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Abstract
Determination of malignancy in thyroid nodules remains a major diagnostic challenge. Here we report the feasibility and
clinical utility of developing an AI-defined protein-based biomarker panel for diagnostic classification of thyroid nodules:
based initially on formalin-fixed paraffin-embedded (FFPE), and further refined for fine-needle aspiration (FNA) tissue
specimens of minute amounts which pose technical challenges for other methods. We first developed a neural network
model of 19 protein biomarkers based on the proteomes of 1724 FFPE thyroid tissue samples from a retrospective
cohort. This classifier achieved over 91% accuracy in the discovery set for classifying malignant thyroid nodules. The
classifier was externally validated by blinded analyses in a retrospective cohort of 288 nodules (89% accuracy; FFPE) and
a prospective cohort of 294 FNA biopsies (85% accuracy) from twelve independent clinical centers. This study shows
that integrating high-throughput proteomics and AI technology in multi-center retrospective and prospective clinical
cohorts facilitates precise disease diagnosis which is otherwise difficult to achieve by other methods.

Introduction
Advances in imaging technology and liberal screening

practices have identified thyroid nodules in up to 50% of
the general population, but only a small minority of these
(7%–15%) eventually prove to be malignant by histology,

and an even smaller fraction is clinically relevant1,2. Beyond
clinical assessment and ultrasonography, fine-needle
aspiration (FNA) followed by cytopathology is considered
the most reliable pre-surgical technique for differentiating
benign from malignant thyroid tumors1,3. Yet up to one-
third of thyroid nodules are deemed indeterminate by
FNA-cytopathology4, and surgery remains the only option
for accurate diagnosis. The majority of thyroid surgeries are
diagnostic procedures undertaken to exclude thyroid can-
cers, of which ≤ 25% accomplish any therapeutic purpose5.
Patients whose thyroid glands are removed in part or
entirely often require daily and lifelong thyroxine-
replacement therapy and medical monitoring. Given that
only ~10% of resected glands prove to be malignant, the

© The Author(s) 2022, corrected publication 2022
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Stan Ziqing Li (Stan.ZQ.Li@westlake.edu.cn) or
Oi Lian Kon (kairos712@singnet.com.sg) or Narayanan Gopalakrishna Iyer
(gmsngi@nus.edu.sg) or Tiannan Guo (guotiannan@westlake.edu.cn)
1Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of
Structural Biology of Zhejiang Province, School of Life Sciences, Westlake
University, Hangzhou, Zhejiang, China
2Institute of Basic Medical Sciences, Westlake Institute for Advanced Study,
Hangzhou, Zhejiang, China
Full list of author information is available at the end of the article
These authors contributed equally: Yaoting Sun, Sathiyamoorthy Selvarajan,
Zelin Zang, Wei Liu, Yi Zhu, Hao Zhang

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/celldisc
http://orcid.org/0000-0001-7613-648X
http://orcid.org/0000-0001-7613-648X
http://orcid.org/0000-0001-7613-648X
http://orcid.org/0000-0001-7613-648X
http://orcid.org/0000-0001-7613-648X
http://orcid.org/0000-0003-2831-5437
http://orcid.org/0000-0003-2831-5437
http://orcid.org/0000-0003-2831-5437
http://orcid.org/0000-0003-2831-5437
http://orcid.org/0000-0003-2831-5437
http://orcid.org/0000-0003-0429-0802
http://orcid.org/0000-0003-0429-0802
http://orcid.org/0000-0003-0429-0802
http://orcid.org/0000-0003-0429-0802
http://orcid.org/0000-0003-0429-0802
http://orcid.org/0000-0002-3480-3421
http://orcid.org/0000-0002-3480-3421
http://orcid.org/0000-0002-3480-3421
http://orcid.org/0000-0002-3480-3421
http://orcid.org/0000-0002-3480-3421
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0001-9683-5691
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-2521-190X
http://orcid.org/0000-0002-9576-3267
http://orcid.org/0000-0002-9576-3267
http://orcid.org/0000-0002-9576-3267
http://orcid.org/0000-0002-9576-3267
http://orcid.org/0000-0002-9576-3267
http://orcid.org/0000-0002-2961-8096
http://orcid.org/0000-0002-2961-8096
http://orcid.org/0000-0002-2961-8096
http://orcid.org/0000-0002-2961-8096
http://orcid.org/0000-0002-2961-8096
http://orcid.org/0000-0002-8812-6219
http://orcid.org/0000-0002-8812-6219
http://orcid.org/0000-0002-8812-6219
http://orcid.org/0000-0002-8812-6219
http://orcid.org/0000-0002-8812-6219
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://orcid.org/0000-0003-3869-7651
http://creativecommons.org/licenses/by/4.0/
mailto:Stan.ZQ.Li@westlake.edu.cn
mailto:kairos712@singnet.com.sg
mailto:gmsngi@nus.edu.sg
mailto:guotiannan@westlake.edu.cn


current clinical approach results in substantial over-
treatment with unwarranted surgical risks for patients
who could otherwise be treated conservatively6.
Molecular tests adjunctive to FNA-cytopathology have

focused on RNA expression or DNA mutational profiling
of aspirates obtained prior to surgery, using small quan-
tities of RNA or DNA that can be amplified7–10. The
development of a nucleic acid-based classifier has been a
remarkable decade-long practice across multiple centers
using various technologies. However, nucleic acid-based
testing has its inherent limitations, i.e., the need for fresh
tissue samples with undegraded RNA. Furthermore, thyr-
oid tumors are usually indolent and nonlethal, harboring
few gene alterations. While nucleic acid-based approaches
continue to be refined, for example with successive itera-
tions of ThyroSeq panels, there is an evident need for
alternative approaches to address this diagnostic dilemma.
Until recently, proteomics-based analyses were limited to

large tissue quantities and fresh/snap-frozen samples.
Proteotyping hundreds of biopsy-level tissue samples from
clinical cohorts remains unachievable with conventional
methods. We have developed a pressure cycling technol-
ogy (PCT) protocol for proteomic analysis of tissue biopsy
samples11 which can be performed on minimal amounts of
fresh-frozen tissue samples12,13. The method was recently
extended to generate high-quality proteome data from
biopsy-level formalin-fixed, paraffin-embedded (FFPE)
tissue samples14. Samples prepared by PCT can be ana-
lyzed by a data-independent acquisition mass spectrometry
(DIA-MS) method15,16, enabling practical proteomic ana-
lysis of biopsy-level FFPE, fresh-frozen or even cyto-
pathologic (from needle biopsies) tissue samples at high
throughput. We have furthermore shown that, in com-
parison to RNA samples, protein samples are substantially
less prone to spontaneous degradation in clinical sam-
ples17. In this study, we applied PCT-DIA to analyze tissue
samples from > 1000 patients and show that the high-
quality proteotype data in conjunction with machine
learning approaches identified a robust panel of protein
markers that could be used to stratify thyroid diseases.

Results
Study design and clinical characteristics
We applied PCT-DIA on a total of 1161 nodules from

1133 patients using either tissue cores (1 mm diameter;
0.5–1 mm depth) punched from regions of interest
marked on retrospective FFPE tissue blocks or pro-
spective cytology specimens from FNA aspirates. The
samples comprise (i) a discovery set of FFPE samples
from Singapore General Hospital (n= 579 nodules)
where histopathological diagnoses were confirmed on
central review by a board-certified pathologist; and
independent test sets from twelve hospitals in China and
Singapore consisting of (ii) retrospective test sets of FFPE

samples (n= 288 nodules) with the same histopatholo-
gical assessment and classification as the discovery sam-
ple set, and (iii) a prospective test set of FNA biopsies
(n= 294 nodules) which were additionally scored by the
Bethesda System for reporting thyroid cytopathology
(Fig. 1a). Histological diagnoses of all tissue samples were
based on uniform criteria18.
The discovery set comprised FFPE samples from 40

normal thyroid tissues (N), 203 multinodular goiters
(MNG), 137 follicular thyroid adenomas (FA), 75 folli-
cular thyroid carcinomas (FTC), and 124 papillary thyroid
carcinomas (PTC) (Fig. 1b; Supplementary Table S1). For
subsequent analyses, these samples were divided into
benign (comprising N, MNG and FA) and malignant
(comprising FTC and PTC) thyroid nodules. For each
nodule in the discovery set, three cores were punched
from the region of interest as replicates. We analyzed
1724 samples randomly distributed into 121 batches to
minimize batch effects (Supplementary Fig. S1a) using 45-
min DIA-MS. An additional 56 samples were randomly
selected from the discovery dataset and used as technical
replicates, i.e., injected into the mass spectrometer for
DIA-MS analysis. Although greater proteomic depth
could be obtained with a longer liquid chromatography
(LC) gradient, we adopted a reasonably short analysis time
to minimize batch effects without substantial compromise
of proteome depth by taking advantage of the DIA-MS
methodology, thus facilitating effective downstream
machine learning to establish a robust classifier.

Global proteomic profiling of thyroid nodules
To analyze the DIA data, we built a thyroid-specific

spectral library from FFPE tissues as we described pre-
viously19. The library contained 925,330 transition groups,
157,548 peptide precursors, 121,960 peptides, 9941 pro-
tein groups, and 9826 proteins from proteotypic peptides.
Using DIA-NN (v1.7.15) and our thyroid library, we
analyzed 1780 DIA maps from 1724 FFPE cores and 56
aliquots of the same peptides injected as technical repli-
cate samples for analysis by DIA-MS at specified points
during data acquisition. We identified and quantified
63,036 peptides from 6749 protein groups, of which 6689
were proteotypic proteins in the discovery dataset (Sup-
plementary Table S2). Details on quality control (QC) and
reproducibility (Supplementary Fig. S2) are documented
in the Materials and Methods.
From these primary data, we computed the average

intensities of 5312 proteotypic proteins which were quan-
tified with < 90% missing values for each thyroid nodule, as
visualized in a tissue-type arranged heatmap (Fig. 2a).
Generally, a higher number of proteins were identified in
malignant tissue samples compared to benign samples
using the same amount of total peptide injected. Visuali-
zation of these data using uniform manifold approximation
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and projection (UMAP) plots showed that the PTC sam-
ples were well resolved from the rest. However, the N and
MNG samples could not be separated from each other,
neither could FA and FTC (Fig. 2b). We then grouped N,
MNG, and FA as benign; FTC and PTC as malignant.
These two groups are not completely separated in the
UMAP analysis (Fig. 2c). We further narrowed our focus

on the N and MNG samples and found that their proteo-
types shared a high degree of similarity (Fig. 2d). Not
surprisingly, FA could not be separated from benign or
malignant subsets, particularly between FA and FTC
(Fig. 2e), corroborating known biological similarities
between these two pathologies which are believed to be
part of a spectrum of follicular neoplasms. In contrast,

Fig. 1 Schematic view of the study and clinic-pathologic characteristics. a The project design and workflow of the FFPE-PCT-DIA pipeline.
b Clinic-pathologic characteristics of the study cohorts.
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Fig. 2 Global thyroid proteome profile. a Heatmap showing protein expression profiles of 579 thyroid tissue specimens from 578 patients. 5312
proteins (rows) are clustered without supervision. Samples (columns) are ordered based on the tissue types. The color indicates the log2-scaled
intensity of each protein in each sample. b–f UMAP plots showing global snapshots comparing the indicated types of thyroid tissues using 5312
proteins for all subtypes (b); benign vs malignant (c); only benign (d); FA vs FTC (e); and only malignant (f) tissue types.
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Fig. 3 (See legend on next page.)
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there were sufficient features that distinguished FTC from
PTC (Fig. 2f). Pairwise comparisons of each combination of
two histological types are shown in Supplementary Fig. S3.
The foregoing analyses showed that the proteotype maps
thus measured reasonably reflected the histopathological
phenotypes of these samples.

Feature selection and classifier development
To derive a protein-based signature differentiating

benign from malignant thyroid nodules, we developed a
feature selection process combined with a neural network
classifier based on the discovery dataset of 579 samples
(Fig. 3a). Here we limited the number of selected features
to no more than twenty, so that they may be readily
measured as a panel by targeted proteomics in clinical
laboratories. Briefly, the discovery dataset was randomly
divided into dataset A containing 2/3 of the samples
(n= 386), while the remaining samples constituted data-
set B (n= 193) (Supplementary Fig. S4a). Protein features
were selected from dataset A by a genetic algorithm20

combined with three-fold cross-validation. A panel of 19
proteins (Table 1) with the best accuracy for separating
benign and malignant nodules was selected in dataset B
according to the genetic algorithm (Fig. 3a). The 19
proteins function interactively as a whole based on their
abundance in the model rather than in isolation as indi-
vidual proteins. Next, the importance of the 19 protein
features for the classifier was evaluated by SHapley
Additive exPlanations (SHAP) algorithm21,22 (Fig. 3b). We
further analyzed the abundance distribution of 5312
proteins and 19 selected features as shown in Figs. 3c
and 4a. The quartiles of abundance distribution of 5312
proteins were 18.0 (first quartile), 19.0 (second quartile/
median), and 20.3 (third quartile). The 19 protein features
were higher in abundance than the median abundance of
5312 proteins, which are easier to be measured. The
individual protein expression levels are shown in Fig. 4b.
Twelve of the selected proteins were previously repor-

ted as relevant for thyroid cancers (Table 1), namely,

alpha 2-HS glycoprotein (AHSG)23, annexin A1
(ANXA1)24, clusterin (CLU)25, galectin-3 (LGALS3)26,
calreticulin (CALR)27, phosphatidylethanolamine-binding
protein 1 (PEBP1)28, heat shock protein beta-1 (HSPB1)29,
adenylate kinase isoenzyme 1 (AK1)30, signal transducer
and activator of transcription 1-alpha/beta (STAT1)31,
matrilin-2 (MATN2)32, DNA-dependent protein kinase
catalytic subunit (PRKDC)33, and fibronectin (FN1)34. A
further two proteins in this panel are known to be
involved in various thyroid functions (Table 1), namely,
tubulin folding cofactor A (TBCA)35, and Thy-1 mem-
brane glycoprotein (THY1)36. No previous association
with thyroid disease has been reported for the remaining
five proteins: sialic acid acetylesterase (SIAE), hepatocyte
growth factor-regulated tyrosine kinase substrate (HGS),
Myotrophin (MTPN), 60S ribosomal protein L24
(RPL24), and Coronin-7 (CORO7). Although these five
proteins have not yet been studied in the thyroid, we
found four proteins (HGS, MTPN, RPL24, and CORO7)
were directly or indirectly connected with the known
thyroid cancer-related proteins by the network analysis
(Fig. 3d), which indicates that the feature selection by
genetic algorithm has the potential to unearth the hidden
essential proteins to classify thyroid nodules. Moreover,
both pathway enrichment (Supplementary Fig. S4b) and
network analyses (Fig. 3d) point to the same biological
process, p38 mitogen-activated protein kinase (MAPK)
signaling cascade, which is predominantly activated in
thyroid tumorigenesis37.
We next trained a neural network model designed by a

multilayer perceptron (MLP) structure and loss functions.
The model comprised a ‘feature extraction sub-model’
which extracts and maps features from protein data into a
feature vector in latent space, and a ‘classification sub-
model’ which assigns a score (from 1 to 0; nodule with
score > 0.5 would be regarded as benign tissue) to the
feature vector indicating the likelihood of malignancy for
each sample. We designed the cross-entropy loss function
by giving different weights to two parameters to deal with

(see figure on previous page)
Fig. 3 Classifier development, performance testing, and validation in independent blinded datasets. a Schematic workflow of the classifier
development. Protein features were prioritized based on the discovery dataset. The model was trained using 19 proteins selected from the discovery
dataset and further validated in test datasets. More details are described in Materials and Methods. b The importance rank of the selected 19 protein
features was interpreted by SHapley Additive exPlanations (SHAP) algorithm. c Protein abundance distribution of the 19 features. d Network of the 19
proteins. Blue nodes and orange nodes indicate the protein features and connected molecules or pathways, respectively. Direct interactions are in
solid lines and indirect interactions are in dash lines. e ROC plots of seven different machine learning models of 19 selected features. f ROC plots of
the discovery set, retrospective test sets, prospective test sets and Bethesda III and IV samples in the prospective test sets. g UMAP plots showing the
separation between benign and malignant groups in the retrospective and prospective test sets using 19 protein features with latent space. h Overall
performance metrics of prediction of the neural network model for five specific histopathological types per set. Graduated colors in the shaded bar
indicate accuracy levels. Numbers in the boxes indicate the number of correctly identified samples/total sample number. HCA and HCC were
assigned as FA and FTC, respectively. i Sankey diagram showing the distribution ratio and correspondence between histopathology and
cytopathology in the prospective sets. Histopathological type L denotes lymphocytic thyroiditis. Cytopathology scores were assigned by specialized
pathologists using the Bethesda System. TP, TN, FP, and FN indicate true positive, true negative, false positive, and false negative, respectively, of the
results predicted by our classifier model.
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the imbalanced data. Details of the neural network model
are described in Materials and Methods and Supplemen-
tary Notes. Since a higher specificity is required to lower
the over-diagnosis rate of thyroid nodules which is the
current clinical challenge in the diagnosis of thyroid
nodules, we attempted to maximize specificity while
maintaining sensitivity > 80% in our model optimization.
We compared six alternative machine learning models with
our established classification model using the 19 selected
proteins. To fairly compare the performance of different
algorithms, the selected protein panel was optimized using
multilayer neural network within the genetic algorithm,
independently from any other classifier including our
designed classifier. Receiver operating characteristics
(ROC) plots showed our model described here achieved the
highest area under the curve (AUC) value of 0.93 in the
combined test sets (Fig. 3e). Using the 19 protein features
in our established neural network model with five-fold
cross-validation, each specimen was re-classified into
benign or malignant in the 463 randomly selected samples
(80% of the discovery set) used as the training set from the
discovery cohort. We validated this model on the remain-
ing 116 samples (20% of the discovery set) from the same
cohort (Fig. 3a; Supplementary Fig. S4c). Our model

achieved an AUC value of 0.94 for the cross-validation sets
(n= 579). UMAP plots of the feature latent space showed a
clear separation between malignant and benign tissues
using the 19-protein panel (Fig. 3g). FTC was the sample
type located in the middle of the transition zone, making it
the hardest histotype to predict (Supplementary Fig. S4d).

Performance of the protein classifier
To validate this 19-protein model in independent

cohorts, we first analyzed 288 pathologist-reviewed FFPE
tissues (n= 271 patients) from three high-volume hos-
pitals, comprising 144 benign and 144 malignant tissue
samples. To ensure rigorous validation, the diagnoses
were blinded during data acquisition and analyses. Each
sample was analyzed using the PCT-DIA workflow in
technical duplicates. Analysis of the 576 DIA maps thus
generated identified 59,077 peptides, 6202 protein
groups, and 6152 proteotypic proteins (Supplementary
Table S2). The overall ROC plot for these retrospective
independent test sets using the 19-protein model showed
an AUC of 0.94 (Fig. 3f) and an accuracy of 89%. Both
scatter and UMAP plots demonstrated distinct separa-
tion between benign and malignant thyroid tissues
(Fig. 3g; Supplementary Fig. S4d). The overall sensitivity

Table 1 Nineteen proteins selected by genetic algorithm and previously known associations with thyroid physiology or
pathology.

Uniprot ID Gene name Protein name Thyroid cancer related Thyroid function related

P04083 ANXA1 Annexin A1 Yes Yes

P17931 LGALS3 Galectin-3 Yes Yes

P02751 FN1 Fibronectin (FN) Yes Yes

P10909 CLU Clusterin Yes Yes

P00568 AK1 Adenylate kinase isoenzyme 1 (AK1) Yes Yes

P42224 STAT1 Signal transducer and activator of transcription 1-alpha/beta Yes Yes

P30086 PEBP1 Phosphatidylethanolamine-binding protein 1 Yes Yes

P27797 CALR Calreticulin Yes Yes

P78527 PRKDC DNA-dependent protein kinase catalytic subunit Yes Yes

O00339 MATN2 Matrilin-2 Yes –

P02765 AHSG Alpha-2-HS-glycoprotein Yes –

P04792 HSPB1 Heat shock protein beta-1 Yes –

O75347 TBCA Tubulin-specific chaperone A – Yes

P04216 THY1 Thy-1 membrane glycoprotein – Yes

Q9HAT2 SIAE Sialate O-acetylesterase – –

O14964 HGS Hepatocyte growth factor-regulated tyrosine kinase substrate – –

P58546 MTPN Myotrophin – –

P83731 RPL24 60 S ribosomal protein L24 – –

P57737 CORO7 Coronin-7 – –
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Fig. 4 Protein expression plots for 19 selected protein features in the five histotypes of thyroid tissues in the discovery cohort. a The plots
showing the abundance distribution of 5312 proteins and 19 selected features. b y-axis shows log2 values of protein expression intensity, and x-axis
indicates tissue types. P-value was calculated by one-way ANOVA.
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and specificity were 84% and 94%, respectively, with
negative- (NPV) and positive-predictive values (PPV) of
85% and 93%, respectively. Further details are provided in
Supplementary Tables S3 and S4.
Given that the eventual objective is to develop this

protein panel for clinical application as a predictive bio-
marker in FNA biopsies before surgery, we extended the
validation to an independent prospective patient cohort
comprising 294 FNA samples from 284 patients in nine
clinical centers all of whom underwent thyroid excision
surgery after pre-operative FNA. The latter criterion was
to ensure that histopathologic classification (as ground
truth) was available for each sample. Remarkably, even
from these minute amounts of FNA biopsy, we were able
to generate a high-quality protein matrix containing 6210
proteotypic proteins using PCT-DIA technology (Sup-
plementary Table S2). Using histopathological diagnoses
of excised thyroid tissues as the benchmark, our model
achieved an AUC value of 0.93 (Fig. 3f) and correctly
identified 250 of 294 samples with 85% accuracy; and
with sensitivity, specificity, PPV, and NPV of 92%, 71%,
80%, and 87%, respectively (Supplementary Table S4).
The high proportion of malignant nodules was due to the
fact that we only included operative nodules in our
analysis. Should we use the prevalence of 30%, our model
would achieve an NPV of 95%. Detailed performance
metrics for each set are summarized in Fig. 3h and
Supplementary Fig. S4e.
We further evaluated our classifier with the Bethesda

categories of FNA samples. For indeterminate thyroid
nodules (Bethesda III and IV), the AUC value of our
classifier was 0.89 (Fig. 3f); 59 of 74 FNA biopsies were
correctly identified with sensitivity, specificity, PPV, and
NPV of 85%, 70%, 73%, and 83%, respectively, with
malignant tissue prevalence of 64% (Supplementary Table
S4). The distribution of each thyroid cytopathology cate-
gory in the Bethesda System and our classification results
are shown in a Sankey plot (Fig. 3i). Using pathological
examination of surgically resected thyroid as the ground
truth, cytopathologists achieved 82% overall diagnostic
accuracy of FNA samples in Bethesda II, V and VI cate-
gories, while our model achieved 88% accuracy for these
same nodules. These results indicate the feasibility of
using MS and a machine learning-based protein classifier
for tissue diagnosis.
We also assessed the classifier on different sizes of

nodules and specific histopathological types of tumors.
The classifier showed a more accurate prediction in
nodules ≥ 1 cm in size (87.7%) than those < 1 cm (75.8%)
in the prospective sets, which may be due to inaccurate
sampling of small nodules. Nodules with marked lym-
phocytic infiltration were difficult to distinguish from
malignant nodules. Ten of 44 wrongly identified nodules
were thyroiditis, i.e., Hashimoto’s disease. Twenty-nine

nodules were annotated with lymphocytic infiltration
and only 19 were correctly identified, from which only
one of seven pure lymphocytic thyroiditis samples was
correctly classified as benign in the prospective sets
(Fig. 3h). This may be because the histopathological
changes in our present datasets are mainly present in
malignant tumors. The similarly low number of samples
in the training set may also have militated against the
diagnostic accuracy of lymphocytic thyroiditis. The
predictive accuracies for tissue histotypes were 90% for
MNG and 94% for PTC in all sets (Fig. 3h). The highest
accuracy was achieved for PTC, the most common
thyroid malignancy accounting for ~85% of all thyroid
cancers37. Furthermore, in a deeper dive into the model’s
capability to classify the five subtypes of follicular-
pattern tumors (which continue to be a challenge in
clinical practice), the classifier achieved accuracies of
86%, 76%, 83%, 87%, and 87% in FA, FTC, Hürthle cell
adenoma (HCA), Hürthle cell carcinoma (HCC) and
follicular variant PTC (fvPTC), respectively (Supple-
mentary Fig. S4e). The lower predictive accuracy for FTC
may be ascribed to its much lower prevalence compared
to PTC and, consequently, the smaller number of clinical
samples analyzed. It may also reflect known similarities
in histopathology and potential biological overlap
between FTC and FA. While oncocytic follicular tumors
were well classified by our model, the limited number of
these samples in our study necessitates further validation
of our model on this tumor subtype.

Biological insights into thyroid tumor subtypes
Next, we asked whether the proteomic data could be

used to reveal biological insights into follicular subtypes
of thyroid neoplasms. We conducted eight pairwise
comparisons among the follicular tumors and the control
subtype of classical PTC (cPTC). Pathological differences
between tissues were evaluated by the number of differ-
entially expressed proteins (DEPs) between the various
tissue types as shown in the Rose chart (Fig. 5a). In the
pairwise comparison, we observed that a greater differ-
ence in histology was associated with the higher number
of DEPs, further confirming that the thus acquired pro-
teotype reflects phenotype. There were only 14 DEPs
between FTC and FA, while no DEP was detected
between HCC and HCA, suggesting these pairs have
similar morphology. Indeed, the histological distinction
between these two pairs is also a clinical challenge. We
plotted the expression abundance of two DEPs, cellular
retinoic acid-binding protein 1 (CRABP1) and nicotina-
mide phosphoribosyltransferase (NAMPT). The expres-
sion of both was different among the six tumor subtypes
(Fig. 5b). Expression of CRABP1 in our dataset was
higher in FA than FTC, concordant with IHC validation
by other investigators38.
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In recent years, differentiated thyroid cancers have
been further sub-classified based on specific morpholo-
gical features or their expected clinical course. HCA and

HCC are deemed as distinct entities, with the latter
demonstrating a higher propensity for vascular invasion
and metastasis39,40. The proteomic data of this study

Fig. 5 Biological insights of thyroid tumor subtypes based on proteotypic data. a Rose chart plotting the DEP counts of corresponding pairwise
comparison for follicular-pattern tumors and control samples (cPTC). The threshold that we used was fold change > 4 and adjusted P-value < 0.01. The
pink and blue colors represent counts of upregulated and downregulated proteins in the Rose chart, respectively. b Box plots showing CRABP1 and
NAMPT dysregulated in six histological tumor subtypes, especially between FTC and FA. P-values were calculated by one-way ANOVA for six-group
comparison in the box plots. c UMAP plot for 186 proteins distinguishing Hürthle cell tumors from other follicular neoplasms. d Network map showing
expression of key mitochondrial proteins implicated in Hürthle cell neoplasms. e UMAP plot for 401 proteins distinguishing FTC from cPTC, with fvPTC as
an intermediate phenotype. f, g Heatmap showing DEPs (f) in FTC compared with fvPTC and cPTC, with pathways (g) indicated in the chord plot.
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showed these to be well-resolved from other neoplasms
with hundreds of DEPs (Fig. 5a), even from the closely
related FA and FTC subtypes (Fig. 5c; Supplementary Fig.
S5a). Hürthle cell tumors are known for their oncocytic
morphology and increased glucose uptake in fluor-
odeoxyglucose (FDG)-positron emission tomography
scans41. Indeed, our data showed that 160 of 186 proteins
substantially elevated (fold change > 4 and adjusted
P-value < 0.01, Supplementary Fig. S5b) were mitochon-
drial proteins participating in multiple metabolic pro-
cesses including the tricarboxylic acid cycle and oxidative
phosphorylation (Fig. 5d; Supplementary Fig. S5c, d).
These proteomic data implicate the likely biochemical
processes contributing to the elevated metabolism in
these tumors. Compared to the other four complexes in
the oxidative phosphorylation pathway, the most strongly
upregulated proteins were in complex V, which catalyzes
adenosine triphosphate synthesis and potentially enhan-
ces tumor growth.
fvPTC is a subtype with mixed morphology, and we

therefore examined specific differences between FTC,
cPTC, and fvPTC. There were no significant proteotypic
differences between FTC and fvPTC (Fig. 5a); only one
DEP was identified. However, 221 proteins were differ-
entially regulated in fvPTC compared to cPTC (Fig. 5a).
Our proteotypic data showed that fvPTC overlapped with
both FTC and cPTC, but resembled FTC more closely,
indicating that fvPTC is potentially an intermediate entity
between FTC and cPTC (Fig. 5e). This is consistent with
genomic classifiers, suggesting that FTC and fvPTC share
common alterations, including those in the RAS path-
way42. Compared to FTC, the 339 proteins upregulated in
cPTC (Fig. 5a) were mapped to immune-related pathways,
suggesting that inflammation is involved in the patho-
genesis of cPTC, which has been associated with lym-
phocytic thyroiditis (Fig. 5f, g).

Discussion
Molecular diagnostics for thyroid nodules has been

enabled by genomic tests due to the feasibility of ana-
lyzing small clinical samples and the increasing afford-
ability of next-generation sequencing, however, it has
also been limited to nucleic acid-based testing thus far.
Several nucleic acid-based tests are commercially avail-
able through central-lab testing; their performance in
clinical experience is suboptimal in terms of specificity,
especially in malignancies with a low mutational burden
as rigorously examined by Wang and Sosa10 and sum-
marized above. Since proteins are more stable than RNA
in biopsy tissue samples17,43, and are directly involved in
cellular processes that determine tissue phenotypes44, we
posit that protein panels such as ours can be developed as
potential point-of-care diagnostic tests through widely
available techniques, such as targeted mass spectrometry

and/or immunohistochemistry, as complements to
nucleic acid-based testing. Our study is the first step in
demonstrating feasibility. The FFPE-PCT-DIA metho-
dology used here was able to derive protein abundance
data of 6749 protein groups in 1161 nodules, generating
2650 DIA proteome datasets, including replicates.
Technically, our study analyzed a much larger sample
size and obtained deeper proteomic coverage compared
to previous publications45–47. Our pipeline has generated
the first repository of in-depth proteome data on various
thyroid pathologies. This enabled neural network analy-
sis to mine large proteomic datasets for protein bio-
markers of thyroid cancers. A panel of 19 proteins
differentiated benign from malignant disease with diag-
nostic accuracy 85% and AUC 0.93 in prospective FNA-
derived test sets and AUC of 0.89 for Bethesda III/IV in
prospective sets. The fact that 14 of these 19 proteins
have been implicated previously in thyroid physiology or
pathology provides orthogonal validation for the inclu-
sion of these proteins in our classifier. Analytical metrics
from our proteomics data exhibited a high degree of
sensitivity and specificity as shown in Supplementary
Table S4. Notably, our approach works for small tissue
samples obtained from FNA biopsies, making it more
broadly applicable to standard clinical practice, over-
coming some of the issues with RNA-based assays due to
the fragility of RNA integrity.
Expanding this robust workflow to other carefully

curated clinical cohorts may offer unprecedented oppor-
tunities to gain fundamental insights into the molecular
pathogenesis of diseases and address critical unmet clin-
ical needs beyond thyroid cancer. Although this classifier
has been retrospectively and prospectively validated in
several independent clinical centers, further validation
performed on FNA biopsies of larger prospective cohorts
comprising indeterminate nodules (Bethesda III/IV) is
required to support the utility of this approach in stan-
dard clinical practice.
Despite the high accuracy in distinguishing benign

from malignant thyroid nodules, the major limitation for
most algorithms is distinguishing FTC from FA. Indeed,
the proteotype data presented here even suggest that
follicular neoplasms may represent a disease continuum,
in which differences exist at the extremes of phenotypes,
but with significant overlap in-between. Alternatively,
some of the nodules classified as benign adenomas may
simply represent pre-malignant stages diagnosed prior to
the overt capsular or vascular invasion, even though pre-
requisite conditions for the invasion were already pre-
sent. The proteomic difference between benign and
malignant follicular tumors appeared subtle, therefore
larger sample size is required to make a distinction.
Future studies should also focus on the specific distinc-
tion between FA and FTC.
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Our present study is a proof of principle to show that
DIA-based classifiers can be used to classify thyroid
nodules. Targeted assays should be developed in the
future to implement real-world applications. The protein
classifier has a higher specificity, but a slightly lower
sensitivity compared to counterpart genomic tests, serving
as a complement to genomic tests.
Artificial intelligence has enabled significant progress in

the field of image processing for thyroid nodule evalua-
tion48. It is likely that combining a biomarker protein
panel with image-based evaluation and genotype data
could refine and enhance diagnostic assessments of
indeterminate thyroid nodules to reduce the costs and
morbidity of over-treatment, although the integration of
these multi-dimensional and multi-modality datasets may
be challenging and create some redundancy between
some of these techniques.
In conclusion, we present the first protein-based neural

network classifier for thyroid nodules. This large-scale
thyroid proteome profile of 1161 thyroid nodules coupled
with a neural network model demonstrates for the first
time, the power of a protein-based disease classifier with
the potential for rapid translation into clinical practice to
complement conventional cytopathology.

Materials and methods
Patients and tissue samples
We initially collected 581 thyroid nodule samples. After

the pathologist review of all sections to confirm tissue
diagnosis, the discovery sample set of 579 thyroid nodules
from 578 patients comprised FA (n= 137), MNG
(n= 203), PTC (n= 124) and FTC (n= 75) from the
Singapore General Hospital. Normal thyroid tissues (N,
n= 40) were taken from cases of laryngectomy or phar-
yngo-laryngo-esophagectomy, in which the thyroid gland
was surgically removed incidental to radical surgery for
non-thyroid cancers. These patients had no history of
thyroid disease, prior chemotherapy or radiation.
Hematoxylin and eosin-stained slides from tissue blocks

of each patient were reviewed by an experienced histo-
pathologist who marked out the disease region for tissue
coring. Tissue cores (1 mm diameter, 0.5–1mm thick,
approximate weight 0.6–1.2 mg, including wax) were
punched from the pathological areas of interest in blocks
of FFPE thyroid tissues. Based on the assessment of an
experienced pathologist for each punch, a region of
interest was comprised of ~100% cancer cells. Three
adjacent tissue cores from the same region were made for
each case as biological replicates in the discovery set.
These thyroid tissues were obtained from four clinical
centers in Singapore and China spanning 2011–2019,
with the ethics approval of each hospital.
We analyzed a total of 288 FFPE tissue cores from 271

patients obtained in three hospitals as multi-center

blinded retrospective test sets. These samples were clas-
sified into 16 N, 44 MNG, 84 FA, 52 FTC, and 92 PTC
cases using the same histology classification system and
sampling method as the Singapore samples based on the
standardized World Health Organization classification18.
A single core was made from each case.
Furthermore, we prospectively collected 395 FNA

biopsies from nine clinical centers, of which 294 nodules
were surgically removed. Prospective validation was per-
formed on the 294 FNA biopsies from 284 patients treated
in different hospitals in China and Singapore. Each patient
proceeded to thyroid surgery after FNA. Definitive histo-
pathological diagnosis of surgically excised thyroid tissue
in each case was determined. This series comprised 8
lymphocytic thyroiditis (L), 63 MNG, 23 FA, 4 FTC, and
196 PTC (n= 294). All FNA samples were categorized
according to the Bethesda System for Reporting Thyroid
Cytopathology. Histological and cytopathological diag-
noses of these samples were blinded during the entire
workflow of prospective sample processing, mass spec-
trometry analysis, and predictive data analysis.
The study methodologies conformed to the standards

set by the Declaration of Helsinki and were approved by
the local ethics committee. The experiments were
undertaken with the understanding and written consent
of each subject.

Batch design
To minimize batch effects among different lots of ana-

lyzed samples, 1803 thyroid FFPE cores from 581 thyroid
nodules with three biological replicates (581 × 3) and 60
technical replicates were randomly allocated into 121
discovery batches to minimize the batch effect for this
large-scale sample preparation (Supplementary Fig. S1a).
Batch 121 in the discovery dataset had only 3 samples. 60
technical replicates were analyzed independently from the
DIA-MS analysis. Each batch contained 15 thyroid sam-
ples, one mouse liver sample as QC for PCT, and one
thyroid pooled sample containing all five types of thyroid
tissues for MS. The technical replicates were distributed
randomly as one of the 15 samples per batch. In this
discovery phase analysis, tissue cores were divided into
multiple batches with balanced histopathology diagnoses
in each batch.
In the external validation phase analysis, 288 FFPE cores

were analyzed in technical duplicates for a total of 576 MS
runs in 39 batches for retrospective test sets and 395 fine
needle biopsies in 27 batches for prospective test sets
(Supplementary Fig. S1b).

Dewaxing, rehydration, and hydrolysis of FFPE tissues
For each case in the discovery sample set, three biolo-

gical replicates of FFPE tissue cores were processed.
Sample weights were recorded before dewaxing in
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heptane (Sigma-Aldrich) and successive rehydration in
100% ethanol (Sigma-Aldrich), 90% ethanol, 75% ethanol
at room temperature. Formic acid (0.1%) (Sigma-Aldrich)
was added next to achieve C–O hydrolysis of protein
methylol products and then washed with 100 mM Tris-
HCl (pH 10, Sigma-Aldrich) to establish conditions for
base hydrolysis at 95 °C. The sample was then snap cooled
to 4 °C. Twelve samples were lost after dewaxing.

Tissue lysis, protein extraction, and protein digestion
The red blood cells (RBCs) in FNA samples were firstly

removed by 500 μL ACK lysis buffer (Solarbo, Chian) and
then centrifuged at 450× g for 10 min to collect the pre-
cipitated content. Dewaxed FFPE samples and RBC-
depleted FNA biopsies were lysed in 6M urea (Sigma-
Aldrich) and 2M thiourea (Sigma-Aldrich) using PCT
programmed for 90 cycles of 25 s at 45,000 p.s.i. and 10 s
at ambient pressure and 30 °C. After lysis, 10 mM Tris(2-
carboxyethyl)phosphine hydrochloride (Sigma-Aldrich)
and 40 mM iodoacetamide (Sigma-Aldrich) were simul-
taneously added to the solution and incubated in the dark
with gentle vertexing for 30min, after which LysC
(Hualishi Tech. Ltd., Beijing, China) was added at a ratio
of 40:1 (protein to LysC). PCT-assisted LysC digestion
was performed with the following setting: 45 cycles of 50 s
at 20,000 p.s.i. and 10 s at ambient pressure and 30 °C.
Final tryptic digestion was performed at a ratio of 50:1
(protein to trypsin (Hualishi Tech. Ltd., Beijing, China))
by PCT with the following setting: 90 cycles of 50 s at
20,000 p.s.i. and 10 s at ambient pressure and 30 °C.
Peptides were desalted before LC-MS analysis.

DIA-MS data analysis
Peptides were separated using Ultimate 3000 or

nanoLC-MS/MS system (DIONEX UltiMate 3000
RSLCnano System, Thermo Fisher Scientific™, San Jose,
USA) equipped with 15 cm × 75 μm ID fused silica col-
umn custom packed with 1.9 μm 120 Å C18 aqua. To
increase the throughput of sample detection, we chose a
shorter LC gradient of 45 min (68 min inject-to-inject).
Peptides were separated at 300 nL/min in a 3%–25% lin-
ear gradient of buffer B (buffer A: 2% acetonitrile, 0.1%
formic acid; buffer B: 98% acetonitrile, 0.1% formic acid).
Peptides eluted from analytical columns were ionized at a
potential +2.0 kV into Q Exactive HF mass spectrometer
(Thermo Fisher Scientific™, San Jose, USA). A full MS
scan was acquired analyzing 390–1010m/z at a 60,000
resolution (at m/z 200) in the Orbitrap using an AGC
target value of 3e6 charges and the maximum injection
time of 100ms. After the full MS scan, 24 MS/MS scans
were acquired, each with a 30,000 resolution (at m/z 200),
AGC target value of 1e6 charges, normalized collision
energy of 27%, with the default charge state set to 2,
maximum injection time set to auto. The cycle of 24 MS/

MS scans (center of isolation window) with three kinds of
wide isolation window was as follows (m/z): 410, 430, 450,
470, 490, 510, 530, 550, 570, 590, 610, 630, 650, 670, 690,
710, 730, 770, 790, 820, 860, 910, 970. The entire MS and
MS/MS scan acquisition cycle took ~3 s and was repeated
throughout the LC/MS analysis.
We acquired a total of 2650 effective DIA files that

could be analyzed further. Specifically, these consisted of
1780 files from the discovery dataset; 576 files from the
retrospective test dataset (288 samples × 2 technical
replicates); 294 files (no replicates) from the prospective
test datasets.
In the discovery set, 581 nodules × 3 biological repli-

cates were first obtained, of which 13 samples were lost
because insufficient peptide mass was extracted for
acquiring all replicates; additionally 60 technical repli-
cates were added, 4 of which were lost. Furthermore,
during slide review by pathologists and sample pre-
paration, 6 samples were excluded due to unmatched
histological tissue type. Thus, there was a total of
(581 × 3+ 60) – 13 – 4 – 6= 1780 DIA files.
In the prospective set, 101 of 395 nodules were not

excised due to lack of definite histopathological diagnoses,
and then they were excluded. After filtering, 294 DIA files
for prospective validation were analyzed.
DIA raw files were analyzed using DIA-NN (v1.7.15)49

and against our previously released thyroid-specific
spectral library. The cysteine carbamidomethylation was
set as a fixed modification, while the methionine oxida-
tion was as a variable modification. Peptide length range,
precursor m/z range, and fragment ion m/z range were
set as 6–30, 300–1500, and 100–1800, respectively. 1%
false discovery rate (FDR) of the precursor was applied.
Precursor IDs that were likely to be caused by inter-
ferences were removed. Other parameters were used by
default. The protein matrix that we used for downstream
analyses was the abundance average of replicates from
the same thyroid tissue regardless of biological or tech-
nical replicates.

Data quality control
We first assessed data quality by analyzing control

samples. The QC samples in each batch were mouse liver
samples (PCT-QC) and pooled thyroid samples (DIA-
QC). Additional QC samples were analyzed as technical
replicates for MS. Biological replicates were also analyzed
to determine the extent of heterogeneity of thyroid dis-
eases. Reproducibility of spiked-in mouse liver samples
and thyroid pooled samples showed that PCT and MS
instruments were stable during data acquisition (Supple-
mentary Fig. S2a, b), with a median coefficient of variance
(CV) < 0.04. MS data of 56 randomly selected paired
thyroid samples in the discovery cohort and 288 sam-
ples × 2 technical replicates in the retrospective set had a
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median Spearman correlation coefficient of 0.91 and 0.97,
respectively (Supplementary Fig. S2c). CV for proteins in
technical replicates was 0.02; and that in biological
replicates was 0.04, slightly higher than that in technical
replicates indicating minimal tissue heterogeneity in the
biology of thyroid disease (Supplementary Fig. S2d).
Finally, we compared the Spearman correlation of tech-
nical replicates and biological replicates for the 56 sam-
ples (Supplementary Fig. S2e). The correlation of
biological replicates was lower than that of technical
replicates, probably reflecting tissue heterogeneity. For the
protein identification in the three datasets, there were
5957 proteins identified and quantified in all the three sets
(Supplementary Fig. S2f).

Protein data preprocessing
Datasets (discovery dataset, retrospective test datasets,

and prospective test datasets) from twelve clinical centers
were used to develop and validate the neural network
model. Considering that most missing values occurred
when the protein content was below the detection
threshold, imputation was performed by filling in all the
missing values with [Dmin], where Dmin was the minimum
of all available feature values in the discovery set, and [·] is
the ceiling operator. The minimum value was 12 for the
discovery set and all the test sets used. The missing values
of all the datasets, which account for 51% of all data, were
imputed with this value.
After the imputation step, for each feature, the mean

and variance of the feature were estimated from the dis-
covery set, and each feature of every training sample was
normalized as

Dn ¼ D� μ

σ
ð1Þ

Obtained μ and σ were estimated from the discovery
dataset and then applied for corresponding protein
features in the retrospective and prospective test
datasets. Python’s ‘pandas’ library was used for data
preprocessing.

Development of neural network classifier
An artificial neural network was developed to classify a

sample (a vector of selected protein features) into one of
the two classes, namely benign (B) or malignant (M). This
was done in the three stages:
(1) Protein feature selection using a genetic algorithm;
(2) Neural network training;
(3) Sample classification using the trained neural

network.
The following explains the three modules and the

pipeline.

Stage 1: Feature selection
The feature selection consisted of two steps (see Sup-

plementary Fig. S6a). The first step was initial feature
screening based on available information. Of the initial
6689 protein features, 1302 were selected from the dif-
ferentially expressed proteins of benign and malignant
samples in the discovery dataset, the published literature
on thyroid or thyroid cancer, and from the favorable or
unfavorable prognosis of thyroid cancer annotated by
TCGA or OMIM databases.
As the second step, the genetic algorithm20 was used to

select an optimal combination of 19 proteins from the
initial 767 ones with missing rates < 35% of samples. The
evaluation of feature missing rates and feature counts was
described in the Supplementary Notes. Python’s deap
library was adopted here for genetic algorithm-based
feature selection. In the genetic algorithm, evolutionary
operations — crossover, mutation, and selection opera-
tions were used to generate new protein feature combi-
nations from existing protein feature combinations. The
genetic algorithm eliminated low fitness combinations at
every iteration and generates new combinations based on
the remaining high fitness combinations.
The discovery set was divided into dataset A containing

386 samples (2/3 of the discovery set) for cross-validation
and dataset B containing 193 samples (1/3 of the dis-
covery set) for validation. Dataset A was used to calculate
the fitness of individuals during the genetic algorithm
iteration, while dataset B was used to evaluate the per-
formance of each combination. A fitness value was cal-
culated for each candidate combination solution in
dataset A. For combination solution C, the fitness value
was defined as

FC ¼ 1
3

X3
k¼1

AC
k ð2Þ

where AC
k was the accuracy of the 3-fold cross-valida-

tion50, which was computed from the difference between
the output of the classifier and the true label. 1.7% of data
was imputed for the newly selected 19 protein features.
We also compared the different feature selection

methods with genetic algorithm and evaluated the stabi-
lity of the selected features which were described in the
Supplementary Notes in detail.

Stage 2: Neural network model training
The neural network classifier was a nonlinear function

that takes a vector of 19 selected protein features as the
input and outputs a class label of either 1 (for benign) or
0 (for malignant). This module consisted of the follow-
ing three steps: (1) model structure design; (2) manifold
learning-based loss function design; and (3) model
training.
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An MLP structure was chosen for the neural network,
shown in Supplementary Fig. S6b. The MLP model
consists of a feature extraction sub-model and a clas-
sification sub-model, trained in an end-to-end fashion.
The feature extraction sub-model extracts effective
feature vectors (Vi), and the classification sub-model
performs diagnostic classification (Yi) based on the
classification information.
A manifold learning-based method, deep manifold

transformation (DMT)51, was applied for feature repre-
sentation learning whereas the commonly used cross-
entropy was used to constrain the supervised classifica-
tion. The total loss function is defined as

L ¼ LDMT þ α1Le þ α2Lr ð3Þ

where LDMT was a cross-layer constraint that preserves
manifold structure between the input and the latent
feature layers, Le was a cross-entropy loss for classifica-
tion, Lr was an L2 regularization loss for reducing
overfitting, and α1, α2 > 0 were the weights. The three
loss terms are defined below.
The DMT loss was defined by a cross-layer two-way

divergence or fuzzy set information for discriminant52

LDMT ¼
X
i≠j;

i; j 2 1; 2; 3; � � � ;Nf g

Pijlog
Pij
Qij

þ ð1� PijÞlog 1� Pij

1� Qij

ð4Þ
where Pij was the similarity in input space between point i
and point j, and Qij was the similarity in latent space
between point i and point j, whose computation is
described below, and N is the number of nodules. The
similarities are calculated as follows. First, the distance
matrix of input space and latent space was calculated.

DX ¼ Dð0Þ ¼ DX
ij ¼ Xi � Xj

�� ��
2; i; j 2 f1::Ng

n o

DZ ¼ DðLÞ ¼ DZ
ij ¼ Vi � Vj

�� ��
2; i; j 2 f1::Ng

n o
where feature vectors Vi, Vj were extracted from protein
samples Xi, Xj by our MLP model, (0) and (L) are the
index of the network layer as shown in Supplementary
Fig. S6b. Secondly, t-distribution’s kernel function κ(D,v)
was used to transform the distance matrix D into a
matrix A:

A ¼ κ D; νð Þ ¼ Γ νþ1
2

� �
ffiffiffiffiffiffi
νπ

p
Γ ν

2

� � 1þ D � D
ν

� ��ðνþ1Þ
2

where, Γ(·) was a gamma function. v was the t-
distribution’s degree of freedom.

Since the similarity was asymmetric, we used the
function S(·) for symmetrization.

SðAÞ ¼ Aþ AT � 2A � AT ð5Þ

where ◦ was Hadamard product. Finally, we defined P and
Q.

P ¼ S 2π � κ DX ; νXð Þ2
� 	

Q ¼ S 2π � κ DZ; νZð Þ2
� 	 ð6Þ

We applied different parameters of freedom degrees v
in the input space and the latent space to compensate for
the differences in feature dimensions. We assumed that
the distribution of the input spatial distances was nor-
mal, so that vX was a sufficiently large number, vX= 100.
In the latent space, we used the standard t-distribution
and set vZ= 1.
The cross-entropy loss Le was calculated as

Le ¼ �PN
i¼1

βYi log Ŷi þ 2� βð Þ 1� Yið Þ log 1� Ŷi
� �
 �

ð7Þ
where Yi was the real one-hot label of the nodule, Ŷi was
the classification vector predicted by the classification
sub-model, and β was the penalty parameter to deal with
the imbalanced data. The L2 regularizer was defined as
the 2-norm of MLP weight W as

Lr ¼ Wk k22¼
XM
i¼1

w2
i ð8Þ

where M was the number of parameters.
The MLP training was performed using the training

dataset from the discovery set. Python’s PyTorch library
was used for model training. We trained the model for
100 epochs.
We used 5-fold cross-validation for the training and

hyperparameter determination, and then selected the
model with the highest AUC in the validation set. The
best set of hyperparameter values was empirically chosen
to be α1= 1 × 103, α2= 50, β= 1.6, learning
rate= 2 × 10−2, batch size= 256. The best model’s AUC
in the validation set was 0.951.

Stage 3: Sample classification
The trained MLP was used as the classifier for the

diagnosis of unknown samples. Given the 19 features of
one sample, the model would output a classification
vector Ŷi ¼ ŷ0i ; ŷ

1
i

� 
, ŷ0i and ŷ1i describe the probability that

the sample was benign or malignant. The class prediction
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Pi was calculated as

Pi ¼
1 if ŷ0i < ŷ1i
0 if ŷ0i � ŷ1i

(
ð9Þ

where Pi= 0 means the tissue was predicted to be
malignant, and Pi= 1 means benign.
Moreover, six alternative models were compared with

our established model using the 19 proteins, which are
described in the Supplementary Notes.

Statistical analysis
Statistical analysis was performed using R software

(version 3.5.1) with pheatmap, UMAP, and R package plot
functions. Proteins in the heatmaps were hierarchical
clustered by the method of centroid. CV was calculated as
the ratio of the standard deviation to the mean. The
prevalence for each cohort was based on the ratio of
malignant to total tissues. Sensitivity, specificity, PPV, and
NPV values were calculated following the established
methodology, and each value was calculated with 95%
Wilson confidence intervals53. Biological insights were
analyzed by IPA (version 49309495). The interactions
among the 19 proteins were retrieved from the IPA with
default settings and displayed by Cytoscape (version 3.8.2)
with the radial layout. One-way ANOVA was used to
calculate P-values in the expression of 19 protein features.
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