUVs) (e.g., subsea inspection, maintenance, and repair operations [1], resource
exploration [2], species abundance investigation [3], and military science [4,5]). Recent
developments in the field of Artificial intelligence (AI) have led to a renewed interest in
underwater unmanned vehicles.

One of the most essential current discussions in AUV is target tracking. There are
three basic approaches currently adopted by research on object tracking. One is the target
appearance features approach, kernelized correlation filters approach, and the other is deep
learning approach. The former two are non-AI approaches, which is slow and suffer from
lack of sufficient background information in comparison to deep learning approach.

A Faster R-CNN and kernelized correlation filter (KCF) tracking algorithm was pro-
posed [6] to achieve the detection and counting small objects for underwater robot to catch
seafood. Their study showed the proposed method can recognize and catch seafood in
real time.

There are four factors affecting the performance of target tracking. These are (1) low
and non-uniform illumination causing image blurred and low color contrast; (2) various
viewpoint leading a morphological change of target in image; (3) occlusion from underwater
creature; and (4) scale variation.

An adaptive approach has been proposed to select the Walsh–Hadamard kernels for
the efficient extraction of features under the influence of the underwater optical dynam-
ics [7]. The performance demonstrated the robustness to the hazy and degraded, partially
occluded, and camouflaged uncertainties.

There are generally two approaches for target tracking of mobile robots; these are filter
based and learning based. The particle-filter based on the track-before-detect scheme was
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proposed for underwater targets detection and tracking with low signal-to-noise ratios [8].
The results showed the system at low signal-to-noise having comparable performance
at higher signal-to-noise. Their approach is tempting to focus on characterizing objects
of interest (positive samples). However, background information should be given more
consideration (negative samples).

However, the visual tracking of objects using kernelized correlation filter suffer from
presence of multi-scale. Therefore, GMM is adopted to re-detect and correct the tracking
model in kernelized correlation filter tracking process [9]. The result demonstrates a better
tracking performance under scale variation.

An underwater image restoration and Kernelized Correlation Filters (KCF) was proposed
for underwater robots to handle the conflict between tracking speed and accuracy [10]. The
results achieved a better tracking accuracy and speed for different underwater objects.

In recent years, there has been an increasing interest in learning-based target tracking.
A basic tracking algorithm with a fully-convolutional Siamese network was proposed for
the training on the offline video dataset for object detection [11]. The concept of offline pre-
training and not updating online has the advantage that the target won’t be contaminated
and the detection area is large enough to not be affected by slight errors.

A Fully-Convolutional Siamese Networks was proposed for a monocular mobile robot
tracking system [12]. The Siamese convolution network acted as the tracker to lock the
target and followed by adopting the bearing conversion algorithm and speed conversion
algorithm fort following the target. The experiment shows real-time target following at
variable speeds according to the forward speed of the tracking target with safety distance
even though having occlusion.

A Siam-FC autoencoder method is established for the change detection of unmanned
aerial vehicle’s cameras [13]. The results show the number of labeled samples can be
reduced with less training data.

However, far too little attention has been paid to the low-cost monocular vision based
on deep learning for underwater object tracking. Most studies in object tracking, where the
testing was conducted using offline video datasets. So far, those methods have only been
applied to ground and aerial vehicles. So far, however, there has been little discussion about
the underwater object tracking. Unfortunately, these methods do not always guarantee the
tradeoff between tracking accuracy and speed under the uncertain and complex underwater
environment. In recent years, there has been an increasing interest in deep-learning based
object tracking without large training datasets while maintain the comparable performance.

An image stitching method was proposed to solve the problem of lack of view-
points [14]. It aimed to stitch the images using the available information on the multi-camera
system and the environment. The proposed system was tested with a data set collected
in underwater environment with a multicamera system. The results demonstrate a better
performance than the conventional approaches.

A review on underwater image enhancement and restoration has been conducted [15].
Their study identified the key causes of quality reduction in underwater images followed
by a review on various underwater restoration methods with experimental-based com-
parative evaluation. Their study suggested the key shortcomings of existing methods
and recommendations.

A dual-network object tracker with an attention fusion module was proposed to
consider both the appearance and motion feature [16]. The result demonstrates the im-
provement on object tracking by the integration of motion information with dual-network
and attention fusion.

A Siamese-SE deep neural network was proposed to improve the feature represen-
tation ability that leads to the tracking speed and precision of balance [17]. Their results
showed that the proposed algorithm achieve better performance than Siamese-FC in real-
time target tracking.

The region proposal networks (RPN) with the Siamese network for tracking, and
shown excellent accuracy with high efficiency. However, one-stage Siamese-RPN trackers
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suffer from the similar distractors and large-scale variation. To overcome those drawbacks,
a multi-stage tracking framework, Siamese Cascaded RPN (C-RPN), which consists of a
sequence of RPNs cascaded from deep high-level to shallow low-level layers in a Siamese
network was proposed [18].

A Siamese network as the main neural network architecture was proposed to achieve
detection and tracking of target for a surface robot [19]. The proposed system was evaluated
with accuracy, precision, recall, P-R curve, and F1 score. The empirical results showed a
robust target tracking for the unmanned surface vehicle.

This study investigated the use of Siamese Region Proposal Network (SiamRPN) for
the motion detection and tracking of underwater target. A low-cost AUV with onboard
monocular vision is fabricated to extend the underwater perception capability of the
unmanned surface vehicles [19]. The aim of this study is to evaluate and validate the
effectiveness and efficiency for the adopted approach in the presence of uncertainties (i.e.,
occlusion and illumination).

2. Materials and Methods

Figure 1 shows the centralized architecture of this system. The hierarchical control
scheme is divided into high-level and low-level control. However, the wireless signal on
the water is not stable enough for the AI model deploying remotely to control the AUV. The
centralized architecture is adopted in this paper (wire communication). The AI is placed
onboard of the surface AUV as edge computing to avoid abnormal communication.
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Figure 1. The proposed centralized architecture for the AUV.

Considering the high cost of make a new mold and the current manufacturing process
technology of acrylic cannot be produced a streamlined hull. This paper uses a bullet-
shaped hull design as shown in Figure 2, referring the design of the commercially available
underwater robots, most of which are cylindrical and oblate. The system architecture is
illustrated in Figure 3.
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2.1. Underwater Image Enhancement

Optical-based imaging is affected severely due to the light absorption and scattering
of the underwater turbid medium, which leads to color distortion and low contrast. The
red color channel attenuates the fastest in comparison to the blue-green color channels.
Therefore, the images taken under water are mostly the effect of blue-green [20]. An
underwater image enhancement approach is proposed to solve the above problems, which
combines deep learning and image formation model [21].

However, the experimental environment for the proposed system is approximately
two meters in the water’s depth, where the red light gradually attenuates, therefore, only
part of the image formation model is applicable. The underwater environment suffers from
turbid medium resulting low visibility. The obtained image is composed of two parts of
light source information, which are directly transmitted light and background scattered
light. The background scattered light is caused by the light in the surrounding environment
being scattered by a large number of small particles in the water instead of come from the
radiation of the object itself. The light directly transmitted comes from the object itself. The
formula is as following:

I(x) = D(x)e−βd + B
(

1− e−βd
)

(1)

t(x) = e−βd (2)

I(x) = D(x)t(x) + B(1− t(x)) (3)

where I(x) is the coordinates of the imaging; x is the image pixel; D(x) is the reflection of the
light on the object itself; B is the ambient light; B(1 − t(x)) is the scattered background light.
The directly transmitted light will be attenuated, and its magnitude is determined by the
attenuation coefficient β and transmission distance d. t(x) is the medium transmission, on
the other hand, it means that the proportion of reflected light can smoothly pass through
the fogged water and arrive at camera. Scattering may occur when light passes through
particles in the water. Only part of the energy D(x)t(x) can be imaged to the camera, which
is directly transmitted light.

2.2. Feature-Based Panoramic Image Stitching

Automatic panorama stitching based on SIFT image stitching [22–24]. This method
has the advantage of using invariant features in the image to match the panoramic image
sequence while the input image has uncertainties (e.g., rotation, scaling, and brightness
changes). The flowchart as shown in Figure 4.
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The first step of the panoramic image stitching algorithm is feature points extraction.
The image is composed of flat, edge and corner pixel’s part. The corners are regarded
as features usually, which is also the feature points of SIFT. It is obtained according to
the Difference of Gaussians (DoG) at different scales-space of the maximum or minimum
values, which are as following:

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ)

(4)

where G (x, y, σ) is a two-dimensional Gaussian function, k is the proportional influence
parameter between two adjacent scales, I (x, y) is the pixel coordinate value of the input
image, and σ is the standard deviation of Gaussian normal distribution L (x, y, kσ) is
the convolution of the original image and the Gaussian blur on the condition that the
scale is k times. L (x, y, σ) is the scale-space of the image obtained by convolution of the
original image and Gaussian blur. There are subdivided into three parts for the second
step, which are feature points location, the directions of the gradient determine, and feature
descriptions generation. Eliminate excessive key points and suppress weak feature points
that are susceptible to noise after obtaining the feature points, and locate the key points that
play an important role in the image. For each Gaussian image, the m (x, y) and direction θ
(x, y) of the gradient distribution of each feature point L (x, y) are as following:

m =
(
[L(x + 1, y)− L(x− 1, y)]2 + [L(x, y + 1)− L(x, y− 1)]2

) 1
2 (5)

θ(x, y) = tan−1
(

L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

)
(6)

where the scale represented by L (x, y) is the current scale of the feature point. The
information of the area around the feature point is obtained after the gradient direction is
given, and the feature description (e.g., position, coordinate, direction.) is calculated, which
is called a descriptor. It allows a slight movement of the edge and a change in proportion
without changing the descriptor of SIFT. Third, there are still many feature points between
the two images after eliminating and suppressing unnecessary feature points in the feature
matching, which is performed to find the corresponding pairing. Define the two images as
the reference image Ri and the observation image Si. The paring method applies Euclidean
distance as following:

Ri = (ri1, ri2, ri3, · · · rin) (7)

Si = (si1, si2, si3, · · · sin) (8)

d(Ri, Si) =
√ n

∑
j=1

(
rij − sij

)2 (9)
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d(Ri, Sj) =
Sj

Sp
< Threshold (10)

where Ri is the descriptor in the reference image, Si is the descriptor in the observation
image, d (Ri, Si) is the similarity measure of any two feature points and n is the dimension.
Euclidean distance comparison is used for any dimension j of each image. The feature
points are matched when d (Ri, Sj) is less than the threshold. Sj is the closest point from the
reference image Ri. Sp is the second closest point from the reference image Ri. The RANSAC
(RANdom SAmpling Consensus) is applied to remove the outlier after the matched feature
points obtained.

The Homography H to the paring two images is calculated, the feature point of the
reference image P and the feature point of the observation image P’ as:

wP′ = HP, (11)wx′i
wy′i
w

 =

h00 h01 h02
h10 h11 h12
h20 h21 h22

xi
yi
1

 (12)

where w is an arbitrary coefficient of H. The H matrix is calculated from the feature points
of the two images. The RANSAC is used to searching the best candidate of Homography
between the pairing two images. The feature points with the least pairs of calculation H is
selected randomly to obtain H and is calculate iteratively to get the best H. Table 1 shows
the pseudo code of image stitching using SIFT and RANSAC.

Table 1. Algorithm of image stitching.

Pseudo Code

1: Algorithm Find matching plate (R, A)
2: Compute SIFT descriptors S(P1), . . . , S(PN)
3: Compute SIFT descriptors S(R)
4: maxA = 0
5: for i = 1 to n do
6: for every point p∈S(R) find matching point q∈S(Pi) if it exists
7: Let M = {(p1, q1), . . . , (pm, qm)} be the set of matches
8: maxP = 0
9: for j = 1 to r do
10: Let {(pm1, qm1), . . . , (pm4, qm4)} be 4 randomly selected from M
11: Compute H such that Hpmi = qmi for i = (1, . . . , 4)
12: m = 0
13: for k = 1 to |M| do
14: if |Hpi − qi| < ε then
15: m = m + 1
16: end if
17: end for
18: if m > maxp then
19: maxp = m
20: Hp = H
21: end if
22: end for
23: if maxA > maxp then
24: maxA = maxp
25: HA = Hp
26: match = i
27: end if
28: end for
29: return match, HA
30: end function

2.3. Siamese Region Proposal Network for Object Tracking

Generally, visual object tracking (VOT) defined as single target tracking. The tracked
target is given in the initial frame, and the target is followed in the subsequent frames
with bounding box, that is, focusing on correcting the non-specific target repositioning. Be
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precisely, there are five rigorous criteria to determine whether it belongs to VOT, including
monocular, video or image sequence is only obtained from single camera, that is, it does
not consider complex applications across cameras (e.g., road monitors); model-free, that
is, the model does not know what objects will be framed before obtaining the frame of
the initial frame, nor does it need to model the objects in the initial frame in advance;
single-target, only tracking the object that selected in the initial frame, apart from this,
regarded as background/noise; real-time is an online update process; short-term, once the
target is lost, it cannot be re-tracked.

The purpose of target tracking is fast tracking speed and high accuracy. However, the
existing correlation filter technology cannot have both at the same time. Usually, it tracks
quickly then lack of the ability of adapt to the size change or rotation of the moving object. In
2016, the deep learning-based Siam-FC method proposed a faster tracking speed and better
accuracy. However, only the center position of the target can be obtained, and the size of
the target cannot be estimated. Similarly, the size of the moving object is affected [12,16,17].
In this paper, deep learning-based SiamRPN is adopted to realize VOT. The sharing weights
between templates of the Siamese network architecture overcome the issues of fast motion
and low resolution effectively. By region proposal network’s (RPN) multi-scale candidate
frame to extract features to reduce the effect from occlusion, background interference, scale
change, deformation, and rotation [18,25]. The complete architecture as shown in Figure 5.
The Siamese network structure and parameters of the upper and lower branches are the
same. The upper is the bounding box of the input initial frame, which is used to detect the
target in the candidate area, that is, the template frame. The lower frame is to be detected
(real-time or video), that is, detection frame. The middle part is the RPN structure, which is
divided into two parts. The upper part is the classification branch. The lower part is the
bounding box regression branch. Because there are four quantities [x, y, w, h], the right side
of 4k is the output.

1 
 

 
Figure 5. The architecture of SiamRPN. 

 

Figure 7. The tracking phase as one-shot detection. 

 

Figure 5. The architecture of SiamRPN.

First, the principle of Siamese network is the same as the Siam-FC. The image with
input size of 127 × 127 × 3 is the template frame z, which is defined as ϕ(z) after feature
extraction by convolutional neural network (CNN). CNN uses a modified AlexNet [26]
without cov2 and cov4, and after three layers of fully convolution networks without
padding, a 6 × 6 × 256 feature map is obtained. Then, the 6 × 6 × 256 feature map passes
through a convolution and becomes a 2k channel (divided into positive and negative),
which is a branch of classification and a 4k channel (divided into four variables, dx, dy, dw,
dh), which belongs to the branch of bounding box regression. k is the number of anchors.
The anchor is based on the feature map to divide rectangular boxes with different ratios on
the original image. RPN aligns these boxes for a rough classification and regression, and
determines some fine-tuned ones that contain the foreground (positive) and background
(negative). Bounding box regression is for better frame the target causes the predicted
bounding box is generally not accurate. The anchor of SiamRPN as shown in Figure 6.
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The number of anchors is determined by multiplying the ratio of anchors and the
number of scales. Since the changes in the tracking process of the before and after frames
are not large, the anchor chooses only one scale, ratio = [0.33, 0.5, 1, 2, 3], and the black
point in the center is the pixel point of the feature map. After having the background
knowledge of RPN, in the middle green part of Figure 5 that the classification branch and
the regression branch, respectively, perform convolution operations on the features of the
template frame and the detection frame, which with a black dashed line, and equations are
as follows:

Acls
w×h×2k = [ϕ(x)]cls•[ϕ(z)]cls (13)

Areg
w×h×4k = [ϕ(x)]reg•[ϕ(z)]reg (14)

where Acls contains 2k channels, each point in which represents positive and negative
samples, classified by SoftMax activation function; Areg contains 4k channels, each point
represents between anchor point and the ground truth, which are dx, dy, dw, dh. For every
branch acquires the two outputs of ϕ(z) and ϕ(x) of the Siamese network after passing
through the convolutional layer (changing the channel dimension) as the input. If there are
k anchor points, the network needs to output 2k classification channels and 4k regression
channels, therefore, increase the number of channels of ϕ(z) to [ϕ(z)]cls and [ϕ(z)]reg first.
The two branches reach 4× 4× 256× 2k and 4× 4× 256× 4k through convolutional layers,
respectively, which is the same CNN. Similarly, ϕ(x) is also divided into two branches
[ϕ(x)]cls and [ϕ(x)]reg by the two convolutional layers but keep the channel unchanged at
20 × 20 × 256. Black • represents the calculation of the correlation on the classification
branch and the regression branch.

The loss function of faster region-based CNN combines the losses of classification and
bounding box regression

L = Lcls + λLreg (15)

where λ is the hyper-parameter. The loss function of bounding box regression is

Lreg =
3

∑
i=0

smoothL1 = (δ[i], σ) (16)

in which

smoothL1 = (x, σ) =

{
1
2 σ2x2, |x| < 1

σ2

|x| − 1
2σ2 , |x| ≥ 1

σ2

(17)

is a robust L1 loss.
δ[0] = Tx−Ax

Aw
, δ[1] = Ty−Ay

Ah

δ[2] = ln Tw
Aw

, δ[3] = ln Th
Ah

(18)

where Ax, Ay, Aw, Ah is the x, y coordinate of center point, height and width of the
anchor boxes, while Tx, Ty, Tw, Th is of the ground truth boxes. IoU (intersection over
union) measure the correlation between ground truth and prediction which is the area of
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overlapping divided by the area of union part. Positive sample (foreground) have IoU
greater than 0.6, while negative sample (background) have IoU less than 0.3.

The above is the training phase. The input is for the training template frame Z, and
the two weights obtained after CNN and the convolution layer, which are the weight of the
regression branch and the weight of the classification branch, are used as part of the kernel
of the detection frame in the tracking phase (obviously, the detection frame is larger than
the template frame from Figure 6) as shown in Figure 7.

1 
 

 
Figure 5. The architecture of SiamRPN. 
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The tracking phase is a one-shot detection, which the training sample is only one given
in the initial frame as:

min
W

1
n

n

∑
i=1

L(ψ(xi; W), li) (19)

min
W ′

1
n

n

∑
i=1

L
(
ψ
(
xi; w(zi; W ′)

)
, li
)

(20)

min
W

1
n

n

∑
i=1

L(ξ(ϕ(xi; W); ϕ(zi; W)), li) (21)

where (19) is the most basic definition of one-shot detection; L is the average loss; ψ(xi; W)
is the prediction function; n is the number of training samples; xi is the training samples; li
is the training sample label; and W is the parameter to minimize the loss L.

Applying it to target tracking, it is derived as (20). The purpose is to learn the predictor
parameter W from a single template frame z, ω is the forward propagation function, and zi
is the template frame, hence, (zi; W’) is mapped to W. Table 2 shows the pseudo code of
one-shot detection tracking.

Table 2. Algorithm of one-shot detection.

Pseudo Code

Algorithm
Input: Template features φ(It), Detection features φ(Id)
Output: P (pi, bboxi)
1: Extracting template features φ(It) with a CNN to generate C(φ(Id))
2: Concatenating C(φ(Id)) and having dimensions D(φ(Id))
3: Concatenating D(φ(Id)) to 4 positions of φ(It)

Use a Siamese network for feature extraction to generate C(φ(Id)), and then input the
concatenate features and dimensions D(φ(Id)) into the RPN to calculate the similarity score
pi and bboxi of the region of interest. It is further addressed on SiamRPN, which is derived
as (21), ϕ is the extraction feature of Siamese network, ζ is the RPN, xi is the detection
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frame, and zi is the template frame. The purpose is to adjust the W parameter to find the
minimized average loss L, and obtain the weight W through the template frame and the
detection frame through the CNN and convolution layer. Figure 5 shows that a template
frame obtains weights, Wreg and Wcls through CNN and convolution layer, which is utilized
as the convolution layer (gray square area) of the detection frame. During the tracking
phase, the training phase is offline training, that is, it will no longer update online once the
weights are trained, and finally acquire the classification and regression feature map as the
coordinates as following:

Acls
w×h×2k =

(
xcls

i , ycls
j , ccls

l

)
(22)

Areg
w×h×4k =

(
xreg

i , yreg
j , dxreg

p , dyreg
p , dwreg

p , dhreg
p

)
, (23)

where I ∈ [0, ]), j ∈ [0, ]), l ∈ [0, 2]), c denotes center, p ∈ [0, ]). The bounding box that far
from the center is removed. It is assumed that the object changes little in the before and
after frames, therefore, it is selected in a rectangular range smaller than the original feature
map. Finally, through non-maximum suppression, the boxes that are not likely and the
overlapping boxes are removed. The step is to choose a box with the highest confidence
first, and the remaining boxes with its intersection over union are greater than the threshold,
then remove them, and so on, until get the final bounding box for tracking the target.

The underwater robot moves forward while the bounding box’s size is under the
threshold (object is away from the robot) and moves backward while the bounding box’s
size is over the threshold (object is close to the robot). When the bounding box deviates from
the center within a certain range, activates the corresponding motor to take corresponding
actions. Table 3 shows the pseudo code of tracking target.

Table 3. Algorithm of target tracking.

Pseudo Code

Algorithm
Input: Video frames Frs
Output: Segmented images
1: for frame in Frs do
2: if first_frame then
3: Selelct ROI
4: else
5: outputs = tracker.track(frame)
6: bbox = list (map (int, outputs[‘bbox’]))
7: Apply Siamese Region Proposal Network.
8: end if
9: if bbox < thresh then
10: Activate motors to move forwards.
11: else
12: Activate motors to move backwards.
13: end if
14: if bbox(x, y) > center(xc + 20, yc) then
15: Activate left motor to turn right.
16: elif bbox(x, y) < center(xc − 20, yc) then
17: Activate right motor to turn left.
18: end if
19: if bbox(x, y) > center(xc, yc + 20) then
20: Activate z-axis motors to go up.
21: elif bbox(x, y) < center(xc, yc − 20) then
22: Reverse z-axis motors to go down.
23: end if

3. Results

Most of underwater target tracking prefers pre-recorded videos to verify whether
aquatic creatures, man-made objects can be tracked in the screen accurately. However,
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gradually, [9,10] proposed effective target tracking based on particle filters and correlation
filters apply on AUVs. The feature detection, matching and homography matrix calculation
is performed by using the OpenCV library. This paper proposes a deep learning based
underwater object tracking with low-cost monocular CCD camera for a custom-made un-
derwater vehicle as shown in Figures 8 and 9. The proposed hull design of the underwater
vehicle provides low fluid resistance coefficient. The differential drive mechanism using
two stepping motors on each side is adopted for the motion control (forward, backward,
left turn and right turn).
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Figure 9. Underwater vehicle tested in the environment is listed in as: (a) Top view; (b) Side view.

The reason why the structure of the AUV is divided into two parts is to facilitate
underwater communication with our surface vehicle [19]. The floating part is designed
to be placed on our surface vehicle for the communication with the AUV. The AUV is
designed for the tracking of underwater objects around the surface vehicle, it will not be
far from our surface vehicle.

The advantage this configuration is also take the computational complexity of the
proposed method into consideration, as the hardware equipped on the AUV are always
not that powerful. Therefore, the computation is conducted on the surface vehicle. The
specifications of the system are shown in Table 4.
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Table 4. Specifications of the AUV system.

Item Specification

Control Board Nvidia Jetson Xavier NX
Arduino UNO

Operating System Linux
Ubuntu 18.04

Arduino Software IDE
Motor 365 DC motor

28BYJ-48 stepping motor
IMU MPU-9250 9DOF module

Ultrasound AJ-SR04
TDS Sensor SKU-SEN0244

Camera Logitech C270
Hull Length 640 mm
Hull Width 310 mm
Hull Height 390 mm

Counterweight 15 kg
Buoy Length 41 mm
Buoy Width 21 mm
Buoy Height 85 mm

The underwater image enhancement was performed as shown in Figure 10. The feature
points between the two consecutive image frames are detected as shown in Figure 11. The
correspondences are matched as shown in Figure 12. Final panoramic image is stitched as
in Figure 13.
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Figure 14 shows the sequences of feature detected and extracted from the real-time
data collection during actual underwater cruise. Figure 15 shows the stitched panorama
image resulted from the cruise in Figure 14.
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The underwater target tracking illustrated in Table 3 is implemented as shown in
Figure 16 (i.e., image frame 25, 50, 75, and 100). The tracking can be achieved in the
presence of occlusions and rotation of the target. The results show that the algorithm can
adapt to the scale change of the target.
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Figure 16. Actual underwater target tracking.

Three datasets are used to evaluate the performance of the visual tracking algorithm
as follows:

1. Visual Object Tracking (VOT2018) dataset [27];
2. Object Tracking Benchmark dataset (OTB100) [28];
3. Real-time video sequences collected by the proposed system.

The following target tracking algorithm are used for the performance evaluation with
the above dataset.

4. SiamRPN (proposed in this paper);
5. Efficient Convolution Operators for Tracking (ECO);
6. Continuous Convolution Operators (C-COT);
7. Distractor-aware Siamese Networks for Visual Object Tracking (DaSiamRPN).

3.1. VOT2018 Data Set

The metrics to evaluate the above tracker’s performance are listed as follows:

• Accuracy;
• Robustness;
• Number of lost frames;
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• Expected average overlap (EAO).

Accuracy is the average overlap rate of the tracker under a test sequence. The area of
the intersecting part of the two rectangular boxes is divided by the area of the merged part
of the two rectangular boxes (MeanIOU) as:

Φ(ΛG, ΛP) =

{
AG

t ∩ AP
t

AG
t ∪ AP

t

}N

t=1

(24)

where t, N is frame number, AG is ground truth of target, AP is predicted output position
and Φ is accuracy of current frame.

Robustness is the number of tracker failures under a test sequence. It is judged to fail
when the overlap rate is 0, which is calculated as following:

ρR(i) =
1
N

N

∑
k=1

F(i, k) (25)

where F (i, k) is the number of failed tracking, k is the index of measurement repeated
N times.

The Number of Lost Frames is the total number of lost image sequences in the testing
(VOT2018). EAO is the expected value of the non-reset overlap of each tracker on a short-
term image sequence, and it is the most important indicator for VOT to evaluate the
accuracy of the tracking algorithm as:

Φ =
1

Nhigh − Nlow

Nhigh

∑
Nlow

ΦNS (26)

where Nhigh and Nlow is the length of sequence, ΦNS is average overlap.
Table 5 compares the metrics for each tracker. The confusion matrix obtained from

applying proposed SiamRPN tracker is shown in Table 6 and the metric of evaluation are
listed in Table 7.

Table 5. Metrics to evaluate model’s performance using VOT2018 of data set.

Tracker Accuracy
(Φ (
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R(i)) Lost Num EAO (Φ)

SiamRPN 60% 0.337 50.0 0.318
ECO 48% 0.276 59.0 0.284

C-COT 54% 0.184 39.2 0.378
DaSiamRPN 60% 0.337 50.0 0.327

Table 6. Confusion matrix from propose tracker’s (SiamRPN) using VOT2018 dataset.

Day-Time Data Set Actual

Positive Negative

Predicted
Positive 7384 3548

Negative 4968 5296

Table 7. Metrics to evaluate propose tracker’s (SiamRPN) performance using VOT2018 dataset.

Accuracy Precision Recall F1

60% 60% 68% 63%
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3.2. OTB100 Data Set

Table 8 compares the metrics to evaluate the above tracker’s performance and are
listed as follows:

• Success;
• Precision.

Table 8. Metrics to evaluate model’s performance using OTB100 data set.

Tracker Success Precision

SiamRPN 70% 91%
ECO 69% 91%

C-COT 67% 90%
DaSiamRPN 66% 88%

3.3. Real-Time Data Collected by the Proposed System

The testing data of target tracking were collected using the proposed underwater
vehicle at a pond and swimming pool. The testing site (pond) had the presence of variation
on illumination and occlusion (rocks, turtles and fished). The illumination descriptions of
two testing data sets are summarized as:

• Data set A, contains 1264 samples under the illumination of sunlight at daytime;
• Data set B, contains 402 samples the illumination of onboard LED light source at night.

The confusion matrix for both dataset A and B is shown in Tables 9 and 10, respectively.
Table 11 compares the metrics (accuracy precision, recall and F1 score) to evaluate the
SiamRPN tracker’s performance for both data set.

Table 9. Confusion matrix of model using dataset A.

Predicted

Positive Negative

Actual
Positive 599 245

Negative 189 231

Table 10. Confusion matrix of model using dataset B.

Predicted

Positive Negative

Actual
Positive 161 62

Negative 93 86

Table 11. Metrics to evaluate propose tracker’s (SiamRPN) performance.

Dataset Accuracy Precision Recall F1

A 66% 76% 71% 73%
B 61% 63% 72% 68%

The P-R (Precision-Recall) curve of for the whole datasets (A and B) is shown in
Figure 17. The ROC curve (Receiver Operating Characteristic Curve) the whole datasets (A
and B) is shown in Figure 18. The ROC curve shows the performance of the model at all
thresholds (True Positive Rate vs. False Positive Rate). The orange line denotes ROC curve
and the blue line denotes linear. The AUC (Area under the ROC Curve) is 0.66.
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4. Discussion

The proposed system applied SiamRPN based on deep learning to effectively track
the underwater moving target. The current findings expand prior work [19], neighbor-
hood tracking of underwater objects for the unmanned surface vehicle. The computa-
tion conducted onboard the surface vehicle reduce the insufficient power issue of the
underwater vehicle.

As mentioned in the literature review [12,16,17], the deep learning-based Siam-FC
approach shows a faster tracking speed and better accuracy. However, their approach
suffers from only acquire the center position of the target, while the size of the target cannot
be estimated (e.g., detection bounding box size is fixed). The size of detection bounding
box changed proportionally to the target sized in the proposed system.

The proposed SiamRPN approach share weights between templates of the Siamese
network architecture overcome the issues of fast motion and low resolution effectively.
The results are in general agreement with [18,25], which extract features by RPN (region
proposal network’s)’s multi-scale candidate frame can reduce the effect from occlusion,
background interference, scale change, deformation, and rotation.

The performance comparison among trackers using VOT2018 data set are summarized as:

• EAO of proposed tracker (SiamRPN) is 0.318 which outperforms the deep-learning
based tracker (DaSiamRPN);
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• Robustness index of proposed tracker (SiamRPN) is 0.337, which outperform
the other 2 trackers (C-COT and ECO) and equivalent to deep-learning based
tracker (DaSiamRPN);

• Accuracy of proposed tracker (SiamRPN) is 0.601, which outperforms the other 2 track-
ers (C-COT and ECO) and equivalent to deep-learning based tracker (DaSiamRPN);

• Metrics to evaluate propose tracker’s (SiamRPN) performance as Accuracy (60%),
Precision (60%), Recall (68%) and F1 (63%).

The performance comparison among trackers using OTB100 data set are summarized as:

• Proposed SiamRPN show a 0.696 success and 0.914 precision outperforms the other
trackers;

• Proposed SiamRPN is more robust than the other trackers in the presence of uncertain-
ties, include the variation on illumination, scale, occlusion, motion blur, motion speed,
in-plane/out-of-plane rotation, out-of-view, background clutters and resolution.

The performance comparison among trackers using real-time data collected by the
proposed system are summarized as:

• Data set A (sunlight at daytime) outperform data set B (onboard LED light source
at night) from the aspect of accuracy (66% vs. 61%), precision (76% vs. 63%) and F1
(73% vs. 68%);

• B (onboard LED light source at night) outperform data set data set A (sunlight at
daytime) from the aspect of recall (72% vs. 71%);

• ROC curve of the whole datasets (A and B) shows the performance of the model at all
thresholds (True Positive Rate vs. False Positive Rate);

• AUC is 0.66.

The tracking effect at night is worse than that during the day. Even if the LED light
source onboard the AUV, the effect of tracking moving targets is still not as good as daylight.
The preliminary results demonstrate the feasibility of real-time underwater target tracking
using a low-cost underwater robot with onboard embedded system and CCD camera. The
findings and their implications in the broadest context are summarized as:

• Hierarchical control architecture can speed up the processing, the low-level pose con-
trol (Arduino) and the high-level tracking-behavior control (Nvidia Jetson
Xavier NX).

• Image enhancement reduces the color distortion and greatly improves the drawback
of insufficient feature points for successful corresponding matching;

• Image stitching reduces the blind spots of the viewpoint and the resultant panoramic
images includes more objects can be used for other classification purpose;

• Target tracking improves the issues on target loss and mis-tracking;
• Low-cost underwater vehicle and single camera.

The underwater tracking suffers from many uncertainties (e.g., varying turbidity and
low visibility) that affect the detection and tracking performance severely, however, the
result still demonstrated the effectiveness of the proposed method and outperform the
other trackers for the scenario in this paper. Future research directions are highlighted as:

• Add more behavior (i.e., obstacle avoidance, trajectory tracking and team formation)
in high-level control and pose following in low-level control;

• Test and evaluate tracking performance under more variations (uncertainties) from
the environment, robot/sensor and object;

• Try different configurations for generating a panorama image (e.g., multiple cameras,
fish-eye lens, etc.) and placed outside the vehicle with waterproof capability;

• Implement sensor fusion (heterogeneous or homogeneous) for uncertainty reduction
to have more accurate, complete and dependable readings;

• Integrate the manipulator to extend the capability of the unmanned surface vehicle
(e.g., water sampling).



Processes 2023, 11, 312 19 of 20

Author Contributions: Conceptualization, M.-F.R.L.; methodology, M.-F.R.L. and Y.-C.C.; software,
Y.-C.C.; validation, M.-F.R.L. and Y.-C.C.; formal analysis, M.-F.R.L.; investigation, M.-F.R.L.; resources,
M.-F.R.L.; data curation, Y.-C.C.; writing—original draft preparation, Y.-C.C.; writing—review and
editing, M.-F.R.L.; visualization, Y.-C.C.; supervision, M.-F.R.L.; project administration,
M.-F.R.L.; funding acquisition, M.-F.R.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (MOST) in Taiwan,
grant number [108-2221-E-011-142-] and the Center for Cyber-physical System Innovation from the
Featured Areas Research Center Program within the framework of the Higher Education Sprout
Project by the Ministry of Education (MOE) in Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schjølberg, I.; Gjersvik, T.B.; Transeth, A.A.; Utne, I.B. Next Generation Subsea Inspection, Maintenance and Repair Operations.

IFAC Pap. 2016, 49, 434–439. [CrossRef]
2. Martins, A.; Almeida, J.; Almeida, C.; Dias, A.; Dias, N.; Aaltonen, J.; Heininen, A.; Koskinen, K.T.; Rossi, C.; Dominguez, S.; et al.

UX 1 system design—A robotic system for underwater mining exploration. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1494–1500.

3. Wang, G.; Hwang, J.; Williams, K.; Cutter, G. Closed-Loop Tracking-by-Detection for ROV-Based Multiple Fish Tracking.
In Proceedings of the 2016 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery, Cancun, Mexico,
4 December 2016; pp. 7–12.

4. Marques, M.M.; Gatta, M.; Barreto, M.; Lobo, V.; Matos, A.; Ferreira, B.; Santos, P.J.; Felisberto, P.; Jesus, S.; Zabel, F.; et al.
Assessment of a Shallow Water Area in the Tagus Estuary Using Unmanned Underwater Vehicle (or AUV’s), Vector-Sensors,
Unmanned Surface Vehicles, and Hexacopters—REX’17. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans,
Kobe, Japan, 28–31 May 2018; pp. 1–5.

5. Ji, J.; Sun, Y.; Zhou, T.; Xu, J. Study on method of cooperative laying mines with submarine and reconnaissance force based on
joint blockade combat. In Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design,
Nanchang, China, 4–6 May 2016; pp. 31–34.

6. Xu, F.; Ding, X.; Peng, J.; Yuan, G.; Wang, Y.; Zhang, J.; Fu, X. Real-Time Detecting Method of Marine Small Object with Underwater
Robot Vision. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans, Kobe, Japan, 28–31 May 2018; pp. 1–4.

7. Rout, D.K.; Subudhi, B.N.; Veerakumar, T.; Chaudhury, S. Walsh–Hadamard-Kernel-Based Features in Particle Filter Framework
for Underwater Object Tracking. IEEE Trans. Ind. Inform. 2020, 16, 5712–5722. [CrossRef]

8. Jing, C.; Lin, Z.; Li, J. Detection and tracking of an underwater target using the combination of a particle filter and track-before-
detect. In Proceedings of the OCEANS—Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–5.

9. Zhao, B.; Liang, Y.; Dong, X.; Li, Q.; Ren, Z. An Improved Motion Capture System for Multiple Wheeled Mobile Robots Based on
KCF and GMM. In Proceedings of the Chinese Control Conference, Guangzhou, China, 27–30 July 2019; pp. 4095–4100.

10. Kong, S.; Fang, X.; Chen, X.; Wu, Z.; Yu, J. A real-time underwater robotic visual tracking strategy based on image restoration and
kernelized correlation filters. In Proceedings of the Chinese Control and Decision Conference, Shenyang, China, 9–11 June 2018;
pp. 6436–6441.

11. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Lecture Notes in Computer Science; Hua, G., Jégou, H., Eds.; Springer: Cham, Switzerland, 2016; Volume 9914, pp. 850–865.

12. Jia, S.; Zang, R.; Li, X.; Zhang, X.; Li, M. Monocular Robot Tracking Scheme Based on Fully-Convolutional Siamese Networks.
In Proceedings of the Chinese Automation Congress, Xi’an, China, 30 November–2 December 2018; pp. 2616–2620.

13. Mesquita, D.B.; Santos, R.F.; Macharet, D.G.; Campos, M.F.M.; Nascimento, E.R. Fully Convolutional Siamese Autoencoder for
Change Detection in UAV Aerial Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1455–1459. [CrossRef]
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