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For diagnosis of coronavirus disease 2019 (COVID-19), a 
SARS-CoV-2 virus-specific reverse transcriptase polymerase 
chain reaction (RT–PCR) test is routinely used. However, 
this test can take up to 2 d to complete, serial testing may be 
required to rule out the possibility of false negative results 
and there is currently a shortage of RT–PCR test kits, under-
scoring the urgent need for alternative methods for rapid 
and accurate diagnosis of patients with COVID-19. Chest 
computed tomography (CT) is a valuable component in the 
evaluation of patients with suspected SARS-CoV-2 infection. 
Nevertheless, CT alone may have limited negative predictive 
value for ruling out SARS-CoV-2 infection, as some patients 
may have normal radiological findings at early stages of the 
disease. In this study, we used artificial intelligence (AI) 
algorithms to integrate chest CT findings with clinical symp-
toms, exposure history and laboratory testing to rapidly 
diagnose patients who are positive for COVID-19. Among a 
total of 905 patients tested by real-time RT–PCR assay and 
next-generation sequencing RT–PCR, 419 (46.3%) tested 
positive for SARS-CoV-2. In a test set of 279 patients, the 
AI system achieved an area under the curve of 0.92 and had 
equal sensitivity as compared to a senior thoracic radiolo-
gist. The AI system also improved the detection of patients 
who were positive for COVID-19 via RT–PCR who presented 
with normal CT scans, correctly identifying 17 of 25 (68%) 
patients, whereas radiologists classified all of these patients 
as COVID-19 negative. When CT scans and associated clini-
cal history are available, the proposed AI system can help to  
rapidly diagnose COVID-19 patients.

The COVID-19 pandemic has rapidly propagated due to wide-
spread person-to-person transmission1–6. Laboratory confirmation 
of SARS-CoV-2 is performed with a virus-specific RT–PCR, but the 
test can take up to 2 d to complete. Chest CT is a valuable com-
ponent of evaluation and diagnosis in symptomatic patients with  

suspected SARS-CoV-2 infection4. Nevertheless, chest CT findings 
are normal in some patients early in the disease course and therefore 
chest CT alone has limited negative predictive value to fully exclude 
infection7, highlighting the need to incorporate clinical information 
in the diagnosis. We propose that AI algorithms may meet this need 
by integrating chest CT findings with clinical symptoms, exposure 
history and laboratory testing in the algorithm. Our proposed joint 
AI algorithm combining CT images and clinical history achieved 
an area under the curve (AUC) of 0.92 and performed equally well 
in sensitivity (84.3%) as compared to a senior thoracic radiologist 
(74.6%) when applied to a test set of 279 cases. While the majority  
of suspected patients currently have little option but to wait for  
RT–PCR test results, we propose that an AI algorithm has an impor-
tant role for the rapid identification of patients with COVID-19, 
which could be helpful in triaging the health system and combating 
the current pandemic.

The COVID-19 pandemic has resulted in over 3 million cases 
worldwide. Early recognition of the disease is crucial not only for 
individual patient care related to rapid implementation of treat-
ment, but also from a larger public health perspective to ensure 
adequate patient isolation and disease containment. Chest CT is 
more sensitive and specific than chest radiography in evaluation of 
SARS-CoV-2 pneumonia and there have been cases where CT find-
ings were present before onset of clinical symptomatology4. In the  
current climate of stress on healthcare resources due to the COVID-19  
outbreak, including a shortage of RT–PCR test kits, there is an 
unmet need for rapid, accurate and unsupervised diagnostic tests 
for SARS-CoV-2.

Chest CT is a valuable tool for the early diagnosis and triage of 
patients suspected of SARS-CoV-2 infection. In an effort to con-
trol the spread of infection, physicians, epidemiologists, virologists, 
phylogeneticists and others are working with public health officials 
and policymakers to better understand the disease pathogenesis. 
Early investigations have observed common imaging patterns on 
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chest CT8,9. For example, an initial prospective analysis in Wuhan 
revealed bilateral lung opacities on 40 of 41 (98%) chest CTs in 
infected patients and described lobular and subsegmental areas 
of consolidation as the most typical imaging findings4. Our initial 
study with chest CTs in 21 real-time RT–PCR assay-confirmed 
patients also found high rates of ground-glass opacities and consoli-
dation, sometimes with a rounded morphology and peripheral lung 
distribution7. A recent study has also shown that CT may demon-
strate lung abnormalities in the setting of a negative RT–PCR test10.

During an outbreak of a highly infectious disease with 
person-to-person transmission, hospitals and physicians may have 
increased workloads and limited capabilities to triage and hospital-
ize suspected patients. Previous work demonstrated that early-stage 
coronavirus patients may have negative findings on CT7, limiting 
radiologists’ ability to reliably exclude disease. While waiting 6–48 h 
for the confirmation of the SARS-CoV-2 coronavirus by RT–PCR, 
patients who are infected may spread the virus to other patients or 
caregivers if resources are not available to isolate patients who are 
only suspected to be infected; nosocomial infection was inferred in 
approximately 40% of cases in a recent large series11. Rapid detec-
tion of patients with COVID-19 is imperative because an initial 
false negative could both delay treatment and increase risk of viral 
transmission to others. In addition, radiologists with expertise in 
thoracic imaging may not be available at every institution, increas-
ing the need for AI-aided detection.

AI may provide a method to augment early detection of 
SARS-CoV-2 infection. Our goal was to design an AI model that 
can identify SARS-CoV-2 infection based on initial chest CT scans 
and associated clinical information that could rapidly identify 
COVID-19 (+) patients in the early stage. We collected chest CT 
scans and corresponding clinical information obtained at patient 
presentation. Clinical information included travel and exposure 
history, leukocyte counts (including absolute neutrophil number, 
percentage neutrophils, absolute lymphocyte number and percent-
age lymphocytes), symptomatology (presence of fever, cough and 
sputum), patient age and patient sex (Table 1).

We first developed a deep convolutional neural network (CNN) 
to learn the imaging characteristics of patients with COVID-19 on 
the initial CT scan. We then used support vector machine (SVM), 
random forest and multilayer perceptron (MLP) classifiers to clas-
sify patients with COVID-19 according to clinical information. 
MLP showed the best performance on the tuning set; only MLP 
performance is reported hereafter. Finally, we created a neural net-
work model combining radiological data and clinical information 
to predict COVID-19 status (Fig. 1).

A dataset of the presenting chest CT scans from 905 patients 
for whom there was a clinical concern of COVID-19 was acquired 
between 17 January 2020 and 3 March 2020 from 18 medical cen-
ters in 13 provinces in China. The dataset included patients aged 
from 1 to 91 years (40.7 year ± 16.5 years) and included 488 men 
and 417 women. All scans were acquired using a standard chest 
CT protocol and were reconstructed using the multiple kernels and 
displayed with a lung window. A total of 419 patients (46.3%) tested 
positive for SARS-CoV-2 by laboratory-confirmed real-time RT–
PCR assay and next-generation sequencing, whereas 486 patients 
(53.7%) tested negative (confirmed by at least two additional nega-
tive RT–PCR tests and clinical observation). We randomly split 
the dataset into a 60% training set (534 cases; 242 COVID-19 (+) 
cases; 292 COVID-19 (−) cases), a 10% tuning set (92 cases; 43 
COVID-19 (+) cases; 49 COVID-19 (−) cases) and a 30% test set 
(279 cases; 134 COVID-19 (+) cases; 145 COVID-19 (−) cases; 
Extended Data Fig. 1).

We evaluated the AI models on the test set and compared their 
performance to one fellowship-trained thoracic radiologist with  
10 years of experience (A.J.) and one thoracic radiology fellow (S.S.). 
The same initial chest CT and clinical information were available  

to the radiologists as was provided to the AI model. Sensitivity,  
specificity and AUC were calculated for both human readers and 
the AI models. The performance of the AI model and human 
readers are demonstrated in Fig. 2 and Extended Data Fig. 2. The 
receiver operating characteristic (ROC) curve of the AI model is 
shown in Fig. 2.

Patient’s age, presence of exposure to SARS-CoV-2, presence of 
fever, cough and cough with sputum and white blood cell counts 
were significant features associated with SARS-CoV-2 status. The 
logistic regression was a good fit (P = 0.662). The joint model using 
both clinical data and CT imaging achieved an 84.3% sensitivity 
(95% confidence interval (CI) 77.1%, 90.0%), an 82.8% specificity 
(95% CI 75.6%, 88.5%) and 0.92 AUC (95% CI 0.887, 0.948). The 
CNN model that uses only CT imaging data had an 83.6% sensitiv-
ity (95% CI 76.2%, 89.4%; P = 1), a 75.9% specificity (95% CI 68.1%, 
82.6%; P = 0.031) and 0.86 AUC (95% CI 0.821, 0.907; P = 0.00146). 
The MLP model that uses only clinical data had an 80.6% sensi-
tivity (95% CI 72.9%, 86.9%; P = 0.442), a 68.3% specificity (95% 
CI 60.0%, 75.8%; P < 1 × 10−4) and 0.80 AUC (95% CI 0.746, 0.849; 
P < 1 × 10−4). The senior thoracic radiologist using both the CT and 
clinical data achieved a 74.6% sensitivity (95% CI 66.4%, 81.7%; 
P = 0.0501), 93.8% specificity (95% CI 88.5%, 97.1%; P = 0.005) 
and 0.84 AUC (95% CI 0.800, 0.884). The thoracic radiology fel-
low using both the CT and clinical data achieved a 56.0% sensitiv-
ity (95% CI 47.1%, 64.5%; P < 1 × 10−4), 90.3% specificity (95% CI  
84.3%, 94.6%, P = 0.090) and 0.73 AUC (95% CI 0.683, 0.780).  
P values indicate the significance of difference in performance  
metric compared with respect to the joint model.

With a higher AUC, the joint model integrating CT images and 
associated clinical information outperformed the model trained on 
CT images only and the clinical model trained on clinical information  

Table 1 | Characteristics of patient’s clinical information

COVID-19 
positive 
(n = 419)

COVID-19 
negative 
(n = 486)

P value

Sex

 Men 208 (49.6) 280 (57.6) 0.36

a,bAge (years) 43.0 ± 16.4 
(32, 54)

38.6 ± 16.3 
(27, 48)

0.00086

bTemperature (°C) 37.6 ± 0.9 37.5 ± 1.0 0.60

exposure history 319 (76.1) 254 (52.3) <1 × 10−4

Clinical symptoms

 Fever 314 (75.0) 318 (65.4) 0.0089

 Cough 210 (50.1) 128 (26.3) <1 × 10−4

 Cough with sputum 83 (20.0) 177 (36.4) <1 × 10−4

Laboratory findings

a,bWhite blood cells (109 l−1) 5.4 ± 2.2  
(4.0, 6.4)

8.3 ± 3.4  
(6.1, 10.0)

0.025

a,bNeutrophils (109 l−1) 3.5 ± 1.9  
(2.3, 4.2)

5.9 ± 3.1  
(3.7, 7.4)

0.11

a, bPercentage neutrophils 63.0 ± 14.7 
(53.8, 74.2)

68.9 ± 13.1 
(60.7, 78.8)

0.30

a,bLymphocytes (109 l−1) 1.4 ± 0.8  
(0.9, 1.7)

1.6 ± 0.9  
(1.0, 2.0)

0.12

a,bPercentage lymphocytes 26.4 ± 12.5 
(17.3, 34.5)

21.3 ± 11.1  
(12.7, 28.9)

0.53

The two-sided P value of each clinical feature was tested by logistic regression. The Hosmer–

Lemeshow goodness of fit was used to assess the logistic regression fit. aData in parentheses show 

interquartile range. bIndicates mean ± s.d. Other data in parentheses show percentage.
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only. The joint model, the CT model and the clinical model per-
formed equally well in sensitivity compared to the senior thoracic 
radiologist but showed statistically significant improvement in  
sensitivity compared to the thoracic fellow (Fig. 2).

The test set contained 25 patients positive for COVID-19 with 
a chest CT identified as normal by both of the reading radiologists 
at presentation. The CNN model identified 13 of 25 (52%) scans  
as COVID-19 (+), the clinical model classified 16 of 25 (64%) as 

Input Model

Machine-learning model

(SVM/random forest/MLP)

MLP

Output

P1

P3

P2

COVID-19 probability

CNN model

(slice selection)

CNN model

(diagnosis)

Selected abnormal CT imagesFull CT scan

Non-image information

Fig. 1 | Illustration of the modeling framework. Three AI models are used to generate the probability of a patient being COVID-19 (+): the first is based on 

a chest CT scan, the second on clinical information and the third on a combination of the chest CT scan and clinical information. For evaluation of chest CT 

scans, each slice was first ranked by the probability of containing a parenchymal abnormality, as predicted by the CNN model (slice selection CNN), which 

is a pretrained pulmonary tuberculosis (PTB) model that has a 99.4% accuracy to select abnormal lung slices from chest CT scans. The top ten abnormal 

CT images per patient were put into the second CNN (diagnosis CNN) to predict the likelihood of COVID-19 positivity (P1). Demographic and clinical data 

(the patient’s age and sex, exposure history, symptoms and laboratory tests) were put into a machine-learning model to classify COVID-19 positivity (P2). 

Features generated by the diagnosis CNN model and the nonimaging clinical information machine-learning model were integrated by an MLP network to 

generate the final output of the joint model (P3).

1.0

a b

c

e
d

0.8

0.6

0.4

S
e

n
s
it
iv

it
y

0.2

0

0 0.2 0.4 0.6

1- specificity

Joint model (AUC = 0.92)

ROC curve comparison Patients positive for COVID-19 with normal CT

Senior thoracic radiologist

Senior thoracic radiologist

Thoracic radiology fellow

Thoracic radiology fellow

CNN model

MLP model

Joint model

Senior thoracic radiologist

Thoracic radiology fellow

CNN model

MLP model

Joint model

CNN model

MLP model

Joint model

93.8
(88.5, 97.1)

90.3
(84.3, 94.6)

75.9
(68.1, 82.6)

68.3
(60.0, 75.8)

82.8
(75.6, 88.5)

Senior thoracic radiologist

Thoracic radiology fellow

CNN model

MLP model

Joint model

0 of 25

0 of 25

13 of 25

16 of 25

17 of 25

N/A

N/A

P = 0.00146

P = 1 × 10–4

P = 0.0501 P = 0.005

P = 0.090

P = 0.031P = 1.00

P = 0.442

P = 1 × 10–4

P = 1 × 10–4

AUC comparison

Sensitivity comparison Specificity comparison

0.84
(80.0, 88.4)

0.86
(82.1, 90.7)

0.80
(74.6, 84.9)

0.92
(88.7 94.8)

0.73
(68.3, 78.0)

Joint model operating point

CNN model operating point

MLP model operating point

CNN model (AUC = 0.86)

MLP model (AUC = 0.80)

Senior thoracic radiologist (AUC = 0.84)

Thoracic radiology fellow (AUC = 0.73)

0.8

74.6
(66.4, 81.7)

56.0
(47.1, 64.5)

83.6
(76.2, 89.4)

80.6
(72.9, 86.9)

84.3
(77.1, 90.0)

1.0

Fig. 2 | Results of the AI models on the test set. a, Comparison of the ROC curves for the joint model, the CNN model trained on the basis of CT images, 

the MLP model trained on the basis of clinical information and two radiologists. b, Comparison of success rates of diagnosing patients who are positive for 

COVID-19 with normal CT scans. Radiologists were provided with both CT imaging and clinical information in making their diagnoses. c–e, Comparison of 

the AUCs (c), sensitivities (d) and specificities (e) achieved by the AI models and radiologists. Two-sided P values were calculated by comparing the joint 

model to the CNN model, the MLP model and the two human readers in sensitivity, specificity and AUC. AUC comparisons were evaluated by the DeLong 

test; sensitivity and specificity comparisons were calculated by using the exact Clopper–Pearson method to compute the 95% CI shown in parentheses 

and exact McNemar’s test to calculate the P value.
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disease positive and the joint model classified 17 of 25 (68%) as 
disease positive, whereas the senior thoracic radiologist and the 
thoracic radiology fellow identified 0 of 25 (0%) of these scans as 
disease positive.

We summarized the comparisons of prediction between the 
joint model and the radiologists in the Extended Data Fig. 3. Of 
the 134 patients positive for COVID-19 in the test set, 90 out 
of 134 were correctly classified by both the joint model and the 
senior thoracic radiologist. Thirty-three out of 134 were classified 
differently by the joint model and the senior thoracic radiologist. 
Of the 33 patients, 23 were correctly classified as positive by the 
joint model, but were misclassified by the senior thoracic radiolo-
gist. Ten patients were classified as negative by the joint model, but  
correctly diagnosed by the senior thoracic radiologist. Eleven 
patients were misclassified by both the joint model and the senior 
thoracic radiologist.

Of the 145 patients negative for COVID-19 in the test set, 113 
out of 145 were correctly classified by both the joint model and 
the senior thoracic radiologist. Thirty-two out of 145 were classi-
fied differently by the joint model and the senior thoracic radiolo-
gist. Seven were correctly classified as negative by the joint model, 
but were diagnosed as positive by the senior thoracic radiologist. 
Twenty-three were classified as positive by the joint model, but cor-
rectly diagnosed as negative by the senior thoracic radiologist. Two 
patients were misclassified by both the joint model and the senior 
thoracic radiologist.

Chest CT is a well-known diagnostic tool for evaluation of 
patients with a suspected pulmonary infection. During the out-
break of COVID-19 in some countries, including China and South 
Korea, chest CT has been widely used in clinical practice due to 
its speed and availability. Most institutions in China have adopted 
a policy of performing a chest CT scan on any patient with fever 
and a suspicion of SARS-CoV-2 infection. Initial experience with 
CT has demonstrated that typical findings are multilobular and 
bilateral and include both ground-glass opacities and consolidation, 
often with a peripheral lung distribution. Pleural effusions, lymph-
adenopathy and discrete pulmonary nodules are very uncom-
mon9,12,13. According to the recommendations of the World Health 

Organization, the most accurate diagnosis of COVID-19 is nucleic 
acid detection14 in secretional fluid collected from a throat swab 
using RT–PCR. However, there is a shortage of the nucleic acid 
detection kits and results can take up to 2 d. Chest CT has also been 
proposed as an important diagnostic tool. A chest CT study can be 
obtained and interpreted much more quickly than RT–PCR. While 
chest CT is not as accurate as RT–PCR in detecting the virus, it 
may be a useful tool for triage in the period before definitive results 
are obtained7,15. Recent work has implemented AI to differentiate 
COVID-19 from other pneumonia based only on chest CT images16, 
which also highlights the necessity for fast and accurate reporting of 
chest CTs and the potential assistance of AI. In our study, our joint 
AI model combines CT and clinical data. For patients with mild 
symptoms demonstrating normal chest CT in the early stage, our 
model showed that clinical information played a role in the accurate 
diagnosis of COVID-19.

There are two potential limitations to the use of chest CT. First, 
the health system during an epidemic may be overburdened, which 
may limit timely interpretation of the CT by a radiologist. Second, 
the morphology and severity of pathologic findings on CT is vari-
able. In particular, mild cases may have few if any abnormal findings 
on chest CT.

We believe implementation of the joint algorithm discussed 
above could aid in both issues. First, the AI algorithm could evaluate  
the CT immediately after completion. Second, the algorithm  
outperformed radiologists in identifying patients positive for 
COVID-19, demonstrating normal CT results in the early stage. 
Third, the algorithm performed equally well in sensitivity (P = 0.05) 
in the diagnosis of COVID-19 as compared to a senior thoracic 
radiologist. Specifically, the joint algorithm achieved a statistically 
significant 6% (P = 0.00146) and 12% (P < 1 × 10−4) improvement in 
AUC as compared to the CNN model using only CT images and 
the MLP model using only clinical information respectively. The AI 
model could be deployed as an application that can run on a simple 
workstation alongside the radiologists. Use of the AI tool would 
require integration with the radiology picture archiving and commu-
nication systems and clinical database systems or other image stor-
age database, which is relatively easy to achieve in modern hospital  
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Fig. 3 | examples of chest CT images of patients with COVID-19 and visualization of features correlated to COVID-19 positivity. For each pair of images, 

the left image is a CT image showing the segmented lung used as input for the CNN model trained only on CT images and the right image shows the 

heat map of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). a, A 51-year-old female with fever 

and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists 

labeled this CT as negative. b, A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. 

Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists and the CNN model predicted positivity based on features in matching 

areas. c, A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image 

shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. d, A 59-year-old female 

with cough and exposure history. The segmented CT image shows no evidence of pneumonia and the CNN model also labeled this CT as negative.
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systems. The AI system could be implemented as a rapid diagnos-
tic tool to flag patients with suspected COVID-19 infection when 
CT images and/or clinical information are available and radiolo-
gists could review these suspected cases identified by AI with a  
higher priority.

Our proposed model does have some limitations. One major 
limitation of this study is the small sample size. Despite the promis-
ing results of using the AI model to screen patients with COVID-19,  
further data collection is required to test the generalizability of  
the AI model to other patient populations. Collaborative effort in 
data collection may facilitate improving the AI model. Difficulties 
on model training also arise due to the limited sample size. In this 
work we used a pretrained tuberculosis model to select key slices to 
represent a full three-dimensional (3D) CT scan. This approach can 
reduce computation of training a 3D CNN, with a tradeoff on miss-
ing information in the slices that are not selected for model train-
ing and inference. The design of the CNN model offers a natural 
visualization to explain the prediction. We showcased some exam-
ples, allowing the AI models to be cross referenced with radiolo-
gist’s findings (Fig. 3). However, there are examples in which the 
visualization fails to provide a clear explanation. We do not know 
if the model incorporates features such as airways, background of 
emphysema or the border of the lung in its prediction. Another 
limitation is the bias toward patients with COVID-19 in the train-
ing data, which, given the nonspecific nature of the ground-glass 
opacity and other features on chest CT images, potentially limits the 
usefulness of the current AI model to distinguish COVID-19 from 
other causes of respiratory failure. Therefore, our algorithm may be 
helpful in places with current high rates of COVID-19 disease, but 
is unlikely to provide as much usefulness in places or times where 
COVID-19 prevalence is low. However, the recent study by Li et al.16 
demonstrated the ability of AI models to separate COVID-19 from 
other pneumonias, which is promising for the wider application of 
this and other AI models.

In future studies, a larger dataset will be collected as the scale of 
this outbreak is climbing. We aim to explore different approaches in 
convolutional neural networks, including 3D deep-learning models 
and improvement of interpretability of CNN models. The generaliz-
ability of the AI system evaluated at multiple centers will be neces-
sary to validate the robustness of the models.

In conclusion, these results illustrate the potential role for  
a highly accurate AI algorithm for the rapid identification of 
COVID-19 patients, which could be helpful in combating the current  
disease outbreak. We believe the AI model proposed, which combines  
CT imaging and clinical information and shows equivalent accuracy  
to a senior chest radiologist, could be a useful screening tool to 
quickly diagnose infectious diseases such as COVID-19 that does 
not require radiologist input or physical tests.
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Methods
Study participants. �e study was approved by the institutional review board of 
each participating hospital in China and the Icahn School of Medicine at Mount 
Sinai in New York. �e institutional review boards waived the requirement to 
obtain written informed consent for this retrospective study, which evaluated 
de-identi�ed data and involved no potential risk to patients. To avert any potential 
breach of con�dentiality, no link between the patients and the researchers was 
made available.

We collected the initial chest CT studies and clinical data from 905 patients 
presenting between 17 January and 3 March 2020 to 1 of 18 centers in 13 provinces 
in China where patients had SARS-CoV-2 exposure, fever and a RT–PCR test for 
COVID-19. The exposure of SARS-CoV-2 is defined as either (1) travel history 
to Wuhan for patients collected outside of Wuhan or travel to the animal market 
within 30 d of the symptom onset for patients who live in Wuhan or (2) close 
contact with patients with RT–PCR-confirmed SARS-CoV-2 infection for all 
patients. Of the 905 patients included in the study, 419 had a positive RT–PCR test, 
while 486 had a negative test (confirmed by at least two additional negative RT–
PCR tests and clinical observation).

Clinical information. Patient’s age, sex, exposure history, symptoms (present or 
absent of fever, cough and/or sputum), white blood cell counts, absolute neutrophil 
number, percentage neutrophils, absolute lymphocyte number and percentage 
lymphocytes were collected (Table 1). Sex, exposure history and symptoms were 
categorical variables. We used the LabelEncoder function in scikit-learn package 
to encode the target categorical variables into numerical variables. Then, we 
normalized each feature within a range of 0 and 1 using MinMaxScaler function in 
the scikit-learn package for further model development.

Reader studies. The predictions of the AI models were compared to two 
radiologists on the test set. Both radiologists were board-certified (A.J. chest 
fellowship-trained with 10 years’ clinical experience; S.S. a current chest radiology 
fellow). The readers were given the patient's initial CT scan (at presentation) 
and associated clinical history that were used to test the AI models. Each reader 
independently reviewed the same dataset and evaluated the initial CT scan and 
clinical details and combined imaging and clinical data in their review in a manner 
consistent with their clinical practice. Using these data, they predicted the COVID-
19 status of the patients. Their predictions were compared to those of the AI 
algorithm and the RT–PCR results.

AI models. The RT–PCR virology test (COVID-19 (+) or COVID-19 (−)) was 
used as the reference to train the models. We developed and evaluated three 
different models using CT images and clinical information. First, a deep-learning 
model using a CNN (model 1) was developed to only use CT images to predict 
COVID-19 status. Second, conventional machine-learning methods (model 2), 
including SVM, random forest and MLP, were evaluated to predict COVID-19 
using only clinical information. Finally, we created a joint CNN model (model 3) 
combining radiological and clinical data.

Convolutional neural network model (model 1). We proposed a CNN-based 
AI system to diagnose COVID-19 using a full CT scan of the chest. Similarly to 
the previously reported AI diagnosis system17,18, our algorithm consisted of two 
CNN subsystems to first identify the abnormal CT slices and then to perform 
region-specific disease diagnosis (Fig. 1). More specifically, the slice selection 
CNN was trained to evaluate a chest CT slice and assign a probability that  
it was normal. The inverse of this probability was then used to rank the  
abnormal slices of each CT scan. We selected the ten most abnormal slices  
from each study for the subsequent disease diagnosis due to the tradeoff of 
efficiency and turn-around time. The disease diagnosis CNN was designed to 
classify patients with COVID-19 using multiple-instance learning. The CNN  
was trained to predict whether a CT slice was from a patient who was positive  
or negative for COVID-19. The average probability from the ten abnormal CT 
slices from each patient’s study was used to generate a prediction of COVID-19 
status for the patient.

Image preprocessing. The first step was to select pertinent slices from the 
hundreds of images produced by a CT scan. Pertinent images contain pulmonary 
tissue and a potential parenchymal abnormality. For the selection of pertinent 
slices, image segmentation was used to detect parenchymal tissue. The raw CT 
images all had a 512 × 512 matrix storing CT intensities in Hounsfield units (HUs). 
A standard lung window (width (w) = 1,500 HU and level (l) = −600 HU) was used 
to normalize each slice to pixel intensities between 0 and 255. CT images were 
segmented into two parts, body and lung. The body part was segmented by finding 
the largest connected component, consisting of pixels with an intensity >175. The 
segmented connected component was filled into a solid region. The lung region 
was defined as the pixels with intensity <175 that fall within the segmented body 
part. Small regions with <64 pixels were removed, as they are typically segmented 
due to random noise. The lung region was enlarged by 10 pixels to fully include the 
pleural boundary. Images were discarded if the size of the lung was <20% of the 
size of the body part.

Slice selection CNN. We used a pretrained Inception-ResNet-v2 (ref. 19) model 
based on the ImageNet20 as the slice selection CNN to identify abnormal CT 
images from all chest CT images21. The slice selection CNN was pretrained 
in a previous PTB detection study on CT images from a total of 484 non-TB 
pneumonia patients, including bacterial pneumonia, viral pneumonia and fungal 
pneumonia, in addition to 439 PTB and 155 patients with normal chest CTs. For 
CT images, the TB model predicts the probabilities of three classes, including PTB, 
non-TB pneumonia and normal chest CT. This model achieved 99.4% accuracy in 
differentiating normal slices from abnormal (PTB and non-TB pneumonia) slices. 
In this work, we applied the PTB model to a full CT scan to select ten  
slices with the lowest probability of being normal. We noted that these selected 
slices may show no abnormal findings if the CT scan from the patient with 
COVID-19 is normal.

Disease diagnosis CNN. We used the 18-layer residual network (ResNet-18 (ref. 22)) 
as the disease diagnosis CNN. The ResNet-18 takes images of segmented lungs as 
input and outputs probability of COVID-19 positivity. A max-pooling layer that 
outputs log probability was used at the last layer, instead of the standard design that 
uses an average-pooling layer at the last layer. The rationale of this design is that, 
given the abnormal finding is usually localized in a subregion of a CT image, we 
would like to predict whether a small region is abnormal due to COVID-19 (ref. 23). 
The CNN model can then be seen as a classifier that reports whether its receptive 
field is COVID-19 (+). The label of an image is then predicted by combining all 
predictions of every local region over the whole image. Max pooling serves as an 
‘OR’ gate that labels an image as COVID-19 (+) if there is any subregion in it that 
is COVID-19 (+). Patient-level prediction was set as the average of image-level 
prediction of a patient’s ten most abnormal images. To visualize the CNN’s 
prediction, we upsampled the CNN’s outputs, without applying the max-pooling 
layer, to the original image size. The lung mask was applied to upsampled outputs 
for clear visualization.

CNN training. We used binary cross-entropy as the objective function. Adam 
optimizer24 with a learning rate 0.001 was used to train the neural network. The 
learning rate was decreased by a factor of 0.95 each epoch. We applied random 
rotation, grid distortion and cutout25 to images for data augmentation. A total of 
20% of training samples were held out as the tuning set to monitor the progress 
of the training process. The training process was iterated for 40 epochs with a 
batch size of 16 samples. Performance on the tuning set was monitored every 100 
iterations. The model with the lowest binary cross-entropy on the tuning set was 
selected as the final model. Parameters were tuned to ensure that the validation 
error decreases along with the training error.

We designed a weakly supervised task to initialize weights of the CNN model. 
Specifically, we randomly selected image patches of lung regions from training 
images and labeled those patches as the label of the training images. The CNN was 
then pretrained to classify these image patches for 1 epoch. This weakly supervised 
task accords with the idea that the CNN is classifying a local region in the CT 
image to be COVID-19 (+).

Machine-learning classifiers (model 2). We developed SVM, random forest and 
MLP classifiers based on patients’ age, sex, exposure history, symptoms (present 
or absent of fever, cough and/or sputum), white blood cell counts, neutrophil 
counts, percentage neutrophils, lymphocyte counts and percentage lymphocytes. 
We fine-tuned the hyperparameters of each classifier on the training set and tuning 
set and evaluated the best model on the test set. For the SVM classifier, we assessed 
the ‘C’ and kernel. For the random forest classifier, the number of estimators was 
tuned. For MLP, we assessed the number of layers and the number of hidden nodes 
in each layer. After the hyperparameter optimization, a three-layer MLP model 
with 64 nodes in each layer was selected because of the highest AUC score on the 
tuning set. The MLP model was selected because of the highest AUC score on the 
tuning set (Extended Data Fig. 4). We used the Scikit-learn26 package to fit and 
evaluate these models.

Joint model: combining CT imaging and clinical information (model 3).  
We trained a model to integrate CT imaging data and clinical information.  
We applied the global averaging layer to the last layers of the convolutional  
model described previously to derive a 512 dimensional feature vector to  
represent a CT image. A total of 12 clinical features (Table 1) of the same  
patient were concatenated with this feature vector. An MLP takes this  
combined feature vector as the input to predict the status of COVID-19.  
We used a three-layer MLP, each layer has 64 nodes and is composed of a batch 
normalization layer, a fully connected layer and a ReLU activation function. 
Normalized Gaussian noise was added at the input layers for data augmentation. 
The MLP was jointly trained with the CNN. We applied binary cross-entropy  
to validate predictions from both MLP and CNN during the training  
process. The sum of these two measurements was used as the overall objective 
function to train the joint model. We used the same optimization strategy of  
model 1 to train the MLP and CNN, except that the learning rate was increased  
to 0.002. The CNN was also initialized by the weakly supervised task of classifying 
the small image patches.
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Statistical analysis. The 95% CIs of sensitivity, specificity and accuracy were 
calculated by the exact Clopper–Pearson method27. The CIs of AUC were 
calculated by the DeLong methods28. The CI of predictive values was calculated  
by standard logit CIs29. McNemar’s test30 was used to calculate the two-sided  
P value for sensitivity and specificity between models and human readers. The 
Youden index was used to determine the optimal model sensitivity and specificity. 
Statistical significance was defined as a P value <0.05. Logistic regression was used 
to evaluate significance of each clinical variable. Hosmer–Lemeshow goodness of 
fit31 was used to assess goodness of fit of the logistic regression. The statistics of 
AUC comparisons were computed in the pROC package32. McNemar’s test and the 
exact CIs were calculated in the statsmodels package in Python.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw image dataset generated or analyzed during this study is not publicly 
available due to the dicom metadata containing information that could 
compromise patient privacy/consent. The models generated by this dataset are 
publicly available at https://github.com/howchihlee/COVID19_CT.

Code availability
The code used for training the deep-learning models, pretrained models and 
models used in this study are all available at https://github.com/howchihlee/
COVID19_CT. Implementation of our work is based on the following open source 
repositories: Tensorflow: https://www.tensorflow.org; Pytorch: https://pytorch.org; 
Keras: https://keras.io; Sklearn: https://scikit-learn.org/stable/. pROC:  
https://cran.r-project.org/web/packages/pROC/index.html and statsmodels: 
https://www.statsmodels.org/stable/index.html.
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Extended Data Fig. 1 | Characteristics of clinical features in the training set, tuning set and test set. ± indicates mean ± standard deviation. * Data in 

parentheses show the number of COVID-19 positive patients. † Data in parentheses show Interquartile Range (IQR) Other data in parentheses  

show percentage.
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Extended Data Fig. 2 | Comparisons of the diagnostic performance between AI models and human readers on a test set of 279 cases. Data were 

presented in percentage and the 95% confidence interval. The confidence intervals of accuracy were calculated by the exact Clopper-Pearson method.  

The confidence intervals of the predictive values were calculated by the standard logit confidence intervals.
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Extended Data Fig. 3 | Comparisons of predictions by the joint model and human readers on a test set of 279 cases. The (+/−) indicates the prediction 

of the COVID-19 status by the joint model and human readers.
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Extended Data Fig. 4 | ROC curve comparison of the MLP, random forest and SVM models on the tuning set of 92 cases. Two-sided p-value indicates 

the significance of difference in performance metric compared with respect to the MLP model by using the DeLong test. The MLP showed no significant 

difference as compared to the SVM model (p=0.98) and the random forest model (p=0.35). The MLP model was selected in this study due to the  

highest AUC score.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection GE-Centricity (version 6.0): FDA-approved fully features PACS viewer. Used to collect reader study results

Data analysis Pandas (version 0.23.4): open source library Pandas was used for tabular data 

Matplotlib (version 2.2.2): open source library Matplotlib was used for making plots 

sklearn (version 0.20.2): open source library scikit-learn was used for metrics such as AUC and traditional machine learning classifier 

training 

Tensorflow (version 6.0): open source library Tensorflow was used to train deep learning models 

Pytorch (version 1.4): open source library Pytorch was used to train deep learning models 

Keras (version 2.2.4): open source library Keras was used to train deep learning models 

Statsmodels (version 0.10.2): a python library Statsmodels was used to calculate the confidence intervals and p-values for sensitivity, 

specificity and accuracy 

pROC (version 1.16): libray pROC in R was used to calculate the confidence intervals for AUC and calculate the p-values of AUC
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The raw image dataset generated or analysed during the current study are not publicly available due to the dicom metadata containing information that could 

comprise patient privacy/consent. The models generated by this datasets are publicly available at https://github.com/howchihlee/COVID19_CT.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We first determined the sample size was the size of test set to evaluate the model. We had to balance having enough data to train the 

algorithm while having enough data to validate the algorithm. A dataset of the presenting CT scans from 905 patients for whom there was a 

clinical concern of the coronavirus disease 2019 (COVID-19) was acquired between Jan 17, 2020 and march 3, 2020 from 18 medical centers 

in 13 provinces in China.The dataset had 419 COVID-19 positive cases and 486 COVID-19 negative cases. We stratified the dataset and 

randomly split the dataset into 60% training set (534 cases; 234 COVID-19 positive cases; 292 COVID-19 negative cases), 10% tuning set (92 

cases; 43 COVID-19 positive cases; 49 COVID-19 negative cases) and 30% test set (279 cases; 134 COVID-19 positive cases; 145 COVID-19 

negative cases). All the cases in the dataset were independent and non-repeating samples. The test set was a hold-out set that was unseen by 

the models. We believe the sample size was sufficient for the test set because the test set represent cases from different medical centers with 

different scanners and scan parameters.

Data exclusions The data exclusion criteria was pre-established. We excluded data only when CT images have low equality (motions). 

Only one CT scan was excluded because of motion.

Replication We created a hold-out test set to evaluate the performance of the proposed artificial intelligence models. The test set of 279 cases was 

unseen by the algorithms. The performance of the algorithms evaluated on this test set performed equally well in sensitivity as compared to a 

senior thoracic radiologist and outperformed a thoracic radiology fellow in sensitivity.

Randomization We stratified the dataset and randomly split the dataset into 60% training set (534 cases; 234 COVID-19 positive cases; 292 COVID-19 

negative cases), 10% tuning set (92 cases; 43 COVID-19 positive cases; 49 COVID-19 negative cases) and 30% test set (279 cases; 134 

COVID-19 positive cases; 145 COVID-19 negative cases). All the cases in the dataset were independent and non-repeating samples. 

Blinding Since our experiments are based on de-identified studies, blinding is not necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Human research participants

Policy information about studies involving human research participants

Population characteristics We included 905 patients who had a clinical concern of SARS-CoV-2 infection and had confirmed SARS-CoV-2 specific reverse 

transcriptase polymerase chain reaction (RT-PCR) results. The dataset included patients aged from 1 year to 91 years (mean ± 

standard deviation; 40.7 year ± 16.5 years) and included 488 males and 417 females. A total of 419 patients tested positive for 

SARS-CoV-2 by the RT-PCR assay and next-generation sequencing, while 486 patients tested negative for SARS-CoV-2 (confirmed 

by at least two additional RT-PCR tests and clinical observation). A total of 55 patients were admitted to the intensive care unit 

(ICU). 

Recruitment No patient recruitment was performed. All present CT scans and associated clinical information that were available for the pre-

established collecting period were analyzed.

Ethics oversight Icahn School of Medicine at Mount Sinai

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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