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Abstract: Parkinson’s Disease (PD) is one of the most common non-curable neurodegenerative
diseases. Diagnosis is achieved clinically on the basis of different symptoms with considerable delays
from the onset of neurodegenerative processes in the central nervous system. In this study, we
investigated early and full-blown PD patients based on the analysis of their voice characteristics
with the aid of the most commonly employed machine learning (ML) techniques. A custom dataset
was made with hi-fi quality recordings of vocal tasks gathered from Italian healthy control subjects
and PD patients, divided into early diagnosed, off-medication patients on the one hand, and mid-
advanced patients treated with L-Dopa on the other. Following the current state-of-the-art, several
ML pipelines were compared usingdifferent feature selection and classification algorithms, and
deep learning was also explored with a custom CNN architecture. Results show how feature-based
ML and deep learning achieve comparable results in terms of classification, with KNN, SVM and
naïve Bayes classifiers performing similarly, with a slight edge for KNN. Much more evident is
the predominance of CFS as the best feature selector. The selected features act as relevant vocal
biomarkers capable of differentiating healthy subjects, early untreated PD patients and mid-advanced
L-Dopa treated patients.

Keywords: speech; voice; Parkinson’s disease; artificial intelligence; deep learning; CNN; SVM;
L-Dopa; F0

1. Introduction

Since systems based on artificial intelligence (AI) have become ubiquitous, their
capability to support clinical practices in healthcare has been increasing as well. The
frontiers of technological progress in this area are constantly expanding and reaching areas
previously considered only accessible to human experts [1], notably thanks to the wide
diffusion of wearable sensors [2,3] or devices [4] that can be exploited for the collection of
physical signals used as a data source for AI algorithms [5].

The worldwide diffusion of 6.5 billion of smartphones (owned by about 83% of the
population) [6], with over 11 billion devices connected to the Web including wearables [7],
has allowed for health monitoring from anywhere and at any time [8].

Parkinson’s Disease (PD) is a neurodegenerative disorder caused by the progressive
degeneration of dopaminergic neurons, which especially occurs in the substantia nigra pars
compact region of the midbrain [9]. PD is the second most common neurodegenerative
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disorder (after Alzheimer’s disease), affecting about 6.1 million individuals in 2016, likely
to become 9 million by 2030 [10].

Significantly, PD patients face various motor and non-motor disorders, including
walking, sleeping, and speech impairments. In particular, recent evidence demonstrates
that speech alterations can arise up to 10 years earlier than cardinal motor impairment
manifestation [11], so that their assessment can advantageously lead to early diagnoses.
In this context, it is to be taken into consideration that PD diagnosis is usually performed
with empirical assessments, linked to the visible presence of symptoms. On the one hand,
this calls for methods for identifying prodromal PD signs, and on the other hand, opens up
interesting possibilities within the realm of remote healthcare, AI-aided pre-diagnostics
and sensor-based analyses.

It is estimated that approximately 75–90% of PD patients present abnormal speech [12],
which makes the study of voice production a powerful tool for early identifying, monitoring,
and following up of PD, to be added to the assessment of motor symptoms such as
bradykinesia, rest tremor, rigidity or postural and gait impairment [13,14].

Human voice production occurs through complex and synergistic movements of
systems and subsystems (vocal cords, larynx, glottis, oral cavity, and more), which can be
affected by the speaker’s health condition [15]. As [16] and others highlight in particular,
PD involves dramatic, objective, and measurable changes in voice production, which can
include (among others) increased noise levels (due to an incomplete vocal fold closure) and
voicing leakage (i.e., altered voiced/unvoiced transitions, due to the difficulty to perform
fine start- and stop-movements). While speech impairment assessment can indeed be
performed through laryngoscope and video-stroboscopic tools, these are very expensive
and time-consuming examinations [17].

Currently, speech impairment is assessed mainly through neurological examinations,
alongside questionnaires about the patient’s work, hobbies, and daily routine, to rate differ-
ent aspects including volume, prosody, and clarity. The Movement Disorder Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) is the standardized rater-dependent clini-
cal tool to evaluate the severity of the impairment. This approach is effective, but with some
limitations due to the influence of the skill and experience of the rater, and to the effect of
the “narrow” scale (scores with integers within 0–4) that can poorly reflect real differences
between two equally-scoring patients. Moreover, outpatients’ visits are infrequent (usually
a few times a year at most), so potentially influenced by the patient’s specific status at the
time of the evaluation procedure (e.g., sleep quality [18], emotional status [19], hour of
the day).

Properly validated AI tools can reduce the possible subjectivity bias and “enrich” the
scale when applied to the vocal test (even enabling daily evaluations), as different studies
have already demonstrated [11,12,20–22]. However, the human voice can be potentially
influenced by other issues ranging from environmental conditions to subject-specific char-
acteristics [23–25], so that other forms of evidence are mandatory. In particular for PD, the
effect of medication on speech production is still poorly addressed, with results ranging
from no effects [26] to meaningful ones [27], while the differences can even depend on
the specific phonemes investigated [23,28,29]. The voice damage experienced by patients
with PD is typically characterized as “hypokinetic dysarthria”, the primary issues of which
involve articulation and breathing difficulties as well as a voice quality that is empirically
described as “trembly” and “unstable”. Although other ML-based methodologies, mainly
applied to EEG and MRI, have been proposed for the detection of PD, vocal analysis
has demonstrated its effectiveness as a reliable detector, since around 90% of PD patients
have dysarthric symptoms [30]. Other than being a reliable means to non-empirically
quantify voice impairment in diseases that affect phonatory production, voice analysis
is also a completely non-invasive, low-cost and pseudo-real-time solution for deploying
telemedicine assessments. Voice-based AI solutions have been successfully experimentally
investigated and employed in other medical fields such as dysphonia [31–33], COVID-19
and pulmonary diseases [20,22,34,35], and even emotion and stress recognition [24,36].
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A recent work [37] reports a critical review of pathological voice characterization
approaches, evidencing the methodological issues potentially hampering performance
assessment trustworthiness, including the database dimension and a stratified corpora
(either among classes or genders). Controversy over which specific Artificial Intelligence
(AI) approach to employ, namely Machine Learning (ML) vs. Deep Learning (DL), was also
considered, which involves the differences in their data-driven and model-driven nature.
Although DL is proved to be very effective, the use of low-interpretability models may
however evoke the resistance of clinicians asking for high-level evidence in clinical practice,
in turn resulting in the overfitting phenomenon as well as a lack of generalization. ML
and DL models for the assessment of PD were compared mainly for binary classification
tasks (healthy vs. PD), involving acoustic features as an input to ML pipelines: apart
from a few exceptions [38,39], the majority of studies reported better performance from
of DL models [38–45]. Similar results are also reported in works employing deep features
extracted from spectrograms [46–51]. However, most published works employ very limited
datasets (usually with less than 50 subjects) and/or feature sets, and no comparison has
been made between a more comprehensive range of the stages of the disease, nor in the
data regarding the medication or the impairment level. Most of the studies are limited
to a hold-out validation, splitting the dataset into train and test subsets only once, and
only a few performed cross-validation [41,49] which is the de-facto standard in traditional
ML studies.

To build a comprehensive baseline for voice analysis for PD detection, we strove to
present a thorough literature review [52], especially directed towards feature-based method-
ologies, which we will refer to for more detailed statistics. For the sake of completeness, a
brief overview of relevant works is also presented in Table 1: both ML and DL approaches
are covered, with the main limitations often involving small or poorly recorded datasets
as well as a general lack of interpretability. To face these challenges, we strove to build an
extensive, well-prepared dataset involving a grand total of 426 subjects, without relying
on crowdsourced, non-validated data. Other common datasets, as detailed in [52], are
those presented by Little, Naranjo and Tsanas that involve a small amount of PD subjects,
along with Sakar’s one involving 180 PD subjects recorded in unspecified conditions with
unspecified devices, as well as the larger mPower dataset of over 1000 subjects, but the
recordings for which are crowdsourced and unverified.

Table 1. Brief literature overview (more in the literature review by Amato et al. [52]). All references
to datasets and methodologies can be found in the corresponding paper. Accuracies are averaged if
not specified.

Study Dataset Classification Approach Reported Results
(ACC) Notes and Limitations

Jeancolas et al., 2022
[53] 256 (117 PD) SVM 79.5%

Also takes into account RBD patients
(ACC = 63%). The features extracted are not
detailed and in general, it is too little a subset.

Hireš et al., 2022
[54] 100 (50 PD) CNN 99% (vowel /a/)

Small dataset (PC-GITA). Only vowel tasks
are considered, with /a/ being reported as

the most effective.

Er et al., 2021 [55] 100 (50 PD) CNN and LSTM 98.5%
Small dataset (PC-GITA). Several pre-trained

nets are employed, especially
ResNet variants.

Govindu et al., 2023
[56] 149 (100 PD) SVM, linear regression,

Random Forest, KNN
91.8% (Random

Forest)

Small, unbalanced dataset consisting of just a
few speech features (no audio). Upsampling

was used to address imbalance and
wrangling was used to infer

missing attributes.

Carrón et al., 2021
[57]

UEX (60 total, 30
PD) and mPower

(1060 PD)

Gradient Boosting,
Logistic Regression,

Passive Aggressive, MLP,
Random Forest, SVM

92% (UEX), 71%
(m-Power)

The mPower dataset is crowdsourced,
non-validated and self-reported. On the

other hand, the proposed UEX dataset is very
small (30 PD). Only 33 features are used,

including the sex of the subject.
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With the aim of identifying the best practices for an AI-based PD assessment, as well
as offering a valuable tool for pre-diagnostics and staging, we explored a broad scenario
of possible solutions, considering both data-driven and model-driven approaches. We
compared the reportedly most effective methodologies in feature-based ML and DL, evalu-
ating their performances with a thorough 10-fold cross-validation procedure. Moreover,
we devoted a lot of attention to the creation of a highly populated, well-stratified, and
balanced dataset. Data about patients’ drug status (i.e., ON/OFF state) and impairment
stage (i.e., early or mid-advanced) were also considered. In addition, an analysis of the
most relevant acoustic features was carried out to confirm/deny the existing literature,
allow clinical parallels and identify trends related to the level of impairment or medication.

2. Materials
2.1. Dataset

For this study, we recruited 266 healthy control (HC) and 160 PD subjects, the latter
divided into Early (72 subjects newly diagnosed) and mid-Advanced (88 subjects with
medium-to-advanced impairment) patients.

The diagnosis was performed by expert neurologists according to standardized di-
agnostic criteria [58]. Motor symptoms were scored using the H&Y and UPDRS scales;
the pharmacological condition of each subject was carefully noted: 52 mid-advanced PD
patients were recorded in both ON- and in OFF Levodopa (L-Dopa) state, whereas samples
from the remaining subgroup were collected only in OFF state. OFF state recordings were
performed at least 12 h after the last medication intake, whereas ON state recordings were
performed within 1–2 h of the last administration. Early PD subjects, due to their recent
diagnosis, hadn’t received any medication. Figure 1 reports a detailed description of the
demographics and distribution of the PD population; HCs were selected to match the
pathological subgroup in terms of age, gender, and BMI.
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Figure 1. Demographics and clinical characteristics of the study population.

The selection criteria for both HCs and PDs included: (i) Italian native speakers; (ii)
18+ years old; (iii) no previous history of smoking. Subjects characterized by a respiratory,
gastro-esophageal, auditory system, or vocal fold disease were also excluded.

As for the data-collection procedure, vocal samples were recorded employing either a
Y6S Honor smartphone (by Huawei, Guangdong, China) or a dynamic headset microphone
WH20 (by Shure, Niles, IL, USA) with XLR male 3-pin connector, together with a voice
recorder H5 (by Zoom, Tokyo, Japan) in high quality and uncompressed format (.wav, 16-
bit, 44.1 kHz). Smartphone recordings were collected through a dedicated application that
guaranteed the absence of compression or filtering and the same sampling frequency as the
professional microphones. All the samples were collected in a quiet and echo-free room.

Given the possible influence of the recording modality on the VAT, we composed the
dataset to maintain the same percentage of microphone and smartphone recordings for
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each subgroup employed for the study. The only exception to this related to the patients
recorded in both ON and OFF states, which were entirely collected by means of professional
equipment. Figure 2 reports more detailed information about the distribution.
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The data collection procedure involved several medical institutes, namely the Depart-
ment of Human Neurosciences of the University of Rome La Sapienza, the Department of
Systems Medicine of the University of Rome Tor Vergata and IRCSS Neuromed Institute
Pozzilli. During each recording session, subjects were asked to sit in a relaxed position and
sustain the vowel /e/ for 5 s at a comfortable volume [5]. The sustained emission of a vowel
could be the most appropriate technical solution for preventing linguistic confounding
and achieving standardized worldwide procedures [59]. Moreover, studies concerning
neurological disease (including PD) reported that the results derived from using a sustained
vowel are comparable to those obtained with connected speech [21,32,60]. To correctly
perform the feature extraction procedure, we excluded signals that were too short or with
low SNR. Signals processing, data analysis and model training were carried out through
Python 3.8, MATLAB R2022b (MathWorks, Natick, MA, USA) and Praat6.3 [61].

Participants gave written informed consent, which was approved by the institutional
ethics committee (0026508/2019), according to the Declaration of Helsinki; demographic
and clinical data were noted anonymously.

2.2. Audio Pre-Processing

As specified above, audio data were recorded non-homogeneously using either smart-
phone microphones or a professional headset microphone, in both cases the file being a
.wav lossless 24-bit type. The Shure WH20 headset microphone is dynamic and has a car-
dioid polar pattern, while smartphone microphones are MEMS-based, and omnidirectional.
These characteristics do provide relatively significant differences in microphones, as car-
dioid patterns tend to only capture what is in front of them, and a dynamic solenoid-based
technology is less sensitive and less “realistic” than a condenser or MEMS [62]. However,
the silent, controlled environment in which the recordings were held and the proximity
of the source (the subject’s mouth) to the microphones minimized the abovementioned
differences to a certain degree.

Several studies demonstrate how relevant perceptual features do not change signifi-
cantly between smartphones and comparable professional microphones, especially those
related to the fundamental frequency (F0) and subsequent estimators such as Jitter, which
are conversely among the most widely used and effective features in pathological voice
analysis [63,64]. To further reduce any differences, we opted to have the smartphone
recordings undergo a pre-processing procedure. The main differences between MEMS-
and dynamic-based recordings can be summarized as the former having a higher degree
of background noise due to the omnidirectional nature of the MEMS microphone, and
a different frequency response. In our study, a slight degree of noise cancellation was
applied using an algorithm based on spectral subtraction, individually learning the noise
profile of each audio recording [65]. For the frequency response, a pre-emphasis procedure
was carried out mimicking the declared response of the Shure WH20; the response of an
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omnidirectional MEMS microphone can, conversely, be well approximated to being flat [66].
In addition, further low-pass filtering at 12 KHz was applied to the whole dataset, since the
response of smartphones decays in that region, and the amount of relevant information
in voice signals is negligible. A 30-tap FIR filter implemented on MATLAB was used for
this step.

The abovementioned procedures were all successfully employed before preparing the
audio data for AI, and the quality of the processed recordings as well as their perceptual
similarity was evaluated empirically by a team of trained sound engineers.

3. Methods

In the next paragraphs, we will describe the two different approaches we used for
the classification tasks. The first is a traditional machine learning approach, consisting in
training several classification models with the most relevant selected vocal features. The
second approach involves a convolutional neural network (CNN) trained on augmented
Mel-spectrograms. The results obtained with the two approaches are also compared with
each other with a statistical analysis, using both Student’s t-test [67] and Pearson’s test [68].
The actual values compared are the accuracies obtained in each fold of the cross-validation,
with only the best performing algorithm being considered for each task involving ML.

3.1. Traditional Machine Learning Approach

The traditional classification approach is a pipeline divided into three phases:

1. Feature extraction;
2. Feature selection;
3. Model training.

3.1.1. Feature Extraction

In the first phase, we extracted 453 different vocal features from each audio recording,
expressly chosen among those considered useful to assess the voice disorders caused by
PD. This phase aimed to build a data matrix where each column represents a feature and
each row represents a subject.

The 453 vocal features were extracted with different methods: the first group of
339 features was extracted through the Voice Analysis Toolbox [69–71], a MATLAB toolbox
specifically designed for extracting linear and non-linear vocal features through the use
of different speech signal processing algorithms; a second group of 18 features relating to
low-frequency vocal tremor was extracted through Praat script tremor.praat v.3.05 [72–74];
and finally, a third group of 96 vocal formants-related features was extracted through
Parselmouth, a library that provides a simple way to run Praat’s C/C++ code through
Python [75], with custom routines.

The Voice Analysis Toolbox is a ready-to-use tool able to extract many of the most
valuable vocal features for the quantification of dysphonia, each plausibly related to a
clinical manifestation of a disease of the voice. The toolbox was used to extract features
such as jitter, shimmer, HNR or MFCC and many non-linear features such as pitch period
entropy or glottal-to-noise excitation [69]. Subsequently, we added some other interesting
parameters that were not present among those extracted from the toolbox: the first group
of added features comprise 18 vocal parameters related to the unintentional low-frequency
vibration of the vocal fold, whose amplitude and frequency could be affected by the
neuronal deficit caused by Parkinson’s disease [72]; the second group is composed of
96 features related to the vocal formants and their energy. Vocal formants represent the
acoustic resonant frequencies of the human vocal tract, and their values depend on the
position of the tongue and the characteristics of the vocal tract [76]. We extracted the first
five vocal formants and then applied the Teager-Kaiser energy operator (TKEO) [77] to
each of them to estimate their instantaneous energy. From each formant and its energy, we
extracted 8 numerical parameters including mean, standard deviation, range, percentile
and slope. A summary of the extracted features is reported in Table 2.
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Table 2. Summary of the 453 extracted features.

Feature Family Number of Features Brief Description ID

Fundamental Frequency 2

Lowest frequency of the
quasi-periodic vocal signal,

which represents the vibration
frequency of the vocal folds

F0

Jitter 22 Variability/perturbation of the
fundamental frequency Jitter

Shimmer 22 Voice amplitude perturbation Shimmer

HNR/NHR 4 Harmonic-to-noise ratio HNR, NHR

Mel Frequency Cepstral
Coefficients 82

Cepstral coefficients that estimate the
filtering effects of the vocal tract on

the sustained emission
MFCC

Vocal Formants 96
Vocal tract resonance frequencies,

which are related to tongue position
and vocal tract morphology

F1, F2, F3, F4, F5

Detrended
Fluctuation Analysis 1 An estimate of the turbulent air-flow

that traverses the vocal tract DFA

Recurrence Period
Density Entropy 1

This measures the stability of the
oscillation produced by the vocal
folds evaluating the periodicity of

the signal

RPDE

Pitch Period Entropy 1

This evaluates the stability of the
intonation (pitch) during the emission
of a sustained vowel without being

confused by the microtremor present
even in healthy voices

PPE

Wavelet Decomposition
Measures 182

Signal decomposition through the
discrete wavelet transform (DWT) for
the purposes of calculating the energy

present in the various
frequency sub-bands

WavDec_det
(detailed coefficient)

WavDec_app
(approximate coefficient)

Empirical Mode
Decomposition
Excitation Ratio

(EMD-ER)

6

This decomposes the signal through
the intrinsic mode functions (IMF)
and analyzes them to quantify the
noise due to an incomplete glottal

closure through entropy and
SNR measurements

IMF

Glottis Quotient 3 A measure of the aperiodicity of the
glottal cycle GQ

Glottal-to-Noise
Excitation Ratio 6

An estimate of the noise caused by
the incomplete closure of the vocal

folds calculated by cross-correlating
the envelopes of the glottal cycles

GNE

Vocal Fold
Excitation Ratio 7 This estimates noise unrelated to the

vocal emission, similarly to GNE VFER

Low-Frequency
Vocal Tremor 18

Parameters related to the
unintentional low-frequency

oscillations of the vocal fold and
their amplitude

Trem
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3.1.2. Feature Selection

Some of the various dysphonia measures that were extracted could be highly corre-
lated with each other, resulting in redundant information being transferred to the dataset.
Moreover, training machine learning models through a dataset with several instances lower
than the number of features could lead to poor results because of overfitting. Reducing
the size of the dataset is the best solution to achieve a more efficient analysis and better
classification performance. In particular, feature selection techniques can identify a small
subset of the most relevant features from the original dataset, excluding the irrelevant and
redundant ones [78]. In the second phase of our study, we compared three different filter
feature selection methods, which were preferred to wrappers due to their independence
from a specific classification model. All the feature selection procedures were performed
through Python.

The first method we considered is the classic information gain (IG) ranking method, a
univariate feature selection method that ranks features in terms of their information gain
with the class. IG estimates the entropy reduction due to the observation of a certain feature.
Features with a high value of IG are more important because they have been able to reduce
the entropy of the class:

IG = H(Y)− H(Y|X) (1)

where H(Y) represents the entropy of the class a priori, and H(Y|X) represents the condi-
tional entropy of the class after the observation of the feature X.

The second method we used is the correlation-based feature selection (CFS) algorithm,
a heuristic feature selection method that seeks to identify the subset S that maximizes the
following merit function:

MeritS =
k ∗ rc f√

k + k(k− 1)r f f

(2)

where k is the number of features in the subset; rc f is the average correlation between the k
features and the class; and r f f is the average inter-correlation among the k features [79].

The CFS algorithm performs a best-first kind of search [80] and estimates the correla-
tion values through a measure called symmetrical uncertainty (SU), which compensates for
the bias of the IG and normalizes the result in the range [0, 1]:

SU = 2· IG
H(Y)−H(X)

(3)

where IG represents the information gain, while H(Y) and H(X) respectively represent
the entropies of the class and of the variable.

The third method we used is the minimum redundancy maximum relevance (mRMR),
a multivariate ranking method that evaluates the features through a forward feature selec-
tion search, considering both their similarity/redundancy and relevance (i.e., correlation
with the class) [81]. In our study, we used a variant of the classic mRMR algorithm in-
troduced by Tsanas et al. and called mRMR Spearman (mRMRS) due to the use of the
Spearman coefficient to evaluate the correlations [82]. The algorithm tries to find a subset
composed of the features that enable the highest score to be obtained when evaluated with
the following merit function:

mRMR = max
x∈Q−X

[
S(x, y)− 1

nX
∑
z∈X

S(x, z)

]
(4)

where Q is the original feature set, X is the evaluated subset, nX is the number of features
in X, and S is the Spearman correlation coefficient. The first part of the function estimates
the relevance, measuring the correlation between the feature x and the class y, while the
second part measures the redundancy, evaluating the correlation between two features x
and z, belonging to the subset X.
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3.1.3. Model Training

In the third phase, the selected features were used to train three different machine
learning models: k-nearest neighbors (kNN), naïve Bayes (NB) and support vector machine
(SVM), which were chosen because of their effectiveness in voice analysis [83]. Models
were trained with a 10-fold cross-validation through the features selected by the three
feature selection methods. Moreover, their performance was compared using statistical
metrics such as accuracy, sensitivity, specificity and F1-score, and also through the receiver
operating characteristic (ROC) curve and the area under the curve (AUC).

In addition, since we observed that the CFS usually selects small subsets of 10 or
20 features while the other two methods are prone to assigning a non-zero score to more
than 100 features, we performed an exploratory analysis of the features ranked by IG and
mRMRS to find the number of the first n features that allowed us to obtain the best results
and finally, we compared these subsets with the ones selected by CFS.

To achieve the best performance, all the classification models went through a hyper-
parameter tuning using a Bayesian optimization procedure performed in MATLAB. To
estimate the values of the performance-maximizing hyperparameters, the Bayesian opti-
mization algorithm tries to minimize the misclassification function in a bounded domain
without previously assuming any functional forms [84,85].

Of course, which hyperparameter to tune depends on the classification model consid-
ered. In particular, the optimization procedure has fine-tuned the following parameters:

• For the SVM classifier, the optimizer selected the kernel between linear or radial-basis,
as well as the values of c and gamma;

• For the kNN classifier, the optimizer selected the distance/similarity metric between
Euclidean, Manhattan, Chebyshev, Hamming, cosine, correlation or Mahalanobis
distances;

• For the NB classifier, the optimizer performed a kernel density estimation procedure
to choose the kernel function—Gaussian, triangular or Epanechnikov—and its width.

3.2. Deep Learning Approach

The second classification approach we used involves training a CNN through a 10-fold
cross-validation using Mel-spectrograms as input images.

CNNs inherently offer high-performance analyses on image data, due to their filtering
nature that allows to identify local graphical features. With DL being one of the standard
solutions for audio analysis, spectrogram-based CNNs are considered the standard solution
often providing state-of-the-art results.

Mel is a re-scaling of the spectrum based on discrete bands weighed according to
perceptual characteristics, and is a standard representation of audio signals which report-
edly offers some of the best results in voice analysis and classification [86,87]. We plotted
grayscale Mel-spectrograms for all the audio recordings using a 2048 FFT and 512 points
hop length. Due to the scarcity and unreliability of information within the higher frequency
bands in the human voice [88], we decided to limit the frequency range to a maximum of
12 kHz.

Since deep learning models require large training datasets to perform high quality
generalization of the information, the usage of data augmentation techniques has become a
well-known practice to increase the amount of training data by generating synthetic ones
based on the existing training set. We employed six different audio data augmentation solu-
tions, four of which were applied to the audio signals and two directly to the spectrograms.
The techniques are reported below:

• Time stretching: slows down or speeds up the signal at a random rate between 0.6
and 1.4;

• Pitch shifting: shifts the pitch of the signal up or down by a random amount between
1 and 3 semitones;

• Noise addition: adds Gaussian noise to the original signal with an amplitude equal to
10% of the RMS value of the signal;
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• Room simulation: this algorithm simulates the frequency response of a large and
reverberating room;

• Time masking: covers part of the spectrogram over time with rectangular monochro-
matic boxes;

• Frequency masking: covers with rectangular monochromatic boxes part of the fre-
quencies of the spectrogram.

Data augmentation was carried out only on the training folders for each iteration of the
cross-validation procedure, while the validation folder contained only the original images.

During training, the model evaluated a batch composed of 32 elements through the
cross-entropy loss function via an adaptive momentum estimation (ADAM) optimizer.
The elements in each batch were randomly selected from the training data, which was
composed of 9 out of the 10 cross-validation folders. The model was trained for 60 epochs
and its weights were saved in each epoch, to select the best model after the completion
of the training; if the loss was unaltered or got worse for 25 epochs in a row, the model
stopped the training early, and started evaluating the next cross-validation folder. Training
optimization started with a learning rate of 0.01, which could decrease by a factor of 0.1
if the loss function got worse for 10 epochs in a row. A different validation set was used
to evaluate model performance during each cross-validation epoch, and at the end, the
average results were considered.

The CNN architecture was built with the aims of avoiding overfitting and maximizing
performance with a good compromise in net size. Significantly, in previous works with
similar tasks (voice analysis for pathology detection, especially directed towards COVID-
19), we experimented with transfer learning, using “common” nets such as AlexNet or
ResNet [89], but observed little to no improvement in accuracy with respect to lighter,
custom-made nets [20]. We thus preferred in the current study to implement a model
trained from scratch which could be the basis for future implementations of custom CNN
models for the analysis of vocal tasks.

The architecture of the CNN was chosen to avoid overfitting and to maximize its
performance. The proposed network receives a 256 × 256 sized image as input and is
composed of two convolutional layers with 16 and 32 filters, respectively; of several batch
normalization layers that follow and precede the convolutional layers; of a neural network
with 32 hidden neurons; of a dropout layer with a probability of 0.5; and finally, of the
output layer with softmax as activation function. A picture of the proposed architecture
is presented in Figure 3. All the described procedures were performed using the Keras,
Audiomentations and Librosa Python libraries [90].
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A complete description of our experimental design is summarized in Figure 4.
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Figure 4. Experimental design (exemplified view): (A) recording of voice samples through high-
definition audio recorder or smartphone; (B) pre-processing; (C) feature extraction; (D) ML model
training (binary SVM shown as an example); (E) spectrogram; (F) CNN training; (G) ROC curves;
(H) feature distributions.

4. Results
4.1. Traditional ML Classification Approach

In Table 3, we report the results obtained through the Bayesian hyperparameter op-
timization procedure applied to the three feature selection methods (i.e., CFS, IG and
mRMRS). For each binary and multiclass classification and each feature selection algo-
rithm, we reported the couple number of features–classification model that led to the best
classification accuracy, which is expressed in terms of average cross-validation (CV) results.

Table 3. Comparison across the three feature selection algorithms employed. For each method, we
report the couple number of features–ML model that enhances the best performance, and the corre-
sponding classification accuracy. Results are expressed as k-fold CV average and standard deviation.

Comparison Selection Method Number of Features Classification Model Accuracy

1. Mid-Advanced PD
vs. HC

CFS 12 KNN 0.80 ± 0.008
IG 100 SVM 0.74 ± 0.04

mRMRS 50 SVM 0.77 ± 0.008

2. Early PD vs. HC
CFS 17 NB 0.82 ± 0.007
IG 30 SVM 0.78 ± 0.16

mRMRS 70 SVM 0.83 ± 0.02

3. Mid-Advanced PD
vs. Early PD

CFS 17 KNN 0.85 ± 0.02
IG 30 NB 0.79 ± 0.02

mRMRS 10 NB 0.78 ± 0.01

4. Mid-Advanced PD
ON vs. OFF L-dopa

CFS 10 KNN 0.79 ± 0.005
IG 10 NB 0.66 ± 0.03

mRMRS 10 NB 0.69 ± 0.016

5. Mid-Advanced PD
vs. Early PD vs. HC

CFS 21 KNN 0.61 ± 0.03
IG 70 KNN 0.60 ± 0.01

mRMRS 10 SVM 0.60 ± 0.01

6. Mid-Advanced PD
ON vs. OFF L-dopa
vs. HC

CFS 21 NB 0.58 ± 0.01
IG 100 SVM 0.54 ± 0.04

mRMRS 70 KNN 0.54 ± 0.03
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To further assess the effectiveness of each feature selection algorithm, Table 4 shows
the classification accuracy of each method (whose internal hyperparameters were set as
in Table 3) averaged over the three different ML models tested (i.e., KNN, NB, and SVM).
Results are expressed in terms of CV accuracy.

Table 4. Classification accuracy with respect to each feature selection algorithm employed. The
results are expressed as the average (and standard deviation) of the CV performance yielded from
KNN, NB, and SVM models.

Comparison CFS IG mRMRS

Binary Classifications

1. Mid-Advanced PD vs. HC 0.78 ± 0.09 0.73 ± 0.04 0.75 ± 0.05
2. Early PD vs. HC 0.80 ± 0.05 0.74 ± 0.02 0.78 ± 0.04

3. Mid-Advanced PD vs. Early PD 0.84 ± 0.01 0.75 ± 0.02 0.75 ± 0.02
4. Mid-Advanced PD ON vs. OFF L-dopa 0.72 ± 0.05 0.56 ± 0.1 0.63 ± 0.06

Average 0.78 ± 0.05 0.70 ± 0.09 0.73 ± 0.07

Multiclass
Classifications

5. MID-Advanced PD vs. Early PD vs. HC 0.61 ± 0.01 0.57 ± 0.02 0.59 ± 0.02
6. Mid-Advanced PD ON vs. OFF L-dopa

vs. HC 0.55 ± 0.03 0.50 ± 0.04 0.50 ± 0.03

Average 0.57 ± 0.05 0.54 ± 0.05 0.55 ± 0.06

In a specular way, to evaluate the robustness of each classification model, in Table 5
we report the performance yielded by each tested ML model averaged across the three
feature selection models employed for the study. In this case, results are expressed in terms
of CV classification accuracy.

Table 5. Classification accuracy with respect to each ML model employed. The results are expressed
as the average (and standard deviation) of the CV performance yielded by CFS, IG, and mRMRS.

Comparison KNN SVM NB

Binary Classifications

1. Mid-Advanced PD vs. HC 0.75 ± 0.04 0.75 ± 0.02 0.74 ± 0.03
2. Early PD vs. HC 0.79 ± 0.04 0.79 ± 0.04 0.78 ± 0.04

3. Mid-Advanced PD vs. Early PD 0.79 ± 0.05 0.79 ± 0.05 0.78 ± 0.03
4. Mid-Advanced PD ON vs. OFF L-dopa 0.69 ± 0.08 0.66 ± 0.08 0.67 ± 0.07

Average 0.76 ± 0.04 0.75 ± 0.06 0.74 ± 0.05

Multiclass
Classifications

5. Mid-Advanced PD vs. Early PD vs. HC 0.59 ± 0.03 0.60 ± 0.03 0.59 ± 0.02
6. Mid-Advanced PD ON vs. OFF L-dopa

vs. HC 0.53 ± 0.03 0.51 ± 0.02 0.54 ± 0.03

Average 0.56 ± 0.04 0.57 ± 0.05 0.56 ± 0.03

In Figure 5, we show the ROC curves and their relative area under the curve (AUC)
for each binary classification task, showing all three feature selection methods with the
classification models that perform best, as reported in Table 3. Since the performances of
the three classifiers are comparable, we decided to graphically compare the three feature
selection methods to enable their differences to be more readily visualized.

4.2. Comparison between Classic ML and CNN Models

Figure 6 depicts a comparison between classic ML and CNN models, both of whose
performance are expressed in terms of CV classification accuracy. In the case of the classic
ML model, we report the combination of feature selection classification models which led
to the best performance according to the previously exposed results (see Tables 3–5).

For the sake of completeness and to enhance the comparison of the proposed approach
with similar studies, in Tables 6 and 7, we report the complete set of metrics (i.e., accuracy,
positive predictive value, negative predictive value, sensitivity, specificity, area under the
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curve, and F1 score) used to assess and compare the performance of each algorithm, for
binary and multiclass classifications, respectively. The statistical analyses were carried out
on all the binary tasks bar mid-advanced PD ON vs. OFF L-dopa, in which the differences
between ML (KNN) and CNN are too skewed, and may bias the statistics when the aim
is to identify possible unwanted correlations. The results of the t-test show a two-tailed
p-value of 0.0346 (t = −2.5403), while Pearson’s test reveals an r value of 0.034. By common
standards, both tests convey metrics associated with little to no statistically significant
correlation between the variables [68].
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Figure 5. ROC curve comparison: (a) mid-advanced-stage PD patients vs. healthy control group;
(b) early-stage PD patients vs. healthy control group; (c) mid-advanced-stage vs. early-stage PD
patients; (d) mid-advanced-stage PD patients ON L-Dopa therapy vs. OFF L-Dopa therapy.
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Figure 6. Comparison between the best classic ML model fed with handcrafted features and a CNN
model fed with spectrogram images. Results are expressed in terms of CV classification accuracy.
L-Dopa therapy ON vs. OFF.



Sensors 2023, 23, 2293 14 of 22

Table 6. Binary classification performance of the best traditional ML and CNN models. Results are
reported in terms of CV accuracy. Acc: accuracy; PPV: positive predictive value; NPV: negative
predictive value; Sen: sensitivity; Spec: specificity; AUC: area under the curve.

Comparison Model Acc PPV NPV Sen Spec AUC F1 Score

1. Mid-Advanced PD vs. HC
KNN 0.80 ± 0.01 0.79 ± 0.03 0.80 ± 0.02 0.80 ± 0.01 0.79 ± 0.02 0.87 ± 0.04 0.80 ± 0.03
CNN 0.82 ± 0.07 0.87 ± 0.05 0.78 ± 0.06 0.75 ± 0.04 0.87 ± 0.05 0.83 ± 0.05 0.79 ± 0.05

2. Early PD vs. HC SVM 0.83 ± 0.02 0.81 ± 0.01 0.83 ± 0.01 0.83 ± 0.03 0.82 ± 0.02 0.88 ± 0.05 0.82 ± 0.01
CNN 0.70 ± 0.06 0.72 ± 0.04 0.75 ± 0.03 0.73 ± 0.04 0.66 ± 0.07 0.73 ± 0.02 0.70 ± 0.03

3. Mid-Advanced PD vs.
Early PD

KNN 0.85 ± 0.02 0.77 ± 0.05 0.86 ± 0.02 0.83 ± 0.02 0.81 ± 0.03 0.91 ± 0.06 0.80 ± 0.04
CNN 0.74 ± 0.09 0.75 ± 0.05 0.76 ± 0.06 0.69 ± 0.08 0.75 ± 0.07 0.75 ± 0.05 0.68 ± 0.05

4. Mid-Advanced PD ON vs.
OFF L-dopa

KNN 0.79 ± 0.01 0.71 ± 0.02 0.87 ± 0.05 0.84 ± 0.01 0.75 ± 0.02 0.82 ± 0.03 0.77 ± 0.03
CNN 0.53 ± 0.08 0.53 ± 0.06 0.57 ± 0.08 0.69 ± 0.05 0.37 ± 0.08 0.58 ± 0.05 0.65 ± 0.06

Table 7. Multiclass classification performance of the best traditional ML and CNN models. Results
are reported in terms of CV accuracy. Acc: accuracy; PPV: positive predictive value; NPV: negative
predictive value; Sen: sensitivity; Spec: specificity; AUC: area under the curve.

Comparison Model Macro-Acc Macro-PPV Macro-Sen Macro-F1 Score

5. Mid-Advanced PD vs. Early
PD vs. HC

KNN 0.61 ± 0.03 0.61 ± 0.02 0.61 ± 0.03 0.60 ± 0.03
CNN 0.62 ± 0.03 0.58 ± 0.03 0.57 ± 0.04 0.56 ± 0.03

6. Mid-Advanced PD ON vs.
OFF L-dopa vs. HC

NB 0.58 ± 0.01 0.56 ± 0.01 0.57 ± 0.02 0.54 ± 0.01
CNN 0.60 ± 0.03 0.58 ± 0.04 0.49 ± 0.05 0.53 ± 0.04

4.3. Vocal Biomarkers

Table 8 reports the feature selection results for each binary and multiclass classification
carried out in the current study. For the sake of brevity, we reported the 5 top-ranked
parameters for each feature selection method.

Table 8. Best five features according to the three different feature selection algorithms employed.
Results are reported for each binary and multiclass analysis performed.

1. Mid-Advanced PD vs. HC

Rank CFS mRMRS IG

1 MFCC_std_8thDelta_delta MFCC_std_8thDelta_delta MFCC_std_10thDelta_delta
2 MFCC_std_11thDelta WavDec_det_TKEO_mean_1_coef MFCC_mean_5thDelta_delta
3 MFCC_std_1stCoef MFCC_mean_deltaDeltaLogEnergy MFCC_std_8thDelta_delta
4 VFER_SNR_TKEO Shimmer__F0_abs_dif MFCC_std_8thDelta
5 MFCC_std_10thCoef GNE__std MFCC_mean_6thDelta

2.Early PD vs. HC

Rank CFS mRMRS IG

1 MFCC_std_4thDelta WavDec_app_entropy_log_2_coef Trem_ATrPS
2 WavDec_app_LT_entropy_log_9_coef MFCC_mean__4thCoef WavDec_det_Ed2_1_coef
3 IMF_NSR_entropy WavDec_det_LT_TKEO_mean_3_coef WavDec_app_entropy_log_6_coef
4 Trem_FTrCIP WavDec_det_entropy_shannon_1_coef WavDec_app_LT_entropy_shannon_1_coef
5 MFCC_std_1stDeltaDelta MFCC_std_3rdCoef WavDec_det_LT_entropy_shannon_1_coef

3.Mid-Advanced PD vs. Early PD

Rank CFS mRMRS IG

1 MFCC_std_10thDelta MFCC_std_10thDelta MFCC_std_8thDelta
2 MFCC_std_10thDelta_delta MFCC_mean_7thDelta_delta MFCC_std_10thDelta
3 MFCC_std__10thCoef GNE__std MFCC_std_10thDelta_delta
4 GNE__std Shimmer__F0_PQ3_generalised_Schoentgen WavDec_app_LT_TKEO_mean_3_coef
5 MFCC_std__7thCoef F0_slopeLinFit MFCC_std_9thDelta
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Table 8. Cont.

4.Mid-Advanced PD On vs. Off L-dopa

Rank CFS mRMRS IG

1 Jitter__F0_PQ5_classical_Baken MFCC_mean__6thCoef WavDec_app_LT_TKEO_std_6_coef
2 F1_TKEO_mean F0_slopeLinFit Trem_AMoN
3 F5_rangePerc F5_TKEO_perc95 MFCC_std_11thDelta
4 WavDec_det_LT_entropy_shannon_2_coef MFCC_std_2ndDelta F4_perc5
5 mean_MFCC_6thCoef F1_perc5 Jitter__F0_PQ11_classical_Schoentgen

5.Mid-Advanced PD vs. Early PD vs. HC

Rank CFS mRMRS IG

1 MFCC_std_10thDelta_delta MFCC_std_10thDelta MFCC_std_10thDelta_delta
2 MFCC_std_10thDelta MFCC_mean_7thDelta_delta MFCC_std_8thDelta
3 GNE__std F3__TKEO_slopeLinFit MFCC_std_3rdDelta
4 WavDec_app_LT_TKEO_mean_3_coef Shimmer__F0_PQ3_generalised_Schoentgen MFCC_std_8thDelta_delta
5 Shimmer__F0_PQ3_generaised_Schoentgen GNE__std WavDec_app_LT_entropy_log_7_coef

6. Mid-Advanced PD On vs. Off L-dopa vs. HC

Rank CFS mRMRS IG

1 Shimmer__F0_DB Shimmer__F0_PQ11_classical_Schoentgen MFCC_std_8thDelta_delta
2 Shimmer__F0_PQ5_classical_Schoentgen MFCC_mean_2ndDelta_delta MFCC_std_11thDelta
3 F0__TKEO_perc25 Shimmer__F0_PQ11_classical_Baken MFCC_std_10thDelta_delta
4 Shimmer__F0_abs_dif Jitter__F0_TKEO_prc25 WavDec_det_TKEO_std_1_coef
5 Shimmer__F0_TKEO_prc75 Shimmer__F0_TKEO_prc75 MFCC_std_8thDelta

To derive information regarding the effectiveness of the selected features, in Figure 4,
we report two spider plots with the most significant features for (i) early identification of
PD disease; (ii) evaluating the effect of the medication; (iii) monitoring the progression of
the disease. Features represented in Figure 7 were chosen among all those in the highest
positions of the ranking after being individually analyzed to find those that allow a better
separation of the distributions of the classes. For each feature, we report the average
values normalized over the whole HC population to highlight eventual differences between
normophonic and non-normophonic voices.
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5. Discussion

Results show that traditional machine learning approaches can discriminate with high
accuracy between the voices of the patients affected by Parkinson’s disease and of healthy
controls, even if the patients are only in the early stage of the disease. Moreover, it is
possible to distinguish the voices of the mid-advanced stage patients before and after the
therapy. The accuracies of the multiclass classifications are not as good as the ones of the
binary classifications, but the results obtained are in line with the expectations.

The average accuracy reached for the binary classifications which involve all the
possible PD states considered in this study (healthy, early, mid-advanced ON and OFF
L-Dopa) is 82.25%, calculated on the basis of the best performing models. However, taking
a closer look at Tables 6 and 7, it can be seen that “traditional” ML models (KNN or SVM)
provide a higher performance three times out of four, with a mean accuracy of 81.75%
versus 69.75% reached by the CNN–albeit affected by the very low 53% reported for the
mid-advanced ON vs. OFF comparison. Moreover, a slight advantage for CNNs is reported
for multiclass tasks, with a 61% mean accuracy versus the 59.5% reported by the traditional
ML methods for the three classes. The higher generalization power of ML models is also
confirmed by the area under the ROC curves being consistently higher, with a mean of 0.87.

Overall, these results show how traditional ML methodologies still hold a relevant
place for highly complex tasks such as voice analysis with low-cardinality datasets; on
a side note, as limited as the study population might be, this remains a work involving
one the biggest datasets for PD detection to-date [91]. Thus, as many studies and results
such as [20,92] and [93] suggest, ML algorithms can still provide significant results, some-
times improving the state-of-the-art diagnosis, if carefully fine-tuned and applied to the
correct features.

As shown in Table 5, the most effective algorithm for the present tasks appears to be
the KNN, which conversely is also one of the simplest. However, the widespread SVM
does provide comparable performance, and even has a slight edge for multiclass tasks.

Furthermore, a much bigger difference is observed when comparing different feature
selection methods (Table 4). The CFS appears to consistently provide the best performance
over IG and mRMRS, with the latter coming in second place. We remark that CFS involves
a search method, which was Best-First in our case [80], and thus retains a non-standardized
number of features depending on the task; conversely, information gain or mRMRS are
used as rankers and do not provide the performance of CFS even when using the empirical
best number of features.

CFS and mRMRS can be roughly based on the same principle of valuing the high
correlation of a feature with the class and devaluing inter-correlation between features. With
these premises, the main differences between the two methodologies could be summarized
as the statistical indicators used to compute each correlation, and the different search
methods that we employed—a ranker implying a single-feature-wise search dynamic.
By contrast, information gain is based on the amount of information gained about a
random variable (class) from observing another random variable (feature), and does not
include considerations about the inter-correlation between features, thus creating the risk
of redundant sets. IG constantly yields the lowest performance.

Hence, the observations within this study point to ML methods still achieving results
that are comparable to, if not better, than those from deep learning in experimental environ-
ments such as those of vocal analysis, often involving reduced datasets and complex tasks,
as confirmed by the statistical analyses. ML algorithms also are proven to be more reliable,
offering more consistent results. We would like to stress that most of our previous work
within the same context point to the same conclusion, even when using transfer learning
and comparing architectures [20,24]. Moreover, the plethora of studies involving voice
analysis for PD, albeit showing a trend towards the usage of CNNs in the last few years,
still achieve equally relevant results with ML methods [52]. However, let the reader be
reminded that accuracies and trends in specific tasks with limited datasets can only point
out a “direction” for future studies to take, define a more thorough baseline methodology
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and present all the possible viable alternatives, and it is not recommended to draw strict
conclusions on the accuracy of specific models.

A delicate choice of algorithms and a thorough tuning procedure are necessary to
build the best-performing ML pipeline, with CFS being identified as the most effective
selector among those here analyzed, and SVM and KNN being the most effective algorithms.
The advantage of a CNN-based approach is clearly in the “black box”-like behavior that
does not require such attention to detail or the choice of features and extraction methods;
nevertheless, differences in net architecture, optimization algorithm and data preprocessing
and augmentation remain relevant.

Taking a closer look at Table 1 and in general on the overview of the current state-
of-the-art of voice analysis for PD (as detailed in [52]), we believe that the strengths of
this work can be summarized as: the extensive set of well-recorded, validated data; a
comprehensive approach comparing ML and CNN methodologies; and the usage of a
broad spectrum of acoustic features.

We extracted a set of 453 features, chosen from all those that previous researchers
considered relevant for quantifying voice disorders caused by PD. We strove to present a
single corpus that included all the parameters deemed interesting by the various studies
that exist in the literature. Our feature set includes several linear and non-linear measures
extracted through the voice analysis toolbox, such as prosodic and spectral features, MFCC,
wavelet decomposition or GNE, to which we added features related to low-frequency vocal
tremor and the vocal formants. In this work, we have analyzed how the distributions
of these values vary with the progression of the disease and with the L-Dopa therapy
to find clinical biomarkers useful for an early diagnosis of PD and the evaluation of the
medical therapy.

As far as acoustic features are concerned, F0, shimmer and jitter could be summarized
as the most widely used ones in vocal analysis for PD. Looking at the exemplified overview
of the top-ranked features in Table 8, the results of CFS and mRMRS are quite similar,
which confirms the fact that they are based on the same dynamics. The lesser-performing
IG usually detects different features as the most relevant. Quality-wise, most of the fea-
tures identified by CFS/mRMRS are indeed related to perceptual characteristics such as
F0, shimmer, formants (e.g., F1, F5) or glottal model-based macroscopic indicators (e.g.,
“VFER”: vocal fold excitation ratio) with only a partial amount being composed of high-
level differential features (e.g., “std_10thDelta” which identifies the tenth Delta coefficient
of the standard deviation of the windowed signal). Conversely, IG often appears to rely on
such features, which provide a high level of abstraction and are very difficult to interpret
from a perceptual point of view. Paired with the consideration that CFS appears as the
best-performing feature selector, the trends in the top-ranked features preliminarily confirm
how pitch-related and prosodic features bear relevant information for the detection and
staging of PD in voice.

6. Conclusions and Future Work

Due to the empirical nature of the current methodologies for diagnosing PD, and
the ongoing experimentations regarding treatment and dosages, it is crucial to build
reliable support, and investigate the promising characteristics of voice analysis. Many
solutions have been proposed in the literature, which rely on several different ML or DL
algorithms, and use baseline datasets that all share the characteristics of low cardinality.
With these premises, we strove to build as wide and carefully recorded as possible a
dataset, providing 160 PD patients and 266 healthy controls which, albeit still small, stands
out as one of the largest PD datasets so far. To assess the robustness of the proposed
classic ML approaches, we compared several pipelines of feature selection classification
algorithms and investigated the performance variability introduced when varying each
block composing the pipeline. According to our findings, changing the feature selection
method has the highest impact on the classification accuracy, as demonstrated in Table 4.
As for the specific algorithm, CFS was revealed to be the most effective one, leading to an
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increase of around 5% compared to the mRMRS and IG. Moreover, CFS typically returns
several selected features in the range of 10–20, which enhances rapid model training and
reduces the possibility of overfitting. Results also show how ML can still achieve results
comparable to CNN, with the added advantage of being more reliable in terms of accuracy,
and highly interpretability due to it being based on acoustic features. CFS is proven to be
the best feature selector among those analyzed, and SVM and KNN provide similarly good
classification performance.

CNN often provides similar results to ML, with the only exception being the task
of differentiating mid-advanced PD patients ON and OFF L-Dopa–which conversely is
the only differential analysis here presented. CNNs also do not require such a detailed
fine-tuning of features, internal algorithms and hyperparameters.

Binary classifications among all classes (healthy, early, mid-advanced ON and OFF
L-Dopa) resulted in a maximum mean accuracy of 82.25, while three-class tasks only peaked
at 61%. A mean AUC of 0.87 confirms the generalization power of the proposed algorithms.

Even within classical clinical environments, identifying consistent thresholds for PD
stages is a difficult task, often relying on partially-exhaustive indicators such as UPDRS. The
post-hoc analysis conducted on the selected features showed MFCC and their derivatives to
be the most frequently selected feature (Table 7), especially for mid-advanced PD patients,
thus suggesting their ability to describe the disease progression. A significant number
of features associated with F0, shimmer, and jitter, which are a common standard in
voice analysis, are selected when comparing vocal samples from ON and OFF L-Dopa PD
patients, thus confirming previous evidence from [28,29].

Finally, wavelet decomposition measures, low-frequency tremor features and glottal-
to-noise excitation (GNE) demonstrated higher effectiveness in discriminating early stages
of the disease from the healthy control group or the mid-advanced-stage PD.

Despite the promising results, we also acknowledge the presence of several limitations
that still must be addressed. Regardless of whether the size of the employed datasets is
statistically significant and generally higher than in similar studies, we plan to further
increase the sample and validate our findings on larger datasets, to obtain better and more
reliable results, especially with CNN. As for the protocol used in our study, we employed
a single speech task (that is, sustained vowel phonation), which on the one hand enables
language-independent results, but on the other can lead to suboptimal results. Future
studies will take into account additional analyses to investigate possible improvements
due to a more complete set of tasks performed. The limitations of our study can be
identified in a dataset that, albeit bigger than the vast majority of other datasets in the
field, still cannot be compared to the extensive, big data-like sets commonly employed in
other successful AI tasks with high generalization. As far as algorithms are concerned,
a more thorough experimentation of CNN techniques and architectures could be useful,
although transfer learning has proven to give no relevant advantages in our past studies.
With the aim of identifying the benefits given by each processing step, we also will try to
implement an ablation analysis for the data augmentation procedures in our future research.
Moreover, although we carefully pre-processed our dataset to mitigate the presence of
different recording equipment, we are aware that this could have negatively affected the
performance. However, this reflects the condition of a real-world scenario to which we
aspire: the development of an automatic tool to monitor and evaluate the progression of
PD which is independent of external conditions.
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