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Abstract 

For diagnosis of COVID-19, a SARS-CoV-2 virus-specific reverse transcriptase 

polymerase chain reaction (RT-PCR) test is routinely used. However, this test can take 

up to two days to complete, serial testing may be required to rule out the possibility of 

false negative results, and there is currently a shortage of RT-PCR test kits, 

underscoring the urgent need for alternative methods for rapid and accurate diagnosis 

of COVID-19 patients. Chest computed tomography (CT) is a valuable component in the 

evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone 

may have limited negative predictive value for ruling out SARS-CoV-2 infection, as 

some patients may have normal radiologic findings at early stages of the disease.  In 

this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings 

with clinical symptoms, exposure history, and laboratory testing to rapidly diagnose 

COVID-19 positive patients. Among a total of 905 patients tested by real-time RT-PCR 

assay and next-generation sequencing RT-PCR, 419 (46.3%) tested positive for SARS-

CoV-2. In a test set of 279 patients, the AI system achieved an AUC of 0.92 and had 

equal sensitivity as compared to a senior thoracic radiologist. The AI system also 

improved the detection of RT-PCR positive COVID-19 patients who presented with 

normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists 

classified all of these patients as COVID-19 negative. When CT scans and associated 

clinical history are available, the proposed AI system can help to rapidly diagnose 

COVID-19 patients. 
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The coronavirus disease 2019 (COVID-19) pandemic has rapidly propagated due 

to widespread person-to-person transmission1-6. Laboratory confirmation of 

SARS-CoV-2 is performed with a virus-specific reverse transcriptase polymerase 

chain reaction (RT-PCR), but the test can take up to two days to complete. Chest 

computed tomography (CT) is a valuable component of evaluation and diagnosis 

in symptomatic patients with suspected SARS-CoV-2 infection4. Nevertheless, 

chest CT findings are normal in some patients early in the disease course and 

therefore chest CT alone has limited negative predictive value to fully exclude 

infection7, highlighting the need to incorporate clinical information in the 

diagnosis. We propose that artificial intelligence (AI) algorithms may meet this 

need by integrating chest CT findings with clinical symptoms, exposure history, 

and laboratory testing in the algorithm. Our proposed joint AI algorithm 

combining CT images and clinical history achieved an AUC of 0.92 and performed 

equally well in sensitivity (84.3%) as compared to a senior thoracic radiologist 

(74.6%) when applied to a test set of 279 cases. While the majority of suspected 

patients currently have little option but to wait for RT-PCR test results, we 

propose that an AI algorithm has an important role for the rapid identification of 

COVID-19 patients which could be helpful in triaging the health system and 

combating the current pandemic. 
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The COVID-19 pandemic has resulted in over 3 million cases worldwide. Early 

recognition of the disease is crucial not only for individual patient care related to rapid 

implementation of treatment, but also from a larger public health perspective to ensure 

adequate patient isolation and disease containment. Chest computed tomography (CT) 

is more sensitive and specific than chest radiography in evaluation of SARS-CoV-2 

pneumonia, and there have been cases where CT findings were present prior to clinical 

symptomatology onset4. In the current climate of stress on healthcare resources due to 

the COVID-19 outbreak, including a shortage of RT-PCR test kits, there is an unmet 

need for rapid, accurate, unsupervised diagnostic tests for SARS-CoV-2.  

 

Chest CT is a valuable tool for the early diagnosis and triage of patients suspected of 

SARS-CoV-2 infection. In an effort to control the spread of infection, physicians, 

epidemiologists, virologists, phylogeneticists, and others are working with public health 

officials and policymakers to better understand the disease pathogenesis. Early 

investigations have observed common imaging patterns on chest CT8,9. For example, 

an initial prospective analysis in Wuhan revealed bilateral lung opacities on 40 of 41 

(98%) chest CTs in infected patients and described lobular and subsegmental areas of 

consolidation as the most typical imaging findings4. Our initial study with chest CTs in 

21 real-time RT-PCR assay confirmed patients also found high rates of ground-glass 

opacities and consolidation, sometimes with a rounded morphology and peripheral lung 

distribution7. A recent study has also shown that CT may demonstrate lung 

abnormalities in the setting of a negative RT-PCR test10.  

 

During an outbreak of a highly infectious disease with person-to-person transmission, 

hospitals and physicians may have increased workloads and limited capabilities to 

triage and hospitalize suspected patients. Previous work demonstrated that early stage 

coronavirus patients may have negative findings on CT7, limiting radiologists’ ability to 

reliably exclude disease. While waiting 6-48 hours for the confirmation of the SARS-

CoV-2 coronavirus by RT-PCR, patients who are infected may spread the virus to other 

patients or caregivers if resources are not available to isolate patients who are only 

suspected to be infected; nosocomial infection was inferred in approximately 40% of 
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cases in a recent large series11. Rapid detection of COVID-19 patients is imperative 

because an initial false negative could both delay treatment and increase risk of viral 

transmission to others. In addition, radiologists with expertise in thoracic imaging may 

not be available at every institution, increasing the need for AI aided detection. 

 

Artificial intelligence (AI) may provide a method to augment early detection of SARS-

CoV-2 infection. Our goal was to design an AI model that can identify SARS-CoV-2 

infection based on the initial chest CT scans and associated clinical information that 

could rapidly identify COVID-19 (+) patients in the early stage. We collected chest CT 

scans and corresponding clinical information obtained at patient presentation. Clinical 

information included travel and exposure history, leukocyte counts (including absolute 

neutrophil number, percentage neutrophils, absolute lymphocyte number, and 

percentage lymphocytes), symptomatology (presence of fever, cough, and sputum), 

patient age, and patient sex (Table 1). 

 

We first developed a deep convolutional neural network (CNN) to learn the imaging 

characteristics of COVID-19 patients on the initial CT scan. We then used support 

vector machine (SVM), random forest, and multi-layer perceptron (MLP) classifiers to 

classify the COVID-19 patients according to the clinical information. MLP showed the 

best performance on the tuning set; only MLP performance is reported hereafter. Finally, 

we created a neural network model combining the radiologic data and the clinical 

information to predict COVID-19 status (Fig. 1).  

 

A dataset of the presenting chest CT scans from 905 patients for whom there was a 

clinical concern of COVID-19 was acquired between Jan 17, 2020 and March 3, 2020 

from 18 medical centers in 13 provinces in China. The data set included patients aged 

from 1 year to 91 years (40.7 year ± 16.5 years), and included 488 men and 417 women. 

All subjects were acquired using a standard chest CT protocol and were reconstructed 

using the multiple kernels and displayed with a lung window. A total of 419 patients 

(46.3%) tested positive for SARS-CoV-2 by laboratory-confirmed real-time RT-PCR 

assay and next-generation sequencing, while 486 patients (53.7%) tested negative 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.12.20062661doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.12.20062661


 

(confirmed by at least two additional negative RT-PCR tests and clinical observation). 

We randomly split the dataset into 60% training set (534 cases; 242 COVID-19 (+); 292 

COVID-19 (-) cases), 10% tuning set (92 cases; 43 COVID-19 (+) cases; 49 COVID-19 

(-) cases), 30% test set (279 cases; 134 COVID-19 (+) cases; 145 COVID-19 (-) cases) 

(Extended Data Fig. 1). 

 

We evaluated the AI models on the test set and compared their performance to one 

fellowship trained thoracic radiologist with ten years of experience (A. J.) and one 

thoracic radiology fellow (S. S.). The same initial chest CT and clinical information were 

available to the radiologists as was provided to the AI model. Sensitivity, specificity and 

AUC were calculated for both human readers and the AI models. The performance of 

the AI model and human readers are demonstrated in Fig. 2 and Extended Data Fig. 2. 

The receiver operating characteristic (ROC) curve of the AI model is shown in Fig. 2.  

 

Patient’s age, presence of exposure to SARS-CoV-2, presence of fever, cough and 

cough with sputum and white blood cell counts were significant features associated with 

SARS-CoV-2 status. The logistic regression was a good fit (p=0.662). The joint model 

using both clinical data and CT imaging achieved an 84.3% sensitivity (95% confidence 

interval (CI) 77.1%, 90.0%), an 82.8% specificity (95% CI 75.6%, 88.5%) and 0.92 AUC 

(95% CI 0.887, 0.948). The CNN mode that uses only CT imaging data had an 83.6% 

sensitivity (95% CI 76.2%, 89.4%; p=1), a 75.9% specificity (95% CI 68.1%, 82.6%; 

p=0.031) and 0.86 AUC (95% CI 0.821, 0.907; p=0.00146). The multi-layer perceptron 

(MLP) model that uses only clinical data had an 80.6% sensitivity (95% CI 72.9%, 

86.9%; p=0.442) and a 68.3% specificity (95% CI 60.0%, 75.8%; p<1e-4) and 0.80 AUC 

(95% CI 0.746, 0.849; p<1e-4). The senior thoracic radiologist using both the CT and 

clinical data achieved a 74.6% sensitivity (95% CI 66.4%, 81.7%; p=0.0501), 93.8% 

specificity (95% CI 88.5%, 97.1%; p=0.005) and 0.84 AUC (95% CI 80%, 88.4%). The 

thoracic radiology fellow using both the CT and clinical data achieved a 56.0% 

sensitivity (95% CI 47.1%, 64.5%; p<1e-4), 90.3% specificity (95% CI 84.3%, 94.6%, 

p=0.090) and 0.73 AUC (95% CI 68.3%, 78.0%). P-value indicates the significance of 

difference in performance metric compared with respect to the joint model. 
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With a higher AUC, the joint model integrating CT images and associated clinical 

information outperformed the model trained on CT images only and the clinical model 

trained on clinical information only. The joint model, the CT model and the clinical model 

performed equally well in sensitivity compared to the senior thoracic radiologist but 

showed statistically significant improvement in sensitivity compared to the thoracic 

fellow (Fig. 2). 

 

The test set contained 25 COVID-19 (+) patients with a chest CT identified as normal by 

both of the reading radiologists at presentation. The CNN model identified 13/25 (52%) 

scans as COVID-19 (+), the clinical model classified 16/25 (64%) as disease positive, 

and the joint model classified 17/25 (68%) as disease positive, whereas the senior chest 

radiologist and the chest radiology fellow identified 0/25 (0%) of these scans as disease 

positive.  

 

We summarized the comparisons of prediction between the joint model and the 

radiologists in the Extended Data Fig. 3. Of the 134 COVID-19 (+) cases in the test set, 

90 out of 134 cases were correctly classified by both the joint model and the senior 

thoracic radiologist. Forty-four out of 134 cases were classified differently by the joint 

model and the senior thoracic radiologist. Of the 44 cases, 33 cases were correctly 

classified positive by the joint model, but were misclassified by the senior thoracic 

radiologist. Ten cases were classified negative by the joint model, but correctly 

diagnosed by the senior thoracic radiologist. No cases were misclassified by both the 

joint model and the senior thoracic radiologist.  

 

Of the 145 COVID-19 (-) cases in the test set, 113 out of 145 cases were correctly 

classified by both the joint model and the senior thoracic radiologist. Thirty-two out of 

145 cases were classified differently by the joint model and the senior thoracic 

radiologist. Seven cases were correctly classified negative by the joint model, but were 

diagnosed positive by the senior thoracic radiologist. Twenty-three cases were 

classified positive by the joint model, but correctly diagnosed negative by the senior 
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thoracic radiologist. Two cases were misclassified by both the joint model and the 

senior thoracic radiologist. 

 

Chest CT is a well-known diagnostic tool for evaluation of patients with a suspected 

pulmonary infection. During the outbreak of COVID-19 in some countries including 

China and South Korea, chest CT has been widely used in clinical practice due to its 

speed and availability. Most institutions in China have adopted a policy of performing a 

chest CT scan on any patient with fever and a suspicion of SARS-CoV-2 infection. Initial 

experience with CT has demonstrated that typical findings are multilobular and bilateral 

and include both ground glass opacities and consolidation, often with a peripheral lung 

distribution. Pleural effusions, lymphadenopathy, and discrete pulmonary nodules are 

very uncommon9,12,13. According to the recommendations of the WHO, the most 

accurate diagnosis of COVID-19 is nucleic acid detection14 in secretional fluid collected 

from a throat swab using RT-PCR. However, there is a shortage of the nucleic acid 

detection kits and results can take up to two days. Chest CT has also been proposed as 

an important diagnostic tool. A chest CT study can be obtained and interpreted much 

more quickly than RT-PCR. While chest CT is not as accurate as RT-PCR in detecting 

the virus, it may be a useful tool for triage in the period before definitive results are 

obtained7,15.A recent work has implemented AI to differentiate COVID-19 from other 

pneumonia only based on chest CT images only16, which also highlights the necessity 

for fast and accurate reporting of chest CTs and the potential assistance of AI. In our 

study, our joint AI model combines CT and clinical data. For patients with mild 

symptoms demonstrating normal chest CT in the early stage, our model showed that 

clinical information played a role in the accurate diagnosis of COVID-19.  

 

There are two potential limitations to the use of chest CT. First, the health system during 

an epidemic may be overburdened, which may limit timely interpretation of the CT by a 

radiologist. Second, the morphology and severity of pathologic findings on CT is 

variable. In particular, mild cases may have few if any abnormal findings on chest CT.  
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We believe implementation of the joint algorithm discussed above could aid in both 

issues. First, the AI algorithm could evaluate the CT immediately after completion. 

Secondly, the algorithm outperformed radiologists in identifying COVID-19 (+) patients 

demonstrating normal CT results in the early stage. Thirdly, the algorithm performed 

equally well in sensitivity (p=0.05) in the diagnosis of COVID-19 as compared to a 

senior thoracic radiologist. Specifically, the joint algorithm achieved a statistically 

significant 6% (p=0.00146) and 12% (p<1e-4) improvement in AUC as compared to the 

CNN model using only CT images and the MLP model using only clinical information 

respectively. The AI model could be deployed as an application that can run on a simple 

workstation alongside the radiologists. Use of the AI tool would require integration with 

the Radiology PACS and clinical database systems or other image storage database, 

which is relatively easy to achieve in modern hospital systems. The AI system could be 

implemented as a rapid diagnostic tool to flag suspected COVID-19 patients when CT 

images and/or clinical information are available, and radiologists could review these 

suspected cases identified by AI with a higher priority.  

 

Our proposed model does have some limitations. One major limitation of this study is 

the limited sample size. Despite the promising results of using the AI model to screen 

COVID-19 patients, further data collection is required to test the generalizability of the 

AI model to other patient populations. Collaborative effort in data collection may 

facilitate improving the AI model. Difficulties on model training also arise due to the 

limited sample size. In this work we used a pre-trained TB model to select key slices to 

represent a full 3D CT scan. This approach can reduce computation of training a 3D 

convolution neural network, with a trade off on missing information in the slices that are 

not selected for model training and inference. The design of the CNN model offers a 

natural visualization to explain the prediction. We showcased some examples allowing 

the AI models to be cross referenced with radiologist’s findings (Fig. 3). However, there 

are examples in which the visualization fails to provide a clear explanation. We do not 

know if the model incorporates features such as airways, background of emphysema or 

the border of the lung in its prediction. Another limitation is the bias towards COVID-19 

patients in the training data, which, given the non-specific nature of the ground glass 
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opacity and other features on chest CT images, potentially limits the usefulness of the 

current AI model to distinguish COVID-19 from other causes of respiratory failure. 

Therefore, our algorithm may be helpful in places with current high rates of COVID-19 

disease, but is unlikely to provide as much usefulness in places or times where COVID-

19 prevalence is low. However, the recent study by Li et al demonstrated the ability of 

AI models to separate COVID-19 from other pneumonias, which is promising for the 

wider application of this and other AI models. 

 

In future studies, a larger dataset will be collected as the scale of this outbreak is 

climbing. We aim to explore different approaches in convolutional neural networks 

including three-dimensional deep learning models and improvement of interpretability of 

CNN models. The generalizability of the AI system evaluated at multiple centers will be 

necessary to validate the robustness of the models.  

 

In conclusion, these results illustrate the potential role for a highly accurate AI algorithm 

for the rapid identification of COVID-19 patients which could be helpful in combating the 

current disease outbreak. We believe the AI model proposed, that combines CT 

imaging and clinical information, and shows equivalent accuracy to a senior chest 

radiologist, could be a useful screening tool to quickly diagnose infectious diseases 

such as COVID-19 that does not require radiologist-input or physical tests. 
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Methods 

Study participants 

The study was approved by the institutional review board of each participating hospital 

in China and the Icahn School of Medicine at Mount Sinai in New York. The institutional 

review boards waived the requirement to obtain written informed consent for this 

retrospective study, which evaluated de-identified data and involved no potential risk to 

patients. To avert any potential breach of confidentiality, no link between the patients 

and the researchers was made available.  

 

We collected the initial chest CT studies and clinical data from 905 patients presenting 

between January 17 and March 3, 2020 to one of 18 centers in 13 provinces in China 

where patients had SARS-CoV-2 exposure, fever and a RT-PCR test for COVID-19. 

The exposure of SARS-CoV-2 is defined as either 1) travel history to Wuhan for patients 

collected outside of Wuhan, or travel to the animal market within 30 days of the 

symptom onset for patients who live in Wuhan or 2) close contact with patients with RT-

PCR confirmed SARS-CoV-2 infection for all patients. Of the 905 patients included in 

the study, 419 had a positive RT-PCR test while 486 had a negative test (confirmed by 

at least two additional negative RT-PCR tests and clinical observation). 

 

Clinical Information 

Patient’s age, sex, exposure history, symptoms (present or absent of fever, cough 

and/or sputum), white blood cell counts, absolute neutrophil number, percentage 

neutrophils, absolute lymphocyte number and percentage lymphocytes were collected 

(Table 1). Sex, exposure history and symptoms were categorical variables. We used the 

LabelEncoder function in scikit-learn package to encode the target categorical variables 

into numerical variables. Then, we normalized each feature within a range of 0 and 1 

using MinMaxScaler function in the scikit-learn package for further model development. 

 

Reader studies 

The predictions of the AI models were compared to two radiologists on the test set. Both 

radiologists were board-certified (A.J. chest fellowship trained with 10 years’ clinical 
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experience; S.S a current chest radiology fellow). The readers were given patients’ 

initial CT scan (at presentation) and associated clinical history that were used to test the 

AI models. Each reader independently reviewed the same set and evaluated the initial 

CT scan and clinical details, and combined imaging and clinical data in their review in a 

manner consistent with their clinical practice. Using this data, they predicted the COVID-

19 status of the patients. Their predictions were compared to those of the AI algorithm 

and the RT-PCR results.  

 

AI Models 

The RT-PCR virology test (COVID-19 (+) or COVID-19 (-)) was used as the reference to 

train the models. We developed and evaluated three different models using CT images 

and clinical information. Firstly, a deep learning model using a convolutional neural 

network (Model 1) was developed to only use CT images to predict COVID-19 status. 

Secondly, conventional machine learning methods (Model 2), including support vector 

machine (SVM), random forest and multi-layer perceptron (MLP), were evaluated to 

predict COVID-19 using only clinical information. Finally, we created a joint 

convolutional neural network model (Model 3) combining the radiologic data and the 

clinical data.  

 

Convolutional Neural Network Model (Model 1) 

We proposed a CNN-based AI system to diagnose COVID-19 using a full CT scan of 

the chest. Similar to the previously reported AI diagnosis system17,18, our algorithm 

consisted of two CNN subsystems to firstly identify the abnormal CT slices and then to 

perform region-specific disease diagnosis (Fig. 1). More specifically, the slice selection 

CNN was trained to evaluate a chest CT slice and assign a probability that it was 

normal. The inverse of this probability was then used to rank the abnormal slices of 

each CT scan. We selected the 10 most abnormal slices from each study for the 

subsequent disease diagnosis due to the tradeoff of efficiency and turn-around time. 

The disease diagnosis CNN was designed to classify COVID-19 patients using multiple 

instance learning. The CNN was trained to predict whether a CT slice is from a COVID-

19 (+) or COVID-19 (-) patient. The average probability from the 10 abnormal CT slices 
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from each patient’s study was used to generate a prediction of COVID-19 status for the 

patient. 

Image Preprocessing 

The first step is to select pertinent slices from the hundreds of images produced by a CT 

scan. Pertinent images contain pulmonary tissue and a potential parenchymal 

abnormality. For the selection of pertinent slices, image segmentation was used to 

detect parenchymal tissue. The raw CT images all had a 512 x 512 matrix storing CT 

intensities in Hounsfield Units (HU). A standard lung window (width (w)=1500 HU and 

level (l)=-600 HU) was used to normalize each slice to pixel intensities between 0 and 

255. We segmented CT images into two parts, body and lung. The body part was 

segmented by finding the largest connected component consisting of pixels with an 

intensity greater than 175. The segmented connected component was filled into a solid 

region. The lung region was defined as the pixels with intensity less than 175 that fall 

within the segmented body part. Small regions with less than 64 pixels were removed, 

as they are typically segmented due to random noise. The lung region was enlarged by 

10 pixels to fully include the pleural boundary. We discard images if the size of the lung 

was smaller than 20% of the size of the body part.  

1) Slice Selection CNN 

We used a pre-trained Inception-ResNet-v219 model based on the ImageNet20 as the 

slice selection CNN to identify abnormal CT images from all chest CT images21. The 

slice selection CNN was pre-trained in a previous pulmonary tuberculosis (PTB) 

detection study on CT images from a total of 484 non-TB pneumonia patients, including 

bacterial pneumonia, viral pneumonia and fungal pneumonia, in addition to 439 PTB 

and 155 normal chest CT patients. For CT images, the TB model predicts the 

probabilities of 3 classes, including pulmonary tuberculosis , non-TB pneumonia and 

normal chest CT. This model achieved 99.4% accuracy in differentiating normal slices 

from abnormal (PTB and non-TB pneumonia) slices. In this work, we applied the PTB 

model to a full CT scan to select 10 slices with the lowest probability of being normal. 
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We noted that these selected slices may show no abnormal findings if the COVID-19 

(+/-) patient’s CT is normal. 

2) Disease Diagnosis CNN 

We used the 18-layer residual network (ResNet-1822) as the disease diagnosis CNN. 

The ResNet-18 takes images of segmented lungs as input and outputs probability of 

COVID-19 positivity. A max pooling layer that outputs log probability was used at the 

last layer, instead of the standard design that uses an average pooling layer at the last 

layer. The rationale of this design is that, given the abnormal finding is usually localized 

in a subregion of a CT image, we would like to predict whether a small region is 

abnormal due to COVID-1923. The CNN model can then be seen as a classifier that 

reports whether its receptive field is COVID-19 (+). The label of an image is then 

predicted by combining all predictions of every local region over the whole image. Max 

pooling serves as an “OR” gate that labels an image as COVID-19 (+) if there is any 

subregion in it that is COVID-19 (+). Patient level prediction was set as the average of 

image-level prediction of a patient’s 10 most abnormal images. To visualize the CNN’s 

prediction, we up-sampled the CNN’s outputs, without applying the max pooling layer, to 

the original image size. The lung mask was applied to up-sampled outputs for clear 

visualization. 

3) CNN Training  

We used binary cross entropy as the objective function. Adam optimizer24 with a 

learning rate 0.001 was used to train the neural network. The learning rate was 

decreased by a factor of 0.95 each epoch. We applied random rotation, grid distortion, 

and cutout25 to images for data augmentation. 20% of training samples were held out as 

the tuning set to monitor the progress of the training process. The training process was 

iterated for 40 epochs with a batch size of 16 samples. Performance on the tuning set 

was monitored every 100 iterations. The model with lowest binary cross entropy on the 

tuning set was selected as the final model. Parameters were tuned to ensure that the 

validation error decreases along with the training error.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.12.20062661doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.12.20062661


 

We designed a weakly supervised task to initialize weights of the CNN model. 

Specifically, we randomly selected image patches of lung regions from training images 

and labeled those patches as the label of the training images. The CNN is then pre-

trained to classify these image patches for 1 epoch. This weakly supervised task 

accords with the idea that the CNN is classifying a local region in the CT image to be 

COVID-19 (+/-). 

Machine Learning Classifiers (Model 2) 

We developed support vector machine, random forest and multi-layer perceptron 

classifiers based on patients’ age, sex, exposure history, symptoms (present or absent 

of fever, cough and/or sputum), white blood cell counts, neutrophil counts, percentage 

neutrophils, lymphocyte counts and percentage lymphocytes. We fine-tuned the 

hyperparameters of each classifier on the training set and tuning set, and evaluated the 

best model on the test set. For the support vector machine classifier, we assessed the 

“C”, and kernel. For the random forest classifier, the number of estimators was tuned. 

For multi-layer perceptron, we assessed the number of layers and the number of hidden 

nodes in each layer. After the hyperparameter optimization, a 3-layer MLP model with 

64 nodes in each layer was selected because of the highest AUC score on the tuning 

set The MLP model was selected because of the highest AUC score on the tuning set 

(Extended Data Fig. 4). We used the Scikit-learn26 package to fit and evaluate these 

models.  

Joint Model: Combining CT imaging and clinical information (Model 3) 

We trained a model to integrate CT imaging data and clinical information. We applied 

the global averaging layer to the last layers of the convolutional model described 

previously to derive a 512 dimensional feature vector to represent a CT image. A total of 

12 clinical features (Table 1) of the same patient were concatenated with this feature 

vector. A MLP takes this combined feature vector as the input to predict the status of 

COVID-19. We used a 3-layer MLP, each layer has 64 nodes and is composed by a 

batch normalization layer, a fully connected layer and a ReLU activation function. 

Normalized Gaussian noise was added at the input layers for data augmentation. The 
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MLP was jointly trained with the CNN. We applied binary cross entropy to validate the 

predictions from both MLP and CNN during the training process. The sum of these two 

measurements was used as the overall objective function to train the joint model. We 

used the same optimization strategy of Model 1 to train the MLP and CNN, except that 

the learning rate was increased to 0.002. The CNN was also initialized by the weakly 

supervised task of classifying the small image patches.  

Statistical analysis 

The 95% confidence intervals of sensitivity, specificity and accuracy were calculated by 

the exact Clopper-Pearson method27. The confidence intervals of AUC were calculated 

by the DeLong methods28. The confidence interval of predictive values was calculated 

by the standard logit confidence intervals29. McNemar's test30 was used to calculate the 

two-sided p value for sensitivity and specificity between models and human readers. 

The Youden index was used to determine the optimal model sensitivity and specificity. 

Statistical significance was defined as a p-value less than 0.05. Logistic regression was 

used to evaluate the significance of each clinical variable. Hosmer-Lemeshow goodness 

of fit31 was used to assess the goodness of fit of the logistic regression. The statistics of 

AUC comparisons were computed in the pROC package32. McNemar's test and the 

exact confidence intervals were calculated in the statsmodels package in python. 

 

Reporting Summary 

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article. 

 

Data Availability 

The raw image dataset generated or analysed during the current study are not publicly 

available due to the dicom metadata containing information that could compromise 

patient privacy/consent. The models generated by this dataset are publicly available at 

https://github.com/howchihlee/COVID19_CT. 

 

Code Availability 
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The code used for training the deep learning models and the pre-trained models and 

models used in this study are all available at 

https://github.com/howchihlee/COVID19_CT. Implementations of our work is based on 

following open source repositories: Tensorflow: https://www.tensorflow.org; Pytorch: 

https://pytorch.org ; Keras: https://keras.io; Sklearn: https://scikit-learn.org/stable/. 

pROC: https://cran.r-project.org/web/packages/pROC/index.html. statsmodels: 

https://www.statsmodels.org/stable/index.html. 
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Figures and Tables 

 

Table 1. Characteristics of Patient’s Clinical Information. The two-sided p-value of each 

clinical feature was tested by logistic regression. The Hosmer-Lemeshow goodness of 

fit was used to assess the logistic regression fit.  

† Data in parenthesis shows Interquartile Range (IQR) 

± indicates mean ± standard deviation 

Other data in parenthesis shows percentage 
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Fig. 1. Illustration of the modelling framework. Three AI models are used to

generate the probability of a patient being COVID-19 (+): the first is based on a chest

CT scan, the second on clinical information; and the third on a combination of the chest

CT scan and clinical information. For evaluation of chest CT scans, each slice was first

ranked by the probability of containing a parenchymal abnormality, as predicted by the

convolutional neural network model (slice selection CNN), which is a pre-trained PTB

model that has a 99.4% accuracy to select abnormal lung slices from chest CT scans.

The top 10 abnormal CT images per patient were put into the second CNN (diagnosis

CNN) to predict the likelihood of COVID-19 positivity (P1). Demographic and clinical

data (the patient’s age and sex, exposure history, symptoms and laboratory tests) were

put into a machine learning model to classify COVID-19 positivity (P2). Features

generated by the diagnosis CNN model and the non-imaging clinical information

machine learning model were integrated by a multi-layer perceptron network (MLP) to

generate the final output of the joint model (P3). PTB, pulmonary tuberculosis; SVM,

support vector machine. 
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Fig. 2. Results of the AI models on the test set. a, Comparison of the ROC curves for

the joint model, the CNN model trained based on CT images, the MLP model trained

based on clinical information and two radiologists. b, Comparison of the success rates

of diagnosing COVID-19 positive patients with normal CT scans. Radiologists were

provided with both CT imaging and clinical information in making their diagnoses. c-e,

Comparison of the AUCs (c), sensitivities (d) and specificities (e) achieved by the AI

models and radiologists. Two-sided p values were calculated by comparing the joint

model to the CNN model, the MLP model and the two human readers in sensitivity,

specificity and AUC. AUC comparisons were evaluated by the DeLong test; sensitivity

and specificity comparisons were calculated by using the exact Clopper-Pearson

method to compute the 95% confidence interval shown in parenthesis and exact

McNemar's test to calculate the p-value.   

 

for 

ed 

es 

re 

e, 

AI 

int 

ty, 

ity 

on 

ct 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.12.20062661doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.12.20062661


 

Fig. 3. Examples of chest CT images of COVID-19 (+) patients and visualization of

features correlated to COVID-19 positivity. For each pair of images, the left image is

a CT image showing the segmented lung used as input for the CNN model trained on

CT images only, and the right image shows the heatmap of pixels that the CNN model

classified as having SARS-CoV-2 affection (red indicates higher probability). (a) A 51-

year-old female with fever and history of exposure to SARS-CoV-2. The CNN model

identified abnormal features in the right lower lobe (white color), whereas the two

radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of

exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral

peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the

CNN model predicted positivity based on features in matching areas. (c) A 72-year-old

female with exposure history to the animal market in Wuhan presented with fever and

productive cough. The segmented CT image shows ground-glass opacity in the anterior

aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d

A 59-year-old female with cough and exposure history. The segmented CT image

shows no evidence of pneumonia, and the CNN model also labeled this CT as negative. 
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Extended Data Fig. 1. Characteristics of clinical features in the training set, tuning set 

and test set. 

± indicates mean ± standard deviation 

* Data in parenthesis shows the number of COVID-19 positive patients 

† Data in parenthesis shows Interquartile Range (IQR) 

Other data in parenthesis shows percentage 
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Extended Data Fig. 2. Comparisons of the diagnostic performance between AI models 

and human readers on a test set of 279 cases. Data were presented in percentage and 

the 95% confidence interval. The confidence intervals of accuracy were calculated by 

the exact Clopper-Pearson method. The confidence intervals of the predictive values 

were calculated by the standard logit confidence intervals.  
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Extended Data Fig. 3. Comparisons of predictions by the joint model and human 

readers on a test set of 279 cases. The (+/-) indicates the prediction of the COVID-19 

status by the joint model and human readers.  
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Extended Data Fig. 4. ROC curve comparison of the MLP, random forest and SVM

models on the tuning set of 92 cases. Two-sided p-value indicates the significance of

difference in performance metric compared with respect to the MLP model by using the

DeLong test. The MLP showed no significant difference as compared to the SVM model

(p=0.98) and the random forest model (p=0.35). The MLP model was selected in this

study due to the highest AUC score.  
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