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Abstract: The pineapple is an essential fruit in Taiwan. Farmers separate pineapples into two types,
according to the percentages of water in the pineapples. One is the “drum sound pineapple” and the
other is the “meat sound pineapple”. As there is more water in the meat sound pineapple, the meat
sound pineapple more easily rots and is more challenging to store than the drum sound pineapple.
Thus, farmers need to filter out the meat sound pineapple, so that they can sell pineapples overseas.
The classification, based on striking the pineapple fruit with rigid objects (e.g., plastic rulers) is
most commonly used by farmers due to the negligibly low costs and availability. However, it is a
time-consuming job, so we propose a method to automatically classify pineapples in this work. Using
embedded onboard computing processors, servo, and an ultrasonic sensor, we built a hitting machine
and combined it with a conveyor to automatically separate pineapples. To classify pineapples, we
proposed a method related to acoustic spectrogram spectroscopy, which uses acoustic data to generate
spectrograms. In the acoustic data collection step, we used the hitting machine mentioned before
and collected many groups of data with different factors; some groups also included the noise in
the farm. With these differences, we tested our deep learning-based convolutional neural network
(CNN) performances. The best accuracy of the developed CNN model is 0.97 for data Group V. The
proposed hitting machine and the CNN model can assist in the classification of pineapple fruits with
high accuracy and time efficiency.

Keywords: pineapple classification; acoustic spectroscopy; convolutional neural network; artificial
intelligence; agriculture engineering

1. Introduction and Motivation
1.1. Introduction

The pineapple is an essential fruit in Taiwan [1]. Under the Taiwan Council of
Agriculture, Executive Yuan, farmers planted 7819 hectares of pineapples and gained
407,822 metric tons in 2021 [2], which makes the pineapple the most abundant fruit in
Taiwan. There are many varieties of pineapples, such as native pineapples, milk pineapples,
and mango pineapples. Most pineapples are planted in southern Taiwan (e.g., in Nantou,
JiaYi, Tainan, Gaoxiong, and Pingdong). Since pineapples are planted, farmers can harvest
fruits after 18 months. If pineapples grow normally, they will mature between June and
August; however, it is rainy during this season in Taiwan—the weather makes pineapples
contain more water than expected. When pineapples contain too much water, they rot more
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easily. Farmers separate pineapples into two types, according to the percentages of water
in the pineapples: one type is the “drum sound pineapple”, which contains less water, and
the other is the “meat sound pineapple”, which contains more water. The drum sound
pineapple looks light yellow. It has a sweet-and-sour taste, and it smells better. The meat
sound pineapple looks dark yellow [3]. As the meat sound pineapple contains more water
than the drum sound pineapple, it cannot be stored too long.

In Taiwan, most pineapples are sold overseas. To ship pineapples for a long time,
farmers can only sell the drum sound pineapple; otherwise, pineapples would rot before
they can be sold. The straightforward way to distinguish between the drum sound and
the meat sound pineapples is by hitting the pineapple and listening to the sound [3], as
Figure 1c shows. When hitting on the drum sound pineapple, it sounds like hitting on
a drum, and when hitting on the meat sound pineapples, it sounds like hitting on an
arm. Farmers would swing a ruler to hit the pineapples and listen to the sound. For each
pineapple, farms need to hit pineapples more than three times to ensure the sound is a
drum sound or meat sound. This procedure costs many human resources and machinery,
as shown in Figure 1; thus, farmers need to hire many laborers who have good physical
strength, because they need to classify huge quantities of pineapples via the sound test.

Figure 1. Time and resource-consuming classification of pineapples; (a) transportation, (b) conveyor
classification by weight, (c) sound test classification, (d) cleaning, and (e) final classified pineapples.

In the 1990s, the Taiwanese government set a goal to achieve agriculture automation [4].
With agriculture automation, the quality of agricultural products can be raised. There are
many aspects of agriculture automation, such as automated planting machines, precise
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automated watering systems, environmental automated control systems, and automated
quality and rank classifications of agricultural products. Recently, using automated rice
machine systems in 50 exhibition centers, around 2 million Yuan (in operating costs) were
saved for each phase of cultivation in one season. In the article’s conclusion [4], it was
noted that agriculture automation is an area that combines the knowledge of agriculture as
well as multi-disciplinary engineering and science.

1.2. Motivation and Contribution

Traditional pineapple classification methods are time- and resource-intensive processes
and, thus, they increase processing costs. To help farmers classify pineapples efficiently,
we propose an automatic pineapple classification machine. First, we designed a “hitting”
machine combined with Raspberry Pi, servo, and an ultrasonic sensor. As a pineapple on
the conveyor passes Raspberry Pi, notified by the ultrasonic sensor, it will trigger the servo
to hit the pineapple. We used our hitting machine to collect sound data. We transformed
the sound data from the amplitude/time domain to the frequency/time domain by a
short-time Fourier transform to get the spectrogram. To classify pineapples by spectrogram,
we built a convolutional neural network. We also collected data from different batches of
pineapples in different conditions to test our model adaptability.

2. Related Works

Some methods present in the literature are used to automatically classify fruits and are
used for different classification techniques. Some approaches use machine learning to learn
farmers’ experiences, such as using acoustic data to classify fruits, while other approaches
analyze the properties of the fruits, to find the differences between the different categories
labeled by farmers.

Weangchai Kharamat et al. checked the ripeness of the durian via acoustic data [5].
The durians were separated into three categories, ripe, mid-ripe, and unripe. Using acoustic
is the most common way to classify durians. The sound is made by sweeping rubber-tipped
sticks on the durians. The authors collected data from 30 durians. They used a smartphone
to record 0.3 s of audio. As for the smartphone settings: the sampling frequency was
16 kHz, with 16-bits mono audio. Finally, they obtained 300 data points for each category.

After collecting the data, the authors extracted the features by using Mel frequency
cepstral coefficients (MFCCs) [6]. To get Mel frequency cepstral coefficients, there are four
steps. First, use the Fourier transform to make the sound change to a frequency domain.
Second, apply the triangular overlapping window and mapping to the Mel scale. Third,
take the logs of power at each Mel frequency. Finally, transform the Mel log powers by a
discrete cosine transform. The results of the Mel frequency cepstral coefficients are used
as inputs of the convolutional neural network. The authors also applied a 25% dropout
on layers two and four and a 50% dropout on the fully connected layer. The model was
optimized by the Adam optimization algorithm. The model reached the highest testing
accuracy, 0.89, with 150 epochs.

Arturo Baltazar et al. [7] classified tomatoes by the concept of data fusion. Data
fusion [8] involves combining multiple data collected by different sensors. The authors
collected three features of tomatoes—color, acoustic, and firmness. For color, they used a
colorimeter; for acoustic, they designed a machine to hit tomatoes and record sound data.
The firmness can be acquired by the nondestructive method if it is calculated by 2.1. Sc in
the stiffness coefficient, f is the dominant frequency obtained from acoustic data, and m
is the bulk mass of the fruit. The color and firmness data would be collected in specific
intervals. Because the ranges of data are different, the authors used min–max normalization
to limit the data in the range of 0 to 1 [9]. To classify tomatoes, the authors used a Bayesian
classifier [10]. The classification error was reduced when the number of features rose.

Puneet Mishra et al. used near-infrared to analyze content in the pear [11]. Soluble
solid content (SSC) and moisture content (MC) play an important role in fruit maturity
and quality [12]. The authors used near-infrared to detect the content, which is a standard
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technology used in this field. The authors used the parameters of near-infrared in the
spectral range of 310–1135 nm with a spectral resolution of 8–13 nm. They scanned at the
bellies of the pears, calculating the average of six scans. To predict soluble solid content
and moisture content, the authors used two common chemometric algorithms. One was
interval partial least squares regression (iPLS2R) [13], which is used for predicting in a
subset of continuous wavelengths, and the other was covariate selection (CovSel), which
can select discrete wavelengths related to the content [14].

The authors also used model updating, which uses a few data from the new batch
to improve the model. In the experiment, the authors selected 5, 10, and 20 samples by
the Kennard–Stone (KS) sample partition technique from Batch 2 to recalibrate the model
built from Batch 1. The Q2 of iPLS2R in soluble solid content improved from 0.71 to 0.76
with 5 and 10 samples; in moisture content, it improved from 0.84 to 0.87 with 20 samples.
The Q2 of CovSel in soluble solid content improved from 0.73 to 0.77 with any number of
sample selections; in moisture content, it improved from 0.84 to 0.85 with 5 and 20 samples.

R.P. Haff et al. used an X-ray to detect translucency in pineapples [15]. Translucency
is a physiological disorder of pineapple. By using X-rays, the authors can get the internal
image of a pineapple from the side. The pineapples were divided into five levels after
cutting and examining the section. For the first level, there was no translucency in the
pineapple. For the second level, there was less than 25% translucency. For the third level,
there was 25–50% translucency. For the fourth level, there was 50–75% translucency. For
the fifth level, there was more than 75% translucency. The first and second levels were
considered good pineapples, and the others as bad. The X-ray pictures were used as the
input of the logistic regression [16]. The output of the logistic regression was 1 and 0, which
means the pineapples were good or bad. The R2 of the model was 0.96.

Siwalak Pathaveer et al. [17] used multivariate data collected by nondestructive meth-
ods to analyze pineapple maturity and compared the results (i.e., with and without destruc-
tive methods). The non-destructive data were the specific gravity and acoustic impulses.
The destructive data were flesh firmness (FF), soluble solid content (SSC), and titratable
acidity (TA). The pineapples were separated into three classes—class A, Class B, and class
C. Class A represented greater than 50% translucent yellow. Class B represented 25–50%
translucent yellow. Class C represented less than 25% translucent yellow.

In the latest research from the Taiwan Agriculture Research Institute Council of Agri-
culture, Executive Yuan [18], the authors designed a product [19] that classified pineapples
by resistance. They found that the difference between the drum sound pineapple and
the meat sound pineapple might not be caused by the percentage of water, but by the
distribution of water. As a result, using resistance to quantify the pineapple would be a
better way than using capacitance. However, their product needs to be adjusted before
being implemented in different batches.

The existing models in the literature can be improved in different ways. First, when
using technology to analyze fruits, it should make the analysis accurate and help farmers
reduce their work. Most previous works could not work automatically; some used high
price devices. In this work, we designed an automatic classification machine that could
distinguish between pineapple types and separate pineapples automatically, based on
acoustic data. We also used our model to test different batches of pineapples collected in
different conditions.

3. System Design and Implementation

We proposed a method to classify pineapples based on acoustic spectrogram spec-
troscopy. We designed a batting machine to hit pineapples and automatically collect the
hitting sound for the acoustic data. After we obtained the audio data, we extracted im-
portant parts from the audio and augmented it. Finally, we built a convolutional neural
network (CNN) [20].

The various components used in the development of this system are summarized in
Table 1. Embedded onboard the computing processors, such as Raspberry Pi, Nvidia Jetson
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Nano was used to store and run the deep learning models, connect an ultrasonic sensor, a
microphone, and a servo, as shown in Figure 2. The top and side views of the Raspberry
installed on a conveyor belt are shown in the schematic diagram, Figure 3. The proposed
system prototype developed in our lab is shown in Figure 4. The Raspberry Pi measures
the distance across the conveyor that normally remains constant for the ultrasonic sensor,
but the value of the distance would be smaller than the defined threshold when a pineapple
passes the Raspberry Pi. Then the Raspberry Pi will open the microphone for 1 s, trigger
the servo to hit the pineapple, send the acoustic data to the deep learning model to classify
pineapples, and control the conveyor to separate the pineapple. The flowchart of the whole
process is shown in Figure 5.

Table 1. Components used in developing the system.

Components Number

Raspberry Pi 4 1

Servo 1

Ultrasonic Sensor 1

Microphone 1

Conveyor 1

Figure 2. The batting machine.

Figure 3. System schematic diagram: (a) top view, (b) side view.
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Figure 4. System developed in the lab: (a) top view, (b) side view.

Figure 5. Flowchart of the proposed automatic classification system.

3.1. Data Collection and Preprocessing

To collect multiple data instances, we hit one pineapple multiple times and recorded it
in one audio file. The automatic system was used to hit the pineapples to collect the test
data similar to data that we obtained when we implemented the system. Figure 6 shows
the flowchart of data collection, preprocessing, and data augmentation in the acoustic
classification system.

Figure 6. Flowchart of data collection.

Since we collected multiple “hit” sounds in one audio file, our goal was to extract
them and create a new, strong, and clear sound for each hit sound. We used Librosa onset
strength [21], calculating onset strength by spectral novelty functioning to find where the
hit sound appeared. As we recorded k sounds in one audio file, the top-k onset strength
was considered the hitting sounds. Onset was where the hit sound started, so we easily
put the hit sound in the middle of 1 sec after we found the hit sound. This method can
extract hitting sound perfectly if the audio is recorded in a stable environment; however,
some data were collected in the farm factory, containing too many noises, such as humans
talking, animals barking, and machines running, which were extracted due to their high
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“strengths”, and as they involved missing some “hit sounds”. As a result, we needed to
listen to the one-second audio files to delete the audio with noise only.

3.1.1. Data Augmentation

Due to data insufficiency, we used some data augmentation techniques, such as adding
noise, frequency, time masking, and audio shifting [22]. The mask should not include any
sound, but if we mask first, some noise would be introduced into the mask; it should not
cover all of the “hit” sounds in the time domain, but if we shifted the audio first, it would
be difficult for us to determine where the hit sound appeared. As a result, we added noise,
frequency, and time masking, as well as shifting audio.

3.1.2. Noise Addition

Noise can be recorded from the environment or added manually into the audio.
We added additive white Gaussian noise (AWGN) [23]; the output Yi is represented by
Equation (1). Zi is obtained from a normal distribution with zero means and variance N, as
given by Equation (2).

Yi = Xi + Zi (1)

Zi ∼ N(0, N) (2)

To add the noise, we set the signal-to-noise ratio (SNR) by first calculating the signal
power of our data by Equation (3).

Powernoise, db = Powersiganl, db − SNRdb (3)

Our data are in WAV format, which stores audio as a 16-bit integer pulse code modula-
tion (PCM) using −215 ∼215 − 1 [24]. To represent data, we normalized the data by dividing
215. The original unit of data were voltage (V), so we needed to change it to decibel (dB).
The unit can be changed to watts by Equation (4), then to decibels by Equation (5) [25].

Signalwatt = Signal2
voltage (4)

Signaldb = 10 log Signalwatt (5)

The signal-to-noise ratio was chosen from a uniform distribution from 0 to 20. For
each datum, we created two new data, so the size of the data would be enlarged three times.
The effect of adding noise is shown in Figure 7. In the spectrogram, the horizontal axis is
the time series, the vertical axis is the frequency series, the highest strength sound would
be set to 0 dB, and the negative symbol means how much lower the sound was than the
highest sound. In the original spectrogram, the decibel in the high frequency was very low,
but the decibel was higher after we added the noise.

Figure 7. Spectrograms before and after adding noise operation. (a) Original spectrogram,
(b) spectrogram after adding AWG noise.
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3.1.3. Frequency Masking

Frequency masking is a technique used to mask frequency ( f0, f0 + f ). f0 is the base
of the mask and f is the size of the mask [26,27]. The frequency of the hit sound is below
450 Hz, and the frequency of servo, which is irrelevant to pineapple classification, is below
150 Hz, so we considered the difference between the drum and the meat sound in the
range of 150 to 450 Hz and used it as our model’s input. As a result, we selected f0 from a
uniform distribution from 150 to 200 Hz and f from a uniform distribution from 20 to 50 Hz,
so that the sound would be broken, but some part of it remained, and the broken sound
might make our model better. The effect of frequency masking is shown in Figure 8. In the
original spectrogram, the decibel around 200 Hz is represented by a color, such as purple,
but after we added the mask, the decibel became 0, which is represented by a darker color.

Figure 8. Spectrogram before and after frequency masking operation, (a) Original spectrogram,
(b) spectrogram after frequency masking.

3.1.4. Time Masking

As with frequency masking, time masking is a technique used to mask time (t0, t0 + t)
masked. t0 is the base of the mask and t is the size of the mask [27]. Since we set the hit
sound in the middle of 1-s audio, the hit sound started at around 0.45 s, and it continued
around 0.1 s. To prevent covering the whole hit sound, we selected t0 from a uniform
distribution from 0.4 to 0.6 s, and f from a uniform distribution, from 0.023 to 0.09 s. The
effect of time masking is shown in Figure 9. In the original spectrogram, the decibel around
0.6 s is medium, but after adding the mask, the decibel became 0, which is represented by a
darker color.

Figure 9. Spectrogram before and after time masking operation. (a) Original spectrogram,
(b) spectrogram after time masking.
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3.1.5. Shifting

Shifting is a technique used to shift audio left or right, by t seconds, making the hit
sound appear early or late, by t seconds [28]. Shifting one side of t seconds directly would
cause the audio to empty on the other side; thus, to prevent the emptiness in the audio,
which would be a silence for a short period, we filled up “empty” by the audio shifting
out. Because we set the hit sound in the middle of 1 s of audio, there were around 0.4 s
before hit sounds started, and 0.4 s after the hit sounds ended. We selected t from a uniform
distribution, from 0 to 0.4 s. The effect of frequency masking is shown in Figure 10. In
the original spectrogram, the hit sound appears at 0.5 s, after we shifted the audio, the hit
sound started at 0.8 s.

Figure 10. Spectrogram before and after shifting operation. (a) Original spectrogram, (b) spectrogram
after shifting left.

3.1.6. Short-Time Fourier Transform

Because drum sound and meat sound lie on different frequencies, we needed to
convert audio from the amplitude/time domain to the frequency/time domain. Short-time
Fourier transform (STFT) [29] can convert a signal from the amplitude/time domain to the
frequency/time domain. Short-time Fourier transform is a fast version of discrete Fourier
transform and the formula of discrete Fourier transform is shown in Equation (6), where
x(n) is the input signal, w(n) is a window function, and m is computed by hop length [30].
We used the Hann window as our window function; the window size was 2048, and the
hop length was 512. The result of STFT is shown in Figure 11.

STFT x[t](m, w) ≡ X(m, w) = ∑∞
n=−∞ x[n]w[n − m]e−jwm (6)

Figure 11. Audio signal after STFT. (a) Amplitude/time domain, (b) frequency/time domain.
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3.2. Data Collection and Preprocessing

As shown in Figure 12, the hit sound occurred between 150 and 450 Hz; we set that
range as the input of the model. The output of STFT is a spectrogram that could be treated
as an image, so the spectrogram could be the input of a convolutional neural network
(CNN) [20,31]. Figure 13 depicts the CNN model’s structure; Table 2 shows the CNN
model’s parameters. We used a batch size of 5 for a total of 20 epochs.

Figure 12. Hit sound spectrogram.

Figure 13. The Architecture of the CNN model for acoustic classification.

Table 2. Parameters of the developed CNN model for acoustic classification.

Layer Size Stride Dropout Activation

Convolution 1 128, 3 × 3 1 - ReLu

Max pooling 1 2 × 2 (2, 2) 0.2 -

Convolution 2 128, 3 × 3 1 - ReLu

Max pooling 2 2 × 2 (2, 2) 0.2 -

Fully connected 1 32 - - ReLu

Fully connected 2 2 - - SoftMax



Agriculture 2022, 12, 129 11 of 17

4. Experiment and Results
4.1. Acoustic Classification

We collected data in various environmental settings to improve our model and evaluate
its flexibility, because acoustic data are vulnerable to noise. Many factors would affect data,
such as the drumstick to hit the pineapples, the sampling rate of the recorder, and the place
of the experiment. Table 3 summarizes the different conditions, positions, and materials
of the drumstick used in our experiment. The conditions of Groups I and II are the same
except for the pineapple batches, so we used Group I as our training dataset and Group
II as the testing dataset. Group III, Group IV, and Group V have one factor different from
Group I. As for Groups VI and Group, data were collected from the same pineapples in the
same conditions, but we collected the data on different days.

Table 3. Experiment condition.

Group Drumstick Sampling Rate (SR) Place Position of Hit

I Plastic ruler 22,050 Lab Top, middle,
bottom

II Plastic ruler 22,050 Lab Middle
III Plastic ruler 48,000 Lab Middle
IV Iron ruler 22,050 Lab Middle
V Plastic ruler 22,050 Factory Middle
VI Plastic ruler 22,050 Lab Middle
VII Plastic ruler 22,050 Lab Middle

Table 4 shows the numbers of pineapples we used for each group. For each pineapple,
we hit it multiple times and recorded them in the same WAV file. We recorded 10 hit sounds
in Group I’s WAV file and 5 hit sounds for the other six groups.

Table 4. Number of pineapples.

Group Number of Drum Sound Pineapples Number of Meat Sound Pineapples

I 7 7
II 6 7
III 6 7
IV 6 7
V 20 15
VI 6 7
VII 6 7

Table 5 shows the number of hit sounds in a WAV file for each group and the number
of drum sounds and meat sounds we extracted. We used four different augmentation
methods; for each method, we enlarged the data 5 times so that the final dataset would be
81 times the original dataset. The numbers of the final dataset are shown in Table 6.

Table 5. Number of hit sounds extracted.

Group Number of Hit Sounds in
a WAV File

Number of Drum
Sounds Extracted

Number of Meat
Sounds Extracted

I 10 210 209
II 5 30 35
III 5 28 35
IV 5 30 35
V 5 81 37
VI 5 30 35
VII 5 30 34
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Table 6. Number of hit sounds after augmentation.

Group Number of Drum Sounds Number of Meat Sound

I 17,010 16,929
II 2430 2835
III 2268 2835
IV 2430 2835
V 6561 2997
VI 2430 2835
VII 2430 2754

4.2. Results

We used Group I as our training set in four different ways. First, we used all of the
data as the training dataset and split it into a training set, validation set, and testing set,
at a ratio of 7:2:1. Then, we separated data into three sets: hitting at upper, middle, and
bottom parts. We used one set as a training set and the other two as a testing set. The results
are shown in Table 7. The accuracy is 0.81 if we used 10% of Group I to test the model,
which means that the model could distinguish drum sounds and meat sounds made by our
hitting machine. From the confusion matrix shown in Figure 14a, we found that there were
too many meat sound pineapples recognized as drum sound pineapples, making it difficult
for farmers to separate pineapples because the meat sound pineapples cannot be stored
for too long. The accuracy was still high when we hit one part of the pineapples and used
them as both the training set and the testing set, as Table 7 shows; Figure 14b–d present
the confusion matrix. However, it is difficult to train on one part and test the other two
parts, as Table 8 shows; Figure 15a–c present the confusion matrix. Based on the results,
we thought that if we collected data on the different parts of pineapples and used them as
the training set, we could build a better model that reduces our work to design a hitting
machine, because the position to be hit would not be that important.

Table 7. Accuracy results of Group I.

Training set 70% Group I 70% Upper part 70% Middle part 70% Bottom set
Testing SET 10% Group I 10% Upper part 10% Middle part 10% Bottom set

Accuracy 0.81 0.87 0.88 0.91

Figure 14. The confusion matrices (a) Group I, (b) Group I upper part, (c) Group I middle part, and
(d) bottom part.
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Table 8. Accuracy results of Group I on different parts.

Training Set 70% Group I 70% upper part 70% bottom set

Testing set Middle and bottom
parts

Upper and bottom
parts

Upper and middle
parts

Accuracy 0.61 0.56 0.55

Figure 15. The confusion matrices (a) training on upper and testing on the middle and bottom parts;
(b) training on the middle and testing on the upper and bottom parts; and (c) training on the bottom
and testing on the upper and middle parts.

Table 9 shows the results, if we built the model on Group I and used it to test Group
II, which is collected in the same conditions, except for only one difference that we used
different pineapples to collect data. The accuracy was 0.57, which is very low because there
are only two types of pineapples; if the accuracy was around 0.50, it would be just like
blindly guessing the results. From Figure 16a, we found that the reason for the low accuracy
was that too many meat sound pineapples were recognized as drum sound pineapples.
Due to the lousy accuracy, we needed to see if we collected Group II correctly, so we built
the model on Group II, and the accuracy was back to 0.85; its confusion matrix is shown in
Figure 16b (it seems that there is no problem in Group II). Our final test involved combining
Groups I and II to build a new model. The accuracy was 0.81, which is a little below training
on Group I alone, but the false-positive rate in Figure 16c is lower than Group I. As a result,
we concluded that our data were insufficient, so the accuracy would become low if we
tested the model on other data.

Table 9. Accuracy results of Group II.

Training set 70% Group I 70% Group II 70% (Groups I and II)
Testing set Group II 10% Group II 10% (Groups I and II)
Accuracy 0.57 0.85 0.88
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Figure 16. The confusion matrices (a) train on Group I and test on Group II, (b) Group II, and
(c) combining Groups I and II.

The results of using Group III as the testing set, to test the model built on Group I,
are shown in Table 10. Group III used a higher sampling rate (SR) to record the data, so
the resolution of Group III was higher than Group I; therefore, before Group III could be
used as testing data, we needed to downsample the data to a sampling rate (SR) of 22,050,
which might have caused some information loss. The accuracy was 47.66%. It showed that
there were too many drum sound pineapples classified as meat sound pineapples, and
the results would be wasted for the farmer. The accuracy of building the model on Group
III was 83.67%. The accuracy for combining Group I and Group III was only 79.00%. The
results show that, even though we combined two data sets, the downsampling action is
unsuitable for the model.

Table 10. Accuracy results of Group III.

Training set 70% Group I 70% Group III 70% (Groups I and III)
Testing set Group III 10% Group III 10% (Groups I and III)
Accuracy 0.47 0.83 0.79

The materials of the drumsticks were also crucial for hitting pineapples, so we tested
the influence of different materials by using Group IV as a testing set; the results are
presented in Table 11. The results show that, no matter what the materials of the drumstick
were—a plastic ruler or iron ruler—the accuracy can be high if the model is tested by the
same dataset, so that both materials can be used in our hitting machine; however, the
plastic ruler is still the better chose for the hitting machine, because the iron is too heavy
for a servo to swing it. The model trained on the plastic ruler cannot be used on an iron
ruler and the accuracy of combining two materials is 0.81, so we thought that the model
could find the same properties between two materials, but these are not enough to make
accuracy higher.
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Table 11. Accuracy results of Group IV.

Training set 70% Group I 70% Group IV 70% (Groups I and IV)
Testing set Group IV 10% Group IV 10% (Groups I and IV)
Accuracy 0.57 0.82 0.87

There are many noises on the farm, so it is essential to test the model on the data
collected on the farm. As Table 12 shows, the accuracy is 0.54, so the model trained on
a dataset collected in a stable environment could not be used in a natural environment.
However, the accuracy of using Group V as a training dataset can reach 0.97, which means
that using acoustic to classify pineapples might automatically be successful on the farm.
However, as seen in Figure 17, the data are very imbalanced for the drum sound pineapple
and the meat sound pineapple, so we need to collect more meat sound data to prove the
model is working.

Table 12. Accuracy results of Group V.

Training set 70% Group I 70% Group V 70% (Groups I and V)
Testing set Group V 10% Group V 10% (Groups I and V)
Accuracy 0.54 0.97 0.83

Figure 17. The confusion matrix of Group V.

The farmer might separate pineapples on the different days after picking them, so
it is vital to build a model that can distinguish the drum sound pineapple and the meat
sound pineapple stored for different periods. To do this, we used a dataset collected on the
same pineapples, but on different days. In Table 13 the results show that the model is not
universal, but the farmer said that the sound would not change, even if the pineapples were
hit on a different day. The difference between the model’s result and the farm’s experience
might be the tiny difference in sound, which is vast enough for the model but not enough
for humans.

Table 13. Accuracy results of Groups VI and VII.

Training set 70% Group VI 70% Group VI 70% (Groups VI and VII)
Testing set 10% Group VI Group VII 10% (Groups VI and VII)
Accuracy 0.88 0.65 0.85

5. Conclusions

In this paper, we built a model that could classify pineapples, and we built an auto-
matic machine to conduct the whole process. To classify pineapples, we proposed a method
related to acoustic spectrograms, which use acoustic data to generate spectrograms. We



Agriculture 2022, 12, 129 16 of 17

used our machine to hit pineapples and recorded the hitting sounds to generate spectro-
grams from the acoustic data. The hitting sounds were transformed from amplitude/time
domain to frequency/time domain by the short Fourier transform to create the spectro-
grams. The spectrograms were used as input to the CNN. Seven different data groups
with different conditions and factors were collected from different pineapple batches in
farm and factory environments. The highest accuracy of the CNN reached around 0.97
for data Group V when we divided one data group into a training and testing data set;
however, when we used the trained from one group and tested the model by another set,
the accuracy dropped to 0.54. The accuracy of the developed CNN model is 0.91 for data
Group I, 0.88 for data Group II, 0.83 for data group III, 0.87 for data group IV, 0.97 for
data Group V, and 0.87 for combined data Groups VI and VII. From the model accuracy
and confusion matrices of the developed model, we found that the batches are essential
factors for pineapple classification. The sounds of hitting pineapples would change if
the data were collected on different days. The developed model reduces the time and
cost of the pineapple classification process and increases the accuracy of classification by
automating the process of differentiating the drum and meat sound pineapples. Thus,
it helps farmers to classify pineapples efficiently. The developed hitting machine, along
with the artificial intelligence model, would be significant for farmers around the world,
regarding the classification of pineapples

Our current model works on one batch of pineapples and produces less accuracy
on another batch. To overcome this, we need to collect more data to make the model
more generalized. Our classification machine is still a prototype, which cannot be used as
such in farms as it can be damaged easily, so we need to make it more stable. Moreover,
according to the latest research by the Taiwan Agriculture Research Institute Council of
Agriculture, Executive Yuan [18], the distribution of water might be another reason making
the drum sound pineapple and the meat sound pineapple different. We could also train
our quantification model with resistance data.
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