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Abstract—To provide higher data rates, as well as better
coverage, cost efficiency, security, adaptability, and scalability, the
5G and beyond 5G networks are developed with various artificial
intelligence techniques. In this two-part paper, we investigate
the application of artificial intelligence (AI) and in particular
machine learning (ML) to the study of wireless propagation
channels. It firstly provides a comprehensive overview of ML
for channel characterization and ML-based antenna-channel
optimization in this first part, and then it gives a state-of-the-art
literature review of channel scenario identification and channel
modeling in Part II. Fundamental results and key concepts of
ML for communication networks are presented, and widely used
ML methods for channel data processing, propagation channel
estimation, and characterization are analyzed and compared. A
discussion of challenges and future research directions for ML-
enabled next generation networks of the topics covered in this
part rounds off the paper.

Index Terms—Artificial intelligence, machine learning, prop-
agation channel, parameter estimation, clustering and tracking.
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I. INTRODUCTION

THE dramatic increase of the numbers of wireless users
and wireless applications brings new demand and chal-

lenges for wireless communication networks. The 5G and
beyond 5G (B5G) networks are expected to provide higher
data rates, as well as better coverage, cost efficiency, security,
adaptability, and scalability [1], [2]. Since 2020, 5G commu-
nication has begun to be deployed worldwide [3], [4], whereas
studies of 6G wireless communication networks have started
in academic and industrial research labs to further enhance
MBB, expand the application and coverage of the internet
of things (IoT), and make networks/devices more intelligent.
These new application scenarios give 6G network a series
of new performance requirements: 10–100 million devices
connections with the peak data rate of 1-10 TB/s; the mobility
that needs to be supported rises to higher than 1000 km/h to
accommodate ultra-high-speed train (uHST), unmanned aerial
vehicle (UAV) [5], and satellites; latencies need to be reduced
to fractions of 1 ms to account for tactile internet and other
real-time control applications; and reliability of 5 or even 7
times has to be achieved for mission-critical applications. Also,
to provide global coverage, 6G wireless networks will expand
from terrestrial communication networks to space-air-ground-
sea integrate networks.

The study of propagation channels is a fundamental aspect
of any wireless communication system design, network op-
timization, and performance evaluation [6]–[10]. Therefore,
to realize 6G networks to meet the requirements above,
the corresponding wireless channels need to be thoroughly
studied. However, the massive—in terms of number of devices,
number of antennas, bandwidth, etc.—scenarios not only pose
a challenge in performing dedicated measurement campaigns,
but it also leads to massive amounts of data that need to
be processed and analyzed [11]. Classical techniques for
such analysis, e.g., parameter estimation, tracking, clustering,
and characterization, are generally less suited for such large
amounts of data, either because of the resulting overhead, or
because they might miss important relationships within the
data.

On the other hand, artificial intelligence (AI) has been
developed to “simulate the human intelligence processes by
machines, especially computer systems” [12]. Machine learn-
ing (ML) is a branch of AI that enables machines to learn
from a massive amount of data and make decisions and/or
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perform actions accordingly without been given any specific
commands. With the help of continually increasing computing
power, ML techniques have achieved great success in big
data processing for many applications, e.g., image processing,
natural language processing, and data mining. Consequently,
ML techniques have also been widely applied to various prob-
lems in communications networks, and are expected to be an
integral part of next-generation communication networks [13]–
[18].

A. Development of AI and ML

AI techniques have made rapid advances in many domains
since the last decade, including communication and electronic
engineering. An elaborate definition of AI is “a system’s
ability to correctly interpret external data, to learn from such
data, and to use those learnings to achieve specific goals and
tasks through flexible adaptation” [19]. Hence, AI researchers
aim to build intelligent agents to achieve this goal.

ML is a subset of AI, which studies algorithms that al-
low computer programs to automatically improve through
experience [20]. ML can be generally classified into su-
pervised learning, unsupervised learning, and reinforcement
learning [20]. Deep learning (DL) [21], is a subset of ML
and has attracted tremendous attention in recent years. The
major difference compared to the traditional ML is the way of
using training data. Besides, artificial neural networks (ANN)
are the backbone of DL algorithms, whereas for traditional
ML, the learning machines vary and are not limited to ANN.
Widely used deep neural network (DNN) structures include
Convolution Neural Network (CNN), Restricted Boltzmann
Machine, Long Short-Term Memory (LSTM), etc [22]. Due to
the no-free-lunch theorem, DL requires much more data and
computing resources than the traditional ML.

Knowing the concepts of AI and ML, a natural question is
how AI and ML techniques can support research on antennas
and propagation. The answer is that practical problems must
first be formulated in a particular mathematical way, such
that AI/ML techniques can serve as solvers. Note that AI/ML
techniques are not the only way to solve these problems, but
research works show clear advantages of them compared to
the conventional methods, at least under certain circumstances.
The mathematical problems that AI/ML techniques focus on
are described as i) regression, which identifies the relationships
between a dependent variable (i.e., output data) and one or
more independent variables (i.e., input data); ii) classification,
which uses a set of training data for which the feature and
category membership or label is known to identify to which
of a set of categories a new instance belongs to; iii) clustering,
which naturally groups a set of objects with the aim that
objects in the same group are more similar to each other
compared to those in other groups, without any training data.

B. Application of ML to Propagation Channels

AI techniques have been introduced into communications
over the last two decades. They have addressed many bottle-
necks that the conventional methods are not able to resolve,
from communication system design to propagation channel

research [18], [23]–[26], with the latter being the focus of this
section1.

Channel feature extraction is a necessary step for channel
analysis and modeling [28]–[32]. Some basic channel param-
eters, such as channel gain and Doppler power spectrum,
can be calculated directly from the channel transfer function.
However, for some complex channel characteristics, such
as power angular spectrum (PAS) and multipath component
(MPC) parameters, a targeted channel parameter estimation
algorithm is needed. For multipath channel models, such as
tapped delay line (TDL), WINNER II, and cluster-based mod-
els, it is necessary to obtain joint parameters such as power,
delay, and angle of the MPCs. For conventional parameter
estimation, the main challenges they face are complexity traps
and the applicability of diverse scenarios. The low-energy and
low-computing devices in the Internet of Things are likely
to be difficult to carry more complex conventional methods.
Therefore, the ML-based method may provide unexpected
and insightful new solutions. Based on analyses from a large
number of measurement campaigns, the obtained MPCs are
usually distributed in groups, as know as clusters. As early
as 1972, the cluster structure of MPCs was characterized
in the delay domain in [33]. The classical Saleh-Valenzuela
model developed in [34] provides a general and very widely
used cluster-based channel model, which describes both inter-
cluster and intra-cluster characteristics. This model was gen-
eralized in [35] to include both delay and angular domains,
whereas the cluster structure of MPCs in the geometrical map
based on the physical environment is revealed in [36], which
can also be mapped to a delay/angle description. Since then,
more and more channel models and standards are developed
based on a cluster structure, e.g., COST 259 [37], [38], COST
2100 [39], 3GPP Spatial Model [40], and WINNER [41], [42].

Given that the human brain is good at pattern identification,
the MPC clusters can be identified by human inspection, as
in [43]–[46]. However, human inspection is subjective, not
repeatable, and may be unreliable. Moreover, due to the devel-
opment of propagation measurement techniques, the amount of
measurement data has increased dramatically, making human
inspection impractical. On the other hand, ML methods have
been found to have a great advantage in processing multi-
dimension data [47], [48], which naturally correspond to the
channel measurement data in multiple domains, e.g., delay,
and angular domains. Specifically, data clustering methods
are one of the hot topics in ML [49] and have become a
powerful tool for MPC cluster identification [50]. In addition,
analyzing time-varying channels requires the capturing of the
evolving behavior and lifetime of the MPCs/clusters. In this
case, the time-varying channel characterization requires not
only clustering but also tracking the MPCs in consecutive
snapshots, and ML methods has been proved to have great
ability on recognizing data pattern which naturally fits the
requirement of MPC/clustering tracking.

Although propagation channels can be characterized and
modeled independently of antennas, by de-embedding the

1In this part, the focus is on channel characterization and antenna-channel
optimization. In Part II [27], we review the research on ML-based scenario
identification and channel modeling.
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TABLE I
SUMMARY OF ML-BASED APPLICATIONS FOR COMMUNICATIONS.

Category Typical algorithms Applications

Regression

Supervised learning
Support vector machine

• Channel parameter estimation
• Channel characterization/modeling
• Channel prediction
• Antenna system optimization

Relevance vector machine
Aritificial neural network

Un-supervised learning Bayesian learning
Reinforcement learning Boltzmann exploration algorithm
Meta-learning Deep transfer-based meta-learning

Classification*

Supervised learning

Support vector machine

• LoS/NLoS identification
• Scenario identification
• Antenna selection optimization
• Cluster member optimization

Relevance vector machine
Decision trees
Random forest
Aritificial neural network
K-Nearest neighbor
Naive Bayesian

Un-supervised learning Variational Bayesian
Hypothesis test

Reinforcement learning Monte Carlo tree search

Clustering*

Supervised learning Hidden Markov model

• MPC cluster identification
• LoS/NLoS identification

K-Nearest neighbor

Un-supervised learning

KpowerMeans/K-Means
Density-based spatial clustering
Region competition
Hough-transform-based clustering
Kernel-power-density-based clustering
Fuzzy-C-Means

*The algorithms are classified according to the applications in communications rather than typical ML categories. Typical clustering ML methods are
usually un-supervised, but there are also supervised learning methods adopted for the MPC clustering problem.

antenna properties such as radiation pattern, polarization,
and impedance matching, the performance of communication
systems depends on the overall physical channel, which in-
cludes antenna effects [51]–[55]. Specifically, the interaction
between an antenna and the propagation channel determines
the channel as seen by the transmitting and receiving antenna
ports. Moreover, since the propagation channel properties
are largely determined by the surrounding environment, the
antenna represents an opportunity (as a spatial filter) for
optimizing the antenna-channel interaction from the viewpoint
of performance for the application of interest, be it communi-
cation, localization, or otherwise. For illustration, the received
power will increase if the gain of the receiving antenna gain in-
creased in the direction(s) of the incoming signal, assuming no
polarization mismatch between the channel and the antenna. In
reality, the optimization is complex given a varying multipath
propagation channel with different properties in magnitude,
phase, polarization, delay, angle of arrival/departure, as well
as an increased degree of freedom in the design of receiving
antennas with the use of multiple elements for array/MIMO
operation. Hence, optimizing antenna-channel interaction is
another important subject for optimizing wireless system per-
formance.

ML is useful to address this optimization problem due to
its ability to create mathematical models for the complex
problem involving myriads of antenna and channel parame-
ters. Importantly, useful models can be obtained even with

only limited availability of training data. Different from the
use of ML to speed up parametric optimization in classical
antenna design by reducing the number of required full-wave
simulations to obtain detailed antenna properties, the focus of
this survey is on optimizing the far-field properties of antennas
for improved interaction with the propagation channel and
thus enhanced system performance. Specifically, the conven-
tional antenna optimization algorithms, e.g., [56], [57], are
usually computationally expensive, and highly dependent on
the quality and completeness of the channel knowledge. On the
contrary, the ML-based antenna optimization usually employs
an offline training process, e.g., [58]–[62]. After training
process, the trained method can be implemented online with
low computation complexity, with greatly reduce the latency
of the network.

Table I summarizes the commonly used ML methods for
communication applications that are investigated in this two-
part paper. It is noteworthy that some tracking/matching al-
gorithms, which are not usually considered as ML methods,
are also implemented with ML methods for time-varying
cluster identification, dynamic channel parameter estimation,
etc. They are also investigated in this paper but not included
in Table I.

This paper is organized as follows. Section II summarizes
the ML-based channel feature extraction techniques, which in-
clude channel parameter estimation, MPC tracking, and MPC
clustering, whereas the ML-based design and optimization of
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TABLE II
SUMMARY OF CHANNEL PARAMETER ESTIMATION.

Category Typical Algorithm Parameter Type Existing Works

Traditional method

• Bartlett PAS [63]
• MUSIC [64]
• ESPRIT Signal angle [65]
• SAGE MPC joint parameters (delay, angle, amplitude) [66]
• RiMAX MPC joint parameters; DMC [67]

ML-based method

• SVM Path loss [68]
• ANN Channel excess attenuation [69]
• SVM-PCA AoA and ASA [70]
• Bayesian learning DoA [71]
• RVM [72]
• EKF MPC joint parameters; DMC [73]

antenna-channel interactions are covered in Section III. Sec-
tion IV provides a discussion of challenges and possible future
research avenues for the topics above. Section V concludes
the paper, while scenario identification, channel modeling and
prediction, and the discussion of these two open topics will
be handled in Part II [27].

II. CHANNEL FEATURE EXTRACTION

A. Channel Parameter Estimation

The PAS quantifies the signal energy at different angles.
It thus reflects the spatial characteristics of the channel and
plays an important role in directional channel modeling. Tra-
ditional channel angle parameter estimation algorithms rely on
antenna array signal processing, such as Bartlett beamform-
ing [63], and similarly delay characteristics are obtained from
Fourier transformation of the transfer function. Conversely,
high-resolution parameter estimation (HRPE) overcomes the
resolution limitation inherent to classical techniques like the
Fourier or beamforming methods and shows excellent per-
formance in multi-dimensional MPC parameter estimation.
These techniques can be divided into subspace-based methods
and parametric estimators. A prominent representative for the
former one is Multiple Signal Classification (MUSIC), which
decomposes the signal space into signal subspace and noise
subspace and then determines the direction of the source by
the eigenvalue of covariance matrix [64]. Estimation Signal
Parameter via Rotational Invariance Techniques (ESPRIT)
solves the angle information of signals based on the rotation
invariance principle of sub-arrays [65]. Among the paramet-
ric estimators, iterative maximum-likelihood estimators such
as Space-Alternating Generalized Expectation-maximization
(SAGE) and RiMAX are widely used. The basic idea of the
SAGE algorithm is to decompose a multidimensional joint
estimation problem into multiple one-dimensional maximum-
likelihood estimation problems. When estimating the parame-
ters for a certain MPC, SAGE is to fix a sweep parameter to
only one of the parameters of a single MPC while others in the
same MPC and other MPCs are not swept [66]. RiMAX uses
a similar basic idea as the SAGE algorithm, but adds dense
multipath components (DMCs) to the signal model, and uses

a different way of iteration, to jointly estimate the specular
reflection path and DMCs of channels [67].

ML methods, which have been widely developed in recent
decades, provide effective solutions for many nonlinear map-
ping problems for which it is difficult to establish explicit
mathematical expressions. For channel parameter estimation
solutions based on ML, the basic idea is to take a large
amount of input data, and then obtain a regression model
through a learning algorithm, so that the outputs of the model
are channel parameters. Ref. [74] introduces the prediction
and modeling of channel parameters driven by ML, and
points out applications of ML algorithms in the estimation
of channel parameters such as path loss, angle information,
and channel impulse response (CIR). The application of DL
to HRPE is discussed in [75], whereas an ML-based angle-of-
arrival (AoA) estimation approach is proposed in [70]. In the
proposed method, an estimation model is obtained by using
a support vector machine (SVM) based on a large number
of actual array measurement data. Then, the obtained model
is used to realize AoA estimation according to the channel
snapshots collected by the antenna array. Extended Kalman
Filter (EKF) is used in [73] to track multipaths over time while
estimating the multipath parameters at a snapshot through
maximum likelihood.

Overall, novel ML-based channel parameter extraction solu-
tions have broad application prospects. At the same time, the
propagation channels for emerging wireless communication
systems face an evolutionary trend to a higher frequency,
diversified and complex scenarios, and more abundant devices.
In this context, parameter extraction algorithms also face some
challenges:

1) Performance in a non-stationary environment.: Vehicu-
lar, high-speed railway and satellite communications are grad-
ually brought into the service range of wireless communication
systems, and these high-speed mobile devices result in fast-
time-varying as well as strongly non-stationary channels (i.e.,
not only the channel realizations but also the channel statistics
change within a short time). Therefore, the real-time ability
and accuracy of the ML-based parameter extraction algorithm
in non-stationary channels have to be verified.

2) Selection of input and output parameters.: ML-based
parameter estimation algorithms essentially establish the rela-
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tionship between input data and target outputs, so the selec-
tion of inputs is extremely important. Existing input features
mainly include environmental information, signal strength, and
channel impulse response. In addition, the requirements of sys-
tem design and channel modeling are increasingly diversified,
which drives the demand for parameter estimation, such as
super-resolution estimation of multipath information, real-time
estimation of scenario category and angle information, etc.
Therefore, it is necessary to investigate and optimize reason-
able parameter selection schemes for different requirements.

3) Acquisition of big data of measurement data.: ML-based
parameter extraction algorithms need a huge amount of real
channel measurement data. Therefore, the design of channel-
sounder [76] and channel measurement campaign will play
an important role in future ML-based algorithms. However,
it is expensive and time-consuming to carry out channel
measurement in various environments, which will become the
bottleneck of novel algorithms - this is especially true for
mmWave and THz bands, and high-mobility scenarios such
as aircrafts and trains.

Therefore, while evolving the channel measurement meth-
ods, it is necessary to explore an efficient way of data
utilization, such as using an AI-driven denoising algorithm
to improve the signal-to-noise ratio of data, and obtaining
massive data through the combination of measurement and
simulation. A DOA estimator based on a spatially over-
complete array output formulation is proposed in [71]. Nu-
merical results show that the proposed method has excel-
lent performance, especially in demanding scenarios such as
low signal-to-noise ratio (SNR). A relevance vector machine
(RVM)-based detection algorithm of MPC arrival times and
complex amplitudes is proposed in [72], which can be used to
filter MPCs of simulated power delay profiles embedded with
noise. Another widely used training method for ML algorithms
- not only for channel parameter extraction but also other
wireless applications - is based on stochastic channel models
such as Quadriga [77] or ray tracers such as Wireless InSite
[78]. Table II summarizes the widely used channel parameter
estimation methods and the parameter type of each method.

B. MPCs’ Cluster Identification

As briefly introduced in the introduction, the clustering
technique is one of the important applications of ML, which
naturally meets the requirement of grouping the MPCs with
similar channel characteristics for further modeling. On the
other hand, for ML-based channel modeling, the MPCs’
cluster identification is also an important procedure as pre-
processing to help ML-method learn the data pattern more
efficiently. According to the clustering methodology, the ex-
isting cluster identification algorithm can be categorized into
the following types.

1) Shape-Based Cluster Identification: The cluster struc-
ture of MPCs is firstly revealed in the power-delay domain.
The MPCs belonging to the same cluster can be modeled as
having a PDP that follows a single exponential decay [34].
Inspired by this, shape-based cluster identification has been
proposed to recognize the MPC clusters in a PDP. The key

idea is to use a fitting method to see if the shape of the
envelope of the MPCs matches a particular distribution. By
adjusting the cluster members, i.e., MPC, to seek the best
fitting result, the MPC cluster can be well identified. Following
this idea, [79] trains a Hidden Markov Model (HMM) to learn
the distribution of the MPCs in the PDP and optimizes the
cluster members by using the Viterbi algorithm [80]. Instead
of seeking the single exponential decay distribution, another
solution is to express the PDP on a semi-logarithmic scale
(for power domain as in y-axis) so that exponential decay
profiles will be displayed as straight lines with constant slopes,
e.g., [81], [82]. By seeking straight lines that best fit the
MPCs, the proposed algorithm is able to identify the clusters
efficiently and objectively. Specifically, Ref. [82] builds an
observation window to separate the big cluster. By applying
a threshold of the slope, the proposed algorithm can improve
the clustering accuracy on small clusters. Different from the
ideas above, kurtosis is adopted in [83] to measure the shape
of the MPC distributions and applies the Region Competition
method [84] to divide the MPCs into different clusters. The
kurtosis is commonly used to measure the peakedness of a
certain distribution, whereas the Region Competition method
is a widely used group member determination algorithm in
computer vision.

Overall, the strong point of the shape-based cluster identifi-
cation is that the clustering procedure doesn’t require much
prior knowledge, e.g., the number of clusters. Besides, it
only focuses on the MPC distribution in PDP, which leads
to a low computation complexity because of relatively low
dimensionality. Nevertheless, the identification accuracy is
also limited due to a lack of angular information during the
clustering.

2) Optimization-Based Cluster Identification: For any data
clustering method, noise impacts the clustering accuracy sig-
nificantly. As introduced before, there is always some unre-
movable noise effect during the MPC parameter estimation,
which may also have an influence on the MPC cluster identi-
fication. In this case, optimizing the channel measurement data
(raw data) by removing the noise or reconstructing the CIR is
one way to improve the MPC cluster identification accuracy.
Following this idea, optimization-based cluster identification
takes into account the behaviors of MPCs in CIRs during the
clustering to improve the performance. A sparsity-based clus-
tering method is proposed in [85], [86], which aims to recover
the ideal CIRs (without the noise) by solving a sparsity-based
optimization problem that incorporates the characteristics of
the CIRs, then identify the cluster using the recovered CIRs.
Gaussian Mixture Model (GMM) is introduced in [87], [88]
to recognize the clusters in the angle-delay domain, where the
Expectation-Maximization algorithm [89] is adopted to seek
the initial parameters of GMM and the Variational Bayesian
(VB) algorithm [90] is applied to further optimize the number
of Gaussian distributions.

Both the shape-based and the optimization-based cluster
identification achieve good performance in terms of identifying
the clusters in PDP and both require little prior knowledge
for identification, whereas the optimization-based method can
be further extended to introduce the angular characteristic to
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Fig. 1. The comparison of the key idea of (a) the shape-based;(b) the optimization-based;(c) the distance-based; and (d) the density-based cluster identification.

improve the cluster identification accuracy. It is noteworthy
that, the shape-based identification can also extend to the
angular domain by assuming a particular shape of cluster
PAS. Nevertheless, it is difficult to determine a general/specific
PAS shape for the shape matching procedure2. The difference
between the key idea of the shape-based and the optimization-
based method is illustrated in Figs. 1(a) and (b).

3) Distance-Based Cluster Identification: The very nature
of the data clustering is to group the elements (MPCs) based
on their similarity to each other. Consequently, many studies
identify the MPC clusters based on the similarity/distance
among all MPC’s parameters. There are several ways to
measure the similarity between different MPCs, the widely
used measures include i) Squared Euclidean Distance (SED);
ii) Normalized Euclidean Distance (NED); and iii) Multipath
Components Distance (MCD). Both the SED and the NED are
widely used in data clustering problems; the SED focuses on
the natural difference between each parameter, whereas the
NED focuses on the ratio difference. By using the SED, a
sequential clustering-based algorithm is proposed in [91] to
identify the MPC clusters. However, to properly measure the
similarity of the MPCs in the different domains, e.g., delay
and angular domain, it is necessary to compare the parameters
on the same scale, in other words, the parameters in different
domains need to be normalized first. Therefore, [92] proposes
the MCD, which normalizes the delay and angle parameters
in their respective domains before calculating the distance
measures. The cluster identification performance of using the
SED and the MCD is compared in [93], where the MCD
achieves better performance for measuring the similarity of
MPCs. Since then, many studies have developed the MPC
cluster identification based on the MCD. Ref. [94] uses the
MCD within the hierarchical tree clustering algorithm to
identify the MPC cluster. A K-Power-Means (KPM) algorithm
is proposed in [95] based on the classic K-means algorithm
[96], which iteratively groups the MPCs based on the power-
weighted MCD between each MPC and each cluster centroid.
Ref. [97] further improves the KPM by initializing the cluster
centroid with the MPC having the highest power. Instead of
using K-means, which is a hard-dividing method, a fuzzy-
C-means (FCM)-based MPC clustering algorithm, which is a
soft-dividing method, is proposed in [98].

2To the best of the authors’ knowledge, the existing shape-based cluster
identification methods mostly fall into the delay-power domain.

From the propagation point of view, each MPC cluster in the
channel may correspond to a physical reflection object. Since
it is the interaction objects in the environment that contributes
to producing MPCs, the corresponding clusters usually have
different propagation distances (delay) and different angles of
arrival/departure. Therefore, it is possible to distinguish the
MPC clusters based on the signal arriving time and the signal
arriving angle. Follow this idea, [99], [100] propose time-
cluster-spatial lobes, which measure the difference between the
propagation time and the angular spread interval to distinguish
the clusters with a certain threshold.

Benefiting from the great power of the data clustering algo-
rithm, the distance-based cluster identification generally shows
high identification accuracy with acceptable computational
complexity. Moreover, by using the MCD, the distance-based
method can well identify the clusters in multiple domains,
i.e., power-delay-angular domain. However, most of the exist-
ing distance-based methods require prior knowledge of, e.g.,
the number of clusters or the initial position of the cluster
centroid. Thus, the identification accuracy is sensitive to the
initial parameters for the algorithm. However, the best initial
parameters settings highly depend on the processed data, so
there is usually no “golden rule” for this.

4) Density-Based Cluster Identification: Major physical
reasons causing the cluster structure of MPCs are the fine
structure of reflecting objects (e.g., windowsills and other
protrusions on house walls, the rough surface of the reflecting
object, diffraction at/around object edges). In this case, the
MPCs near the cluster centroid usually have a higher density
compared to the edge of the cluster. Hence, some studies
identify the clusters based on this distribution property. The
density-based spatial clustering for application with noise
(DBSCAN) [101] algorithm is proposed in [102] to identify
the MPC clusters. Based on this, a kernel-power-density-based
clustering (KPD) algorithm is developed in [103], [104], which
defines a kernel density to incorporate the modeled behavior
of MPCs and identifies the clusters based on the local density
of each MPC, whereas the power of the MPCs is taken into
account as the weight factor for the density.

Similar to the distance-based cluster identification, density-
based clustering can well identify the MPC clusters in multiple
domains since the MPC density is independently calculated in
the delay domain and angular domain, e.g., [95] and [104];
the main difference of the key idea between them is given
in Figs. 1(c) and (d). Furthermore, the density-based method
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TABLE III
SUMMARY OF THE USE OF CHANNEL FEATURES FOR CLUSTER IDENTIFICATION.

Category Data domain Common tools Existing works

Shape-based
PDP • HMM [79],
PDP • Least squares [81], [82]
PDP • Kurtosis measure [83]

Optimization-based PDP • Sparse optimization [85], [86]
Angle-delay domain • GMM+VB [87], [88]

Distance-based

Angle-delay domain • Sequential clustering [91], [93]
Angle-delay domain • Hierarchical tree clustering [94]
Angle-delay domain • KPM [95]
Angle-delay domain • Enhanced KPM [97]
Angle-delay domain • FCM [98]
Angle-delay domain • KM [105], [106]
Angle-delay domain • Data stream [107]
Angle-delay domain • Fixed parameter interval threshold [99], [100]

Density-based Angle-delay domain • DBSCAN [102]
Angle-delay domain • KPD [103], [104]

Vision-based
PDP/Angle-delay domain • Visual inspection [43]–[46]

Angle-delay domain • Hough transform [108]
Angle-delay domain • PASCT [109]–[112]

Evolving-based Angle-delay domain • Trajectory-based [113], [114]

does not require prior knowledge like the number of clusters
or the initial position of cluster centroids. Thus, the influence
of the initial parameter settings on clustering performance is
well controlled.

5) Computer-Vision-Based Cluster Identification: Before
automatic cluster identification methods were devised, MPC
clusters were identified by human inspection as in [44]–
[46], [115], [116]. Despite the somewhat subjective operation
model in human-eyeball clustering, there are still some basic
criteria that are generally applied, including i) the shape of the
potential cluster; ii) the distribution pattern of the MPCs’ delay
and angle; and iii) the power distribution of all MPCs. All
these principles are visual-based, hence, it is also possible to
use an image-processing method to recognize the MPC cluster.
Inspired by this, some studies focus on computer-vision-based
cluster identification. With the consideration of the delay
behaviors of the MPCs, a Hough-Transform-based clustering
algorithm is present in [108] for V2V channels, which exploits
the Hough-Transform [117] to recognize the trajectory of MPC
in the delay domain and merges the recognized trajectory
into clusters. A PAS-based clustering and tracking (PASCT)
algorithm without any high-resolution parameter extraction is
proposed in [109]–[111]; it introduces the maximum-between-
class-variance method [118] to separate the potential cluster
groups from the background noise and further divides the
clusters by using the density-peak-search method [119]. The
PASCT algorithm identifies the clusters directly from the
PAS, which can be fast obtained by applying the Bartlett-
beamformer [120]. A similar method is also adopted in [112],
where the cluster is recognized from the PAS by using im-
age denoising, coarse-grained segmentation, and fine-grained
segmentation.

The vision-based cluster identification follows an intuitive
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Fig. 2. Illustration of the evolving-based cluster identification.

approach and thus can provide identification results that
conform to human observation and benefit from the rapid
development of computer vision science.

6) Evolution-Based Cluster Identification: The methods
introduced above only consider the MPCs’ behavior in a
single snapshot, i.e., distribution behavior, though the evolving
behavior (dynamic change) of the MPCs is another impor-
tant characteristic for identifying the clusters in time-varying
channels. Theoretically, a certain cluster shall correspond to
a specific reflection object, except LoS.3 In this case, the
dynamic changes of the transmitter, receiver, and reflection
objects lead to an evolving behavior of the MPCs, such that
MPCs belonging to a particular cluster show the same/similar
evolving behavior, which is distinct from the evolution of
other clusters. This is a crucial feature to identify clusters
that overlap each other for a period of time, but have notably
different evolving patterns, as shown in Fig. 2. Following this

3It has been found the LoS signal also shows a cluster structure in many
measurements [121], [122].
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idea, a moving probability-based clustering algorithm is pro-
posed by using the Kuhn-Munkres (KM) algorithm in [105],
[106] for the time-varying channels, whereas [107] identifies
the dynamic clusters based on the data-stream clustering
method [123]. An evolving similarity is defined in [113], [114]
based on the similarity of the shape of MPC’s trajectories
and the distance between the MPC. Based on the evolving
similarity, the KPD [104] algorithm is applied to identify the
dynamic clusters.

The evolving-based cluster identification takes advantage of
the nature of MPCs arising from the physical environment
feature and the long-term evolving behavior of the clusters; it
can thus provide better identification accuracy than clustering
the MPCs in each snapshot independently. Meanwhile, how
to capture the evolving behavior is a critical point for the
evolving-based method, which is further introduced in Sec-
tion II-C.

In summary, the ML-based cluster identification solutions
show significant ability to identify the MPC clusters for further
analyzing and modeling, and each identification solution has
its own advantages and limitations. Considering there is no
identification ground truth of the measurement data, how
to properly quantify the performance of the identification
method is still a challenging issue. One way is by evaluating
the identification method by using synthetic data generated
from a cluster-based channel model, where the identification
ground-truth of the synthetic data can be easily acquired.
Another solution is to use the statistical figure-of-merits for
data clustering algorithms, e.g., the Calinski-Harabasz index
[124], Generalized Dunn’s (GD) index [125], Xie-Beni (XB)
index [126], or Davies-Bouldin index [124]. Several measuring
methods including the indices above are compared in [127],
where the XB index and GD index generally show good
performance for evaluating the MPC cluster identification
result. Table. III summarize the existing clustering methods
for wireless channels.

C. Multipath Component/Cluster Tracking

Analyzing time-varying channels requires the capturing of
the evolving behavior and lifetime of the MPCs/clusters. In
this case, the time-varying channel characterization requires
not only clustering but also tracking the MPCs in consecutive
snapshots. To this aim, some ML methods, e.g., the Kalman
filter [128], the Hungarian algorithm [129], and the Kuhn-
Munkres algorithm [130], are used for MPC/cluster tracking
mission.

In the past, there were mainly two types of MPC/cluster
tracking: i) track the MPCs from snapshot to snapshot first, and
then identify the cluster trajectory based on its MPC member;
and ii) identify the cluster in each snapshot first and then
track the cluster centroid. From a mathematical point of view,
these two types can be further categorized into the following
approaches.

1) Distance-Based Tracking: For time-varying channels,
the dynamic MPCs/clusters are usually captured at consecutive
times (snapshots). It is widely accepted that the variation
of the MPCs/clusters between two consecutive snapshots

Reflection 
Object

Reflection 
Object

t1 t2 t3 t4

Tx
Rx

MCD-based tracking

Fig. 3. Key idea of tracking the reflection point along the surface in [131].

is fairly limited. Therefore, one intuitive way to track the
MPCs/clusters is based on the distance, i.e., the MPCs pairs
between two snapshots are associated if they have the smallest
distance. Following this idea, a distance-based MPC tracking
algorithm is proposed in [102] to analyze the lifetime of the
MPCs in V2V channels, where the MCD [92] is used to
measure the distance between the MPCs. Similarly, the MCD-
based tracking method is also applied in [132] and [133].
Instead of simply tracking the MPCs, [107] tracks the MPCs
in the current snapshot to the cluster centroid in the last
snapshot based on the MCD between the MPCs and the cluster
centroids, as an initialization for the clustering algorithm. The
algorithms above track the MPCs only based on the similarities
without considering the physical environment, whereas [131]
reconstructs the physical propagation environment and locates
the reflection object based on the AoA and AoD, and then
tracks the reflection point along the surface of the reflecting
object. Fig. 3 gives the key idea of this reflection point
tracking. Apparently, the reflection point tracking is able
to utilize the physical environment feature to improve the
tracking performance, but it is mainly applicable for single-
bounce reflections as it is difficult to acquire the specific
propagation process of a multi-bounce reflection.

Due to the tracking principle, the distance-based method
usually first links (tracks) the MPCs pairs with the smallest
distance, which is a locally optimum solution rather than a
globally optimum solution.

2) Matching-Based Tracking: A globally optimal solution
to the tracking problem is difficult to obtain due to its non-
convex nature. On the other hand, tracking MPCs between
two snapshots is equivalent to a matching problem between
two data sets. Inspired by this, a globally-optimum tracking
solution is proposed in [105], [106], where the tracking of
MPCs is converted to a bipartite graph of a general matching
problem: every node (i.e., MPC) in two subsets links to each
other (i.e., the evolution between each MPC pair) and every
link has its own weight. The matching problem is solved by
using the Kuhn-Munkres algorithm [130]. Similar solutions are
also adopted in [109], [114], [134]. Besides the Kuhn-Munkres
algorithm, the Hungarian algorithm [129] has been also widely
used for the matching problem, where the main difference is
that the Hungarian algorithm sets all links as the same weight
during the assignment. Based on the Hungarian algorithm,
a cluster tracking method for millimeter-wave channels is
proposed in [135].

Compared to distance-based tracking, matching-based track-
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ing can provide a tracking result with higher accuracy and bet-
ter robustness according to the comparison in [106]. Nonethe-
less, due to the matching procedure, the matching-based
tracking does not consider the splitting and merging behavior
of the dynamic clusters and the birth/death of MPCs.

3) Threshold-Based Tracking: For time-varying chan-
nels, the clusters may show complicated evolving behavior,
e.g., birth/death, moving, splitting, or merging. Neither the
distance-based nor the matching-based tracking methods can
well identify the splitting and merging behavior. Therefore,
instead of linking MPCs to one another, a threshold-based
tracking method is developed to link the MPCs one-to-many or
many-to-one. Follow this idea, an automatic tracking algorithm
is proposed in [136] to track the cluster centroid, where a
preset threshold is built to identify the splitting and merging
behavior of the cluster. A similar tracking method has been
adopted in [137]–[139] to track the MPCs in V2V channels.

Since the threshold-based method tracks the MPCs/clusters
only based on a preset threshold, it has the lowest computation
complexity. Yet, the threshold settings significantly impact the
tracking results, and different measurement data may require
different threshold settings.

4) Prediction-Based Tracking: The tracking methods in-
troduced above inherently only consider the similarity of
the MPCs/clusters between two snapshots, which means that
the long-term evolving behavior of the MPCs/clusters is ig-
nored. For the time-varying propagation channels, e.g., V2V
channels, the MPCs/clusters may correspond to a specific
interaction object, the long-term evolving behavior of the
MPCs/clusters thus can contribute to the tracking of them.
Inspired by this, some studies analyze the evolutionary history
of the MPCs/clusters and predict the moving position (i.e.,
the MPC in the next snapshot) to ultimately improve the
tracking accuracy. The Kalman filter [128] has been widely
used for tracking and prediction problems, and uses a linear
system function to learn the dynamic change of input data and
predict the system in the future. A cluster centroid tracking
algorithm based on the Kalman filter is firstly proposed in
[140] for the MIMO channels, where the cluster centroid
is predicted and used as the initial position for the KPM
algorithm. Similar solutions are also adopted in [112], [141].
The Kalman filter is designed to predict one MPC/cluster;
alternatively, the particle filter [142] is developed to track
multiple targets at the same time. Inspired by this, a particle
filer-based tracking algorithm is proposed in [143] to track the
MPCs in time-varying channels.

The prediction-based tracking takes into account the long-
term evolving behavior of the MPCs/cluster, yet it can only
predict the potential position of the MPCs/cluster in the future.
In this case, the prediction-based tracking can be applied
with matching-based tracking, i.e., use a prediction method to
learn MPCs evolution pattern and predict the possible moving
position and then use a matching-based tracking method to
associate the predicted position and the MPCs in the next
snapshot, to achieve better tracking performance.

It can be found that with the development of cluster iden-
tification, the clustering procedure, and the tracking proce-
dure tend to be jointly considered to better identify dynamic

clusters in time-varying channels, i.e., evolution-based cluster
identification. Based on the existing research, the evolution-
based clustering can achieve better robustness and accuracy
performance when processing the time-varying channels data,
comparing with either tracking first and clustering afterward or
clustering first and tracking afterward. Hence, it is a promising
direction for the future development of cluster identification of
time-varying channels. Besides, most of the existing clustering
algorithms have no off-line training process, and the compu-
tational complexity thus is a critical point to implementations,
which needs to be carefully considered for designing clustering
method.

III. AI/ML-ASSISTED OPTIMIZATION AND MODELING
FOR ANTENNA DESIGN TO IMPROVE RADIO PROPAGATION

A. ML-Based Transmit Antenna Selection

The simplest method to use channel information to adapt
antenna properties for improved antenna-channel interaction
is to rely on an antenna array to provide different spatial
properties of the antenna system. Specifically, one can select
between a finite set of spatial filters, made possible by either
turning on/off different antenna elements (in the case of
transmit antenna selection (TAS) [56], [57]), fixed beams
[144], or antenna tilt, selecting different preformed beams
covering the horizontal plane, or steering the beam in elevation
[145]. In a generic sense, this approach is about connecting
the antenna array outputs to the transmitter or receiver through
a beamforming network, where the array weights can be set
according to the desired selection functionality.

Among these applications, TAS has received the most
attention in the literature [58]–[62], due to the topic being
of interest since the early days of multi-antenna systems [57].
The basic idea of TAS is to devise an algorithm to select P
out of MT transmitting antennas (P < MT) to be connected
to the RF chains, such that the best possible end-to-end link
performance is achieved. This technique is motivated both by
the reduced hardware cost due to the need for fewer RF chains
and the modest loss of performance under some conditions.

Optimal TAS algorithms can be computationally expen-
sive, and their performance is dependent on the quality and
completeness of the channel knowledge. An early paper that
explores the use of pattern-recognition-based ML in TAS is
[58], where multiclass classification is attempted by building
and applying a classification model from sufficient training
data of the channel. Results obtained from simulated channels
(2000 training samples, with correlations in both transmitting
and receiving antennas) using multiclass-KNN and SVM algo-
rithms are compared to conventional TAS using optimization-
driven selection (maximize minimum eigenvalue or norm of
the channel matrix H over all possible subsets). For single-
stream transmission, all methods are equivalent in bit error rate
(BER) performance. However, for two-stream transmission,
the two ML methods cannot match the max-min eigenvalue
method, but they benefit from lower computational complexity,
i.e., polynomial as opposed to exhaustive combinatorial search.
Furthermore, depending on the feature vector used in ML
methods, the amount of feedback for TAS can be reduced
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relative to conventional methods with full-channel feedback.
To further improve the performance, a new feature of the
channel matrix is proposed in [58], based on the norm square
of the elements of HHH instead of H. The simulated results
show that the proposed feature gives significantly better BER
results for SVM in [58].

Following the same general idea in [58], ML is investi-
gated for a TAS setup in [59], but for a different purpose,
namely enhancing the secrecy rate of MIMO multi-antenna
eavesdropper wiretap channels. In this case, Naive Bayesian
(NB) is applied instead of KNN or SVM to provide a better
secrecy rate with low complexity. The performance of SVM
and NB slightly differ depending on the knowledge of the
eavesdropper channel, but both can achieve nearly the same
performance as the conventional method of exhaustive search.
Moreover, SVM has lower complexity and both ML methods
require half the amount of feedback relative to the conventional
method. To achieve superior link capacity to the data-driven
ML approaches of [58], [59], DL is proposed for TAS in [60].
The proposed framework, based on CNN and the criterion
of channel capacity, allows rich features to be extracted from
the channel matrices and used to train powerful classifiers for
selecting antennas. It is demonstrated that CNN outperforms
SVM and KNN in terms of capacity loss and its variance, but
at the cost of much higher computational complexity inherent
to DL.

A general TAS framework is given in [61] for both neural
networks and Gradient Boosting Decision Trees (GBDT). For
GBDT, it also analyzes the relative importance of different
features pattern from the norm square of the diagonal and
off-diagonal elements of HHH, concluding from empirical
data that the diagonal values are twice as important for the
classification task as the off-diagonal values. The comparisons
in BER performance and complexity reveal that ANN and
GBDT can both approach near-optimal performance, but the
latter demonstrates a better BER performance-efficiency trade-
off.

The interest in applying ML to TAS is not limited to
single-user MIMO, but it has also been considered for multi-
user massive MIMO systems [62]. In [62], the self-supervised
learning-based Monte Carlo Tree Search (MCTS) method is
proposed to solve the antenna selection problem, using channel
capacity as the key performance indicator. The components
in the TAS system model are mapped to the basic elements
of MCTS (action, tree state, and reward). Linear regression
is used to obtain channel features and provide prediction
to MCTS, facilitating the self-supervised learning process.
Simulation results show high search efficiency with near-
optimal performance, with the BER performance giving 1-dB
gain over the greedy search selection method. The proposed
method also achieves similar near-optimal BER performance
as the search-based branch and bound (BAB) method [146],
but with 50% complexity.

B. ML-Based Beam Selection and Antenna Tilt Optimization

Apart from TAS, ML has also been applied to beam
selection, which is an important enabler of 5G millimeter

wave technology, in providing the beamforming gain needed
to compensate for the higher propagation losses at higher
frequencies. The use of DL architectures is considered in [147]
to perform millimeter-wave beam management for a vehicle-
to-infrastructure (V2I) 5G environment. It was shown that the
beam selection accuracy of the deep reinforcement learning
algorithm approaches that of the optimum time slot (and beam)
allocation obtained with dynamic programming. However, the
focus of [147] is on the generation of realistic data sets
involving channel evolution over time by combining a ray-
tracing simulator and a traffic simulator. A different twist in
the use of DL for millimeter-wave beam selection is explored
in [148]–[152], where sub-6 GHz channel information is
used to reduce the exhaustively search-based beam sweeping
overhead during initial access by as much as 80%. The PDP
as calculated from the channel is usually used as input to the
DNN structure, which is based on the hypothesis that PDP
can be considered as a fingerprint for UE position in a given
environment.

Using ML to determine antenna tilt for coverage and inter-
ference optimization is also a popular subject in the literature
[153]–[155]. In simple terms, a suitable antenna tilt can
improve signal reception within a cell and reduce interference
towards other cells, leading to a higher signal-to-interference-
plus-noise ratio (SINR) received by the users and increased
sum data rate in the network [154]. However, the traditional
fixed-tilt strategy is not adequate for the complex coverage
and interference problem in heterogeneous networks (HetNet)
[153]. In [153], a distributed reinforcement learning algorithm
is proposed, which does not need a base station or network-
wide knowledge of hotspot locations. In the simulation results
in that paper, the Boltzmann exploration algorithm can achieve
convergence to a near-optimal solution within limited itera-
tions and improve the throughput fairness by 45-56% and the
energy efficiency by 21-47%, as compared to fixed strategies.It
is shown in [154] that distributed reinforcement learning is
also attractive for the antenna tilting for self-optimization of
the RAN, even for homogeneous networks. Simulation results
show a 30% increase in the sum rate in an urban scenario
when the tilt angle is optimized.

C. Data-Driven Design of Antenna Patterns

To benefit more from channel information than aiding in the
selection of antenna/beam/tilt, the channel data can be more
directly utilized in optimizing antenna-channel interaction
to improve system performance. Since optimizing antenna-
channel interaction is mainly about “far-field matching”, one
can design the antenna pattern for some desired properties.

One such track is to adapt antenna properties using data-
driven (or data-dependent) beamforming [156], which is inter-
esting especially for the mm-wave-based applications in 6th
generation (6G) communication system. In [157], the CIR is
processed by ML to synthesize the required array weights
to optimize criteria such as minimum SINR, where hybrid
beamforming is used in a millimeter-wave system to balance
hardware cost (i.e., relating to the number of RF chains) and
flexibility (in beamforming). Whereas the digital baseband
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Fig. 4. Illustration of optimization of antenna-channel interaction and different
approaches to achieve it.

part can utilize beamforming algorithms such as zero-forcing
(ZF) to create arbitrary beam patterns, the flexibility in the
analog part is limited to a set of phase-only beamform-
ing weights. Nevertheless, the digital baseband component
in hybrid beamforming gives the system more degrees of
freedom to maximize sum rates as compared to a fixed beam-
selection scheme [147]. However, since the classical approach
to maximize sum rates with ZF beamforming involves several
matrix inversions and hence is computationally intensive for
real-time application, a low complexity near-optimal method
is devised by posing the beamforming problem as a multiclass
classification problem. Given adequate training data, SVM is
used to obtain a statistical classification model, which is then
used to select the optimal beam to maximize the sum rate. In a
more direct approach of optimizing the far-field pattern of an
antenna array to improve antenna-channel interaction, [158]
proposes the use of ML to optimize the locations of thinned
(or sparse) array elements for network-level metrics (such as
SINR) given a modest set of simulated channel data from the
3GPP Urban Microcell (UMi) scenario.

The downside of this more data-dependent approach is that
it does not make use of the channel information to reconfigure
the antenna elements in a more fundamental manner than
adjusting antenna weights, and this limits the freedom for
the antenna pattern to be synthesized for optimal antenna-
channel interaction. To this end of optimizing antenna-channel
interaction, two approaches have been attempted, differentiated
by the level of sophistication, as illustrated in Fig. 4: the
main research tracks for AI-based techniques for optimizing
the compound of antennas and channels consist of either
simple adaptation of some high-level antenna properties, such
as antenna/beam/tilt selection, or more direct manipulation of
antenna patterns, according to the channel data. It is foreseen
that AI can be particularly useful for such an optimal pattern
synthesis approach, as the future work given in Fig. 4, since a
flexible configuration of the radiating structure implies a large
optimization search space.

IV. IMPORTANT ISSUES AND CHALLENGES

The challenges discussed in this section can be considered
as guidelines for future ML-based channel analysis and mod-
eling research.

A. DL-Based Channel Parameter Estimation

The channel feature extraction is a fundamental basis for
channel analysis, which mainly consists of the channel param-
eter estimation and the cluster extraction. For most of the exist-
ing work, there are mainly two solutions to obtain the channel
parameters: i) high-resolution parameter estimation method,
e.g., SAGE or RiMAX; or ii) Fourier transform-based filter,
e.g., Bartlett Beamformer or Capon’s Beamformer. The former
methods can provide relatively more accurate parameters with
the cost of high complexity caused by iterative computation,
whereas the latter methods usually only provide a spectrum
with relatively low computation complexity. Alternatively, the
AI methods, especially ANN-based DL, have the potential
to build the bridge between spectrum- and parameter-based
solutions discussed in Section II.A: use the spectrum results as
prior information and obtain the accurate channel parameters
with fewer iterations. The main challenge here is i) how to
efficiently utilize the spectrum result to reduce the training
complexity; ii) how to improve the parameter estimation
accuracy compared to the existing high-resolution parameter
estimation algorithms but maintain the tradeoff between the
training performance and overfitting.

B. DL-Based Cluster Identification

For cluster recognition/extraction, most of the existing
works rely on unsupervised clustering algorithms, e.g., K-
Means or Fuzzy-C-Means. However, the unsupervised algo-
rithms generally rely on pre-set parameters, e.g., the number
and the position of initial cluster-centroids. Thus, the current
clustering algorithm requires different pre-settings for different
channel data, which requires extensive manual adjustment to
maintain the clustering accuracy for non-stationary channels.
On the other hand, the ANN-based DL shows great flexibility
for the applications of target recognition and has already been
extended to solve the clustering problem [159]–[161], which
is highly related to the MPC’s cluster recognition. Neverthe-
less, the accuracy of the DL-based cluster recognition is not
increased as expected compared to the existing unsupervised
clustering methods. Therefore, it requires more studies on how
to further improve the accuracy and efficiency of the DL-
based clustering methods. At the same time, the possibility of
tracking joint clustering of time-varying MPCs also requires
further investigation.

C. AI-Based Antenna Design for Coverage Optimization or
Energy Saving

As reviewed in Section V, the main research tracks for AI-
based antenna-channel optimization consist of either simple
adaptation of some high-level antenna properties, such as
antenna/beam/tilt selection, or more direct manipulation of
antenna patterns, according to the channel data. Little effort
has been made towards using AI techniques to enable the
antenna pattern to be synthesized for optimal antenna-channel
interaction by configuring the basic radiating structure in real-
time. It is foreseen that AI can be particularly useful for
such an optimal pattern synthesis approach since a flexible
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configuration of the radiating structure implies a large op-
timization search space. Furthermore, AI modeling can be
used to predict the antenna pattern without having to run
full-wave simulations for all possible configuration states.
However, the existing basic building blocks for this future
[162], [163] do not provide the means to translate a given
pattern to the required antenna structure, nor do they give any
indication of a reconfigurable antenna structure suitable for
this purpose. AI-based modeling could be used to fill the gap
between the patterns from full-wave simulations performed
for a representative number of states and all possible patterns.
Nevertheless, such a procedure is expected to be computation-
ally very expensive. Then, multiple feeding ports will need to
be positioned around the patch to excite the desired modes
in the right proportion to generate a given optimal pattern.
Therefore, this exercise, if performed in a brute-force manner,
is still too complex for real-time application, which opens
up the opportunity for AI-based modeling and utilization.
Furthermore, appropriate impedance matching of the designed
feeding structure will be needed, and this aspect will require
further investigations.

D. AI-Based Applications for mmWave/THz Band Communi-
cations

Channel measurements (especially in mmWave and THz
band) are often accompanied by maddening time consumption,
engineering problems, and capital costs. The ML method
needs training data, and reliable training data should come
from the measurements in actual scenarios. In this sense, data
acquisition is the bottleneck of many ML-based applications.
Admittedly, some simulation methods can generate synthetic
training data, but the simulation methods themselves also
need measurement data for evaluation and verification. Hence,
conducting sufficient measurement campaigns to support AI-
based applications is one challenging aspect in the future for
mmWave/THz channels. Meanwhile, the mmWave/THz chan-
nels with the ultra-wideband and ultra-massive MIMO have
shown some new properties, e.g., channel sparsity, channel
hardening, non-stationarity in time/spatial/frequency domains.
These new channel properties may significantly affect channel
data processing and have not been considered yet in the
existing AI-based applications, e.g., channel sparsity property
may contribute to cluster identification; channel hardening
may improve the scenario identification. How to exploit new
channel properties to improve the efficiency, accuracy, and
robustness of AI-based applications in communications still
requires further investigation.

V. CONCLUSION

AI techniques have become a necessary tool to develop
the next generation communication network. In this paper,
we provide a comprehensive overview of AI-enabled data
processing for propagation channel studies, including channel
parameter estimation and characterization and antenna-channel
optimization in Part I, whereas the scenario identification and
channel modeling/prediction are covered in Part II [27]. This
paper demonstrates the early results of the related works and

illustrates the typical AI/ML-based solutions for each topic.
Based on the state-of-art, the future challenges of AI/ML-
based channel data processing techniques are given as well.
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