
Artificial intelligence–enabled virtual screening
of ultra-large chemical libraries with
deep docking
Francesco Gentile 1, Jean Charle Yaacoub1,3, James Gleave1,3, Michael Fernandez1,
Anh-Tien Ton 1, Fuqiang Ban1, Abraham Stern2 and Artem Cherkasov1✉

With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are
needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by
docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking
scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug
candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary
computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in
various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking
program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random
sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The
standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and
the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of
top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes
1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job
schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol, can be readily deployed by CADD
researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space.

Introduction

The recent expansion of make-on-demand libraries to billions of synthesizable molecules has
attracted significant attention from the drug-discovery community, because such ultra-large databases
provide access to novel, unchartered areas of the chemical universe1–3. On the other hand, the
emergence of ultra-large libraries has highlighted significant limitations of conventional docking
approaches that typically operate on the scale of millions of molecules. With chemical libraries
comprising 100 billion molecules on the horizon4, it will soon become impossible to deploy con-
ventional docking at its full potential, and so far, only a handful of billion-sized docking campaigns
have been conducted on elite supercomputing facilities2,5.

It should also be noted, that docking is not just computationally demanding, but also a remarkably
wasteful process in which a very small subset of top-scoring compounds is considered for experimental
evaluation. Thus, most docked molecules are simply discarded6. To approach this challenge in the
context of the global shortage of computational docking power, we have recently developed Deep
Docking (DD), an artificial intelligence (AI)–driven approach that provides very economical yet highly
reliable access to ultra-large docking. After the preparation of chemical library and receptor stages, DD
relies on the iterative execution of five sequential stages (DD phases 1–5) that comprise ligand
sampling, ligand preparation, docking, model training and inference. A final stage of docking is then
performed to process the compounds that are retained by DD as prospective top-scoring molecules.

Development of DD to accelerate structure-based virtual screening
In 2006, we proposed Progressive Docking, a hybrid approach that uses information on already-
docked molecules to predict the scores of yet unprocessed entries of a database with quantitative

1Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada. 2NVIDIA Corporation,
Santa Clara, CA, USA. 3These authors contributed equally: Jean Charle Yaacoub, James Gleave. ✉e-mail: acherkasov@prostatecentre.com

672 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

PROTOCOL
https://doi.org/10.1038/s41596-021-00659-2

12
34

56
78

9
0
()
:,;

12
34
56
78
90
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41596-021-00659-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41596-021-00659-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41596-021-00659-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41596-021-00659-2&domain=pdf
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-8299-1976
http://orcid.org/0000-0001-7418-6563
http://orcid.org/0000-0001-7418-6563
http://orcid.org/0000-0001-7418-6563
http://orcid.org/0000-0001-7418-6563
http://orcid.org/0000-0001-7418-6563
https://github.com/jamesgleave/DD_protocol
mailto:acherkasov@prostatecentre.com
www.nature.com/nprot
https://doi.org/10.1038/s41596-021-00659-2

structure activity relationship models based on partial least squares regression, thus reducing the
docking workload7. However, the acceleration offered by this and similar shallow-learning methods
that followed8,9 was not yet sufficient to screen more than a few million compounds. To enable
structure-based screening of billion-sized molecular libraries, we recently developed DD, a technique
that iteratively trains deep neural networks (DNNs) with small batches of explicitly docked com-
pounds to infer the ranking of the yet-unprocessed remainder of the library10. In this way, DD can
discard unfavorable (undockable) molecular structures without wasting valuable computational
resources (Fig. 1).

AI-accelerated virtual screening

O

O

O

O

O

O

O

O

S

Regular virtual screening Select top-scoring molecules for validation

O

OH

2D molecular descriptors

Deep neural network

Inference (99%)

Virtual hit: retain Low scoring: discard

Dock only training molecules (1%)

Ultra-large library

Dock all molecules

Molecular docking

OH

N
H

N
H

N

CI

CI

N

CI

CI

Dock AI-predicted virtual
hits (1–10%)

0 0 0 01 1 1

Compound Rank

1

2

n

......

OH

H
N

H
N

H
N

H
N

N

S

S

N

N

O

O

O

O

O

N

N N

H

N

N

N
H

N
H

Fig. 1 | AI-accelerated DD approach versus regular docking. In the DD workflow, DNN models are trained to predict docking scores from 2D
molecular fingerprints using only a very small portion (1%) of the database that needs to be docked. The score classes (top or low scoring) of the
remaining molecules are then inferred rather than explicitly calculated with actual docking. In the end, only predicted best-scoring molecules remain to
be conventionally docked, whereas unfavorable molecules are filtered out.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 673

www.nature.com/nprot

We have used the DD protocol to virtually screen the zinc is not commercial (ZINC)15 library
(1.36 billion molecules)11 against 12 proteins representing four major families of drug targets10. We
demonstrated that DD needs to dock only 1% of the molecules to significantly reduce (100-fold) the
size of a chemical library while retrieving 90% of the best-scoring structures (virtual hits defined by
the FRED scores12), and that even larger reductions can be achieved by lowering the user-defined
percentage of retrieved virtual hits.

In a consecutive study, we also applied DD to screen ZINC15 against the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), a prominent drug target for
coronavirus disease of 2019, using the Glide Single Precision (SP) approach13. The identified ‘make-on-
demand’ compounds were structurally different from known protease inhibitors14. Our own experi-
mental validation of DD-proposed hits showed that 15% were active against the target, with the
established IC50 values ranging from 8 to 251 μM15,16. Specifically, this screen led to the discovery of a
novel series of compounds based on a dihydro-quinolinone core that were confirmed experimentally as
low micromolar Mpro inhibitors by us15,16 as well as by an independent study17. After our initial results,
similar machine learning approaches have rapidly emerged that emulate (rather than explicitly com-
pute) docking scores18–22, highlighting a global demand for AI-accelerated virtual screening23,24.

The current version of the DD protocol can be seamlessly integrated into existing drug-discovery
pipelines that rely on popular docking programs. An automated workflow has also been developed to
facilitate the adoption of DD by drug-discovery scientists with minimal or no experience in machine
learning and programming.

Experimental design
Preparation of chemical libraries
The most commonly used ultra-large chemical libraries are ZINC and the ‘make-on-demand’
collections from Enamine. The ZINC15 database11 contains 1.5 billion molecules that can be readily
downloaded as a whole in simplified molecular-input line-entry system (SMILES) format; it also
provides access to several smaller subsets such as drug- and lead-like molecules. The library offers up
to four precalculated stereoisomers per molecule and allows protomer and tautomer states to be
computed at different pH ranges11. The newest version, ZINC20, has also been recently released,
comprising ~1 billion molecules25. Furthermore, the Enamine REAL database26 includes 1.95 billion
make-on-demand molecules that can be synthesized with an 85% average success rate. On the other
hand, Enamine REAL Space27 is the largest database of commercially available compounds,
accounting for 19 billion not-enumerated molecules.

Just like in the case of conventional docking, a chemical library has to be preprocessed for DD.
Explicit isomeric configurations and correct ionization states need to be enumerated for
each molecule. OpenEye flipper (license required)28 or rdkit’s EnumerateStereoisomers (freely
available)29 are examples of programs that can be used to enumerate isomers, while tautomers
and protonation states can be calculated by various licensed (e.g., QUACPAC30 and ChemAxon
(http://www.chemaxon.com)) or open-source (e.g., openbabel31 and Ambit32) software. Circular
binary Morgan fingerprints33,34 with radius 2 and size of 1,024 bits, to be used as descriptors, can then
be computed from the SMILES of the prepared molecules. These extended-connectivity fingerprints
represent a machine-readable description of molecules based on a fixed-length binary bit vector
encoding the presence or absence of specific substructures (circular atom neighborhoods at specified
radius; Supplementary Fig. 1)35. The fingerprint bits are used as features for the DNN models, which
aim to learn which substructures are responsible for high predicted binding affinities (in terms of
docking scores). In DD, Morgan fingerprints are stored as the indexes of bits set to 1 rather than the
entire fixed-length vector (Box 1), and they are decompressed to the regular 1,024-bit representation
on the fly.

Receptor preparation
Target structures need to be prepared before the docking grids can be generated. Non-structural
water, lipids and solvent molecules are usually removed; the target protein may require structural
optimization to repair any missing parts, add hydrogens, compute correct protonation states of
residues and energetically relax the structure. This optimization process can be performed with
various licensed (e.g., Schrödinger36 and Molecular Operating Environment37) and free (e.g., UCSF
Chimera’s Dock Prep38) program suites. The Protein Preparation Wizard tool from Maestro36

provides a straightforward and automated way to perform such preparation. Any other protein

PROTOCOL NATURE PROTOCOLS

674 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

http://www.chemaxon.com
www.nature.com/nprot

preparation tool can be used for this purpose. The generation of docking grids, on the other hand,
strictly depends on the docking program that the user intends to use. In the Procedure, we outline the
steps to prepare grids for docking with Glide or FRED.

Molecular sample size
Validation, test and initial training sets are randomly sampled from the entire docking library at the
first DD pass. From the second iteration on, the training set is iteratively augmented with random
batches of molecules classified as virtual hits in the inference stage of the previous iteration. The
chosen sample size should be large enough to properly represent the chemical diversity of the
investigated library. At the same time, the maximum sample size inevitably depends on the total
amount of docking (number of docked compounds) that is feasible on the user’s system.

Validation and test sets are generated only in the first iteration. Because the score threshold used to
define virtual hits is decreased at each DD iteration, using small-sized sets can cause generalization
issues, especially in the last iteration, in which the number of positive samples in the two sets is very
limited (e.g., 0.01%). This problem might be difficult to diagnose, because the phenomenon may not
be detectable in earlier iterations when positive samples are sufficiently well represented. We
recommend choosing the size of validation and test sets in the first iteration as large as possible,
ideally comprising 1 million molecules each, and absolutely avoiding using less than 250,000
molecules (corresponding to 25 positive samples in the last iteration), because we have observed that
those values are sufficient to obtain robust and generalizable docking models for libraries that contain
on the order of 1 billion compounds10. If at any iteration the number of virtual hits in the validation
or test set is ≤10, model training is automatically canceled by the program.

The size of the training set, on the other hand, influences mainly model precision, and perfor-
mances improve with larger training sets (700,000–1,000,000 molecules) and more iterations (8–11).
If deep learning–dedicated resources available to the user (such as graphics processing units (GPUs))
are limited, we recommend using larger training sets for a smaller number of iterations (for at least
four iterations) rather than the alternative, because the resulting models, although usually showing
slightly worse performances, require fewer iterations of training and inference to achieve an accep-
table result. An example is reported in Fig. 2, illustrating the effect of different training set size and
number of iterations on a DD run against the dimerization site of the androgen receptor (Protein
Data Bank (PDB) ID: 1R4I39). Performing the same total amount of docking (~4,200,000 molecules
including validation and test set), the four-iteration (depicted in light green) strategy using a training
size of 700,000 returned a final number of qualified molecules slightly higher than the eight-iteration
(depicted in violet) strategy (~58 million versus ~49 million); however, it required half the training
and inference computations. Thus, it may be a better choice for systems with a limited number of
GPUs. On the other hand, the use of a larger training set (700,000 molecules) for the same number of
DD iterations (four) substantially improved the DD reduction performances (~58 million versus
~108 million qualified molecules obtained by using a training size of 350,000, depicted in dark pink).
If the resources for docking are limited, we recommend choosing an initial training sample size equal
to the maximum number of molecules that can be docked with the user’s system (ideally 1,000,000)
and dock it, and then use the procedure outlined at Step 23B of Procedure 1 or 10B of Procedure 2 to
identify a value that provides an optimal balance between amount of docking and model performance
for the user’s specific system and that can be used in successive iterations.

Model training and inference
Each iteration step in the DD protocol encompasses model training and inference. To identify virtual
hits, the protocol uses binary classifiers in the form of feedforward DNN models (multilayer per-
ceptrons) trained on 1,024-bit circular Morgan fingerprints. Binary ‘positive samples’ in training,

Box 1 | Example of Morgan fingerprint for piridocaine (ZINC000000000638) in DD format

The comma-separated list of integers represents the indexes of bits that are set to 1 in the 1,024-bit fingerprint,
indicating the presence of specific substructures in the molecule. The chemical structure of piridocaine and
substructures relative to the first nine bits are shown in Supplementary Fig. 1.
SMILES: c1ccc(c(c1)C(=O)OCC[C@@H]2CCCC[NH2+]2)N ZINC000000000638
Fingerprint:
ZINC000000000638,4,13,29,44,64,80,121,139,145,147,175,301,356,423,433,494,568,648,649,650,659,661,
695,726,728,807,832,849,890,891,892,893,910,921,926,947,967,983,1019

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 675

https://www.wwpdb.org/pdb?id=pdb_00001r4i
www.nature.com/nprot

validation and test sets are virtual hits with scores above a threshold, corresponding to a predefined
top percentage of the docking-ranked molecules in the validation set. The rest of the molecules are
labeled as ‘negative samples’. These top-percentage values can be specified by the user for the first and
the last iterations, whereas for the intermediate ones, the value will be linearly changing between
those two.

After the binary labels are generated, a user-specified number of models with different combi-
nations of hyperparameters (number of hidden layers and neurons, dropout frequencies, over-
sampling of minority class and class weights) are trained to optimize model test set accuracy by using
a grid search strategy.

After the training phase is finished for the initial iteration, the optimal binary classifier is used for
inference of virtual hit-likeness of the remainder of the molecular library. For the next iterations,
training, validation and test sets are augmented with new compounds randomly selected from
molecules with predicted virtual hit-likenesses higher than a classification threshold corresponding to
a user-defined recall value for validation predictions. This recall value is a critical parameter, which, if
set too high, may significantly increase the number of remaining molecules. On the other hand, if the
recall is set too low, large portions of virtual hits may be discarded. Thus, we recommend setting the
recall between 0.75 and 0.90 (corresponding to 75% and 90% retrieved virtual hits, respectively).

It is important to note that virtual hit calling becomes more stringent as the top-percentage
threshold value is decreased linearly with the number of iterations; thus, the definition of ‘positive’
and ‘negative’ labels also changes at each iteration for all molecules in the training, validation and test
sets. The inference is always performed over the whole library, usually setting the initial percentage
value for virtual hit selection to 1% and the final value to 0.01%. The total number of iterations
typically ranges from 4 to 11, and we normally train 24 models at each iteration in the optimization
step. For most docking campaigns, these parameters are sufficient to shrink a database of 1–1.5 billion
molecules to a few million compounds that could be conventionally docked with regular computa-
tional resources. Alternatively, as we mentioned before, the preset recall value could be adjusted for
more ‘aggressive’ DD-selection of top-scored compounds.

Applications
The DD protocol can be used in conjunction with any popular docking program. In our DD
campaigns, we were able to dock billion-size (1B+) chemical libraries against various targets using
FRED12, Glide13, Autodock-GPU40, QuickVina241 and ICM42,43 docking suites. The presented pro-
tocol explains how to set up and run DD against a generic protein target. Although the steps required
for protein, ligand and docking grid preparation are explained using specific tools that we use in
house, all of those can be readily adapted to similar programs and computer-aided drug discovery
(CADD) packages.

300
Training size 700K, four iterations
Training size 350K, eight iterations
Training size 350K, four iterations

250

200

R
em

ai
ni

ng
 m

ol
ec

ul
es

, M

150

100

50

0
1 2 3 4 5

Iteration

6 7 8

Fig. 2 | Effect of varying training size and number of iterations on the number of remaining molecules (molecules
that are classified as virtual hits, hence not discarded) for screening ZINC20 against the dimerization site of
androgen receptor (PDB ID: 1R4I39). Initial validation and test sets were of 700,000 molecules in all three cases.
The final number of qualified molecules was ~58 million for the four-iteration/700,000-molecule training size run
(light green), ~108 million for the four-iteration/350,000-molecule training size run (dark pink) and ~49 million for
the eight-iteration/350,000-molecule training size run (violet). K, thousand; M, million.

PROTOCOL NATURE PROTOCOLS

676 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://www.wwpdb.org/pdb?id=pdb_00001r4i
www.nature.com/nprot

Comparison with alternative methods
One of the major challenges of modern CADD is a constantly growing need for computational
resources required to screen chemical libraries that are exploding in size because of recent advances in
automated synthesis and robotics. Few docking packages have been proven successful for screening of
1B+ libraries by relying on their code scalability across supercomputing clusters. For example,
OpenEye GigaDocking44 was used to dock the Enamine REAL database into the purine nucleoside
phosphorylase and heat shock protein 90 targets in <1 d using 27,000 and 45,000 Amazon Web
Services (AWS) cloud CPUs, respectively. The popular Autodock program has been parallelized for
Compute Unified Device Architecture (CUDA)45 and deployed on the Summit supercomputer
(comprising >27,000 GPUs) to dock the same library into the SARS-CoV-2 Mpro active site in ~1 d5.
VirtualFlow2 is another automated platform for docking large libraries using supercomputing systems
that has been used to screen 1.4 billion molecules in 2 weeks (using 8,000 CPUs). Very recently,
Bender et al. developed a guide for ultra-large docking campaigns, highlighting that computing
clusters of 500–1,000 CPU cores are required to perform billion-scale virtual screening in a timely
manner46. These docking platforms achieved great high-throughput but are extremely resource
demanding in comparison to DD.

Consequently, because of the computational cost, conventional docking of ultra-large libraries
remains unaffordable for most of the research community. Hence, various machine learning
emulation techniques of docking have been proposed to perform such tasks without large
computing resources. In Supplementary Table 1, we have listed several of such methods that have
been developed as a proof of concept to approximate docking scores from molecular structural
features (descriptors)9,18–22. Although these methodologies cannot be easily compared (owing to the
use of different benchmark sets and docking libraries), it is possible to stipulate that DD is one of
the fastest AI-enabled docking platforms and the only method that has been extensively tested on
1B+ libraries. In addition, the DD protocol does not rely on a particular docking program, and thus it
is compatible with the emerging large-scale docking methods to improve their high-throughput
capabilities.

Limitations
Some technical limitations of DD that are worth mentioning are related to the extensive use of GPU
acceleration. The protocol requires access to GPU resources for optimal performance, in contrast to
most of the docking platforms that rely on CPUs. In addition, DD is implemented for fast and
economical virtual screening and thus provides docking details exclusively for the top-scoring
molecules and disregards large fractions of chemical libraries. Therefore, docking campaigns assessing
hit rate variability with docking scores1 or rescoring low-ranked molecules47 should consider a brute-
force approach instead. In addition, the quality of DD results entirely depends on the suitability of the
docking program to prioritize active molecules from an ultra-large library. Hence, we anticipated that
it would be challenging to discover active molecules from DD of a library of a billion molecules if
docking performs poorly on the specific target, just like in the case of conventional docking1. In this
context, recent work by Bender et al. provides useful guidelines for establishing benchmarking
calculations before performing large-scale docking46.

Overview of the protocol
The present protocol provides guidance on how to set up and run a DD campaign with Glide SP and
FRED docking packages. Minor modifications can be applied to adapt the same workflow to other
docking programs.

We outline two alternative procedures to set up and run a DD campaign. The first relies on
manually running each individual script (Procedure 1). This option is well suited for users who do
not have access to large computational facilities or for those who want to use only specific DD steps in
their drug-discovery campaigns.

The second option relies on a series of scripts that automatically run each stage on a cluster
managed by a Simple Linux Utility for Resource Management (Slurm) job scheduler (Procedure 2).
This option is particularly suitable for automation purposes and for performing virtual screening
campaigns on large computational systems. Procedures 1 and 2 share a number of common steps
(Supplementary Table 2). Both procedures have been extensively tested by users with no prior
knowledge of the DD protocol.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 677

www.nature.com/nprot

Materials

Equipment
Molecular data
● A chemical library with molecules in the SMILES format. A ready-to-screen version of ZINC20
(downloaded in early March 2021) with SMILES and already calculated fingerprints has been deposited
at https://files.docking.org/zinc20-ML/

● 3D structure of the receptor in PDB format
● An example iteration to test that the protocol can be downloaded from the Federated Research Data
Repository at https://doi.org/10.20383/102.0489

Software
● Python3.0+
● Receptor preparation: Schrödinger Maestro suite36 or alternative program for initial protein
optimization, Maestro for Glide docking grid generation, Make Receptor48 from OpenEye for FRED
docking grid generation or alternative protein-preparation tools for other docking software

● Ligand preparation: QUACPAC30 and OMEGA28 OpenEye modules or other similar programs for
tautomer and protomer enumeration, stereoisomer enumeration and 3D conformer generation

● Docking: Glide SP13 or FRED12 program; the protocol can be easily adapted to any other conventional
docking program

● Descriptor calculation and machine learning: Python3.0+ conda environment (https://docs.conda.io/
en/latest) with rdkit29, tensorflow-gpu (version 1.14.0 or higher)49, pandas, numpy, keras, matplotlib
and scikit-learn50 (called dd-env in the protocol). A yml file, called environment.yml, is available in the
utilities folder of the repository (https://github.com/jamesgleave/DD_protocol) for setting up the
environment (see https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.
html#creating-an-environment-from-an-environment-yml-file for details)

● DD program: all the scripts required to prepare a library and to run DD are freely available from
https://github.com/jamesgleave/DD_protocol

● Text editor

Hardware
● Windows, Macintosh or Linux computer
● Linux system or cluster (preferably with Slurm workload manager, https://slurm.schedmd.com/
documentation.html) with CPU nodes and preferably also GPU nodes for machine learning. Our
in-house setup consists of 50 GPUs (Nvidia Tesla V100 GPUs with 32 GB of memory) and 640 CPU
cores (Intel Xeon Silver 4116 CPU @ 2.10 GHz)

Procedure 1: manual DD

1 Access the Linux system, create a DeepDocking folder and clone or copy the DD_protocol repository
there. No installation is required to run the scripts.

Stage I: chemical library processing ● Timing ~13 h
2 Download the library of SMILES in the DeepDocking folder. If the library is provided as separate

files, concatenate them into a single file from the command line:

cat *smi > library.smi

3 Create a smiles folder and divide the library into evenly populated files of 10,000,000 molecules
each, all placed inside the folder:

split -d -l 10000000 library.smi smiles/smiles_all_ --additional-
suffix=.smi

This reorganization step enables one to efficiently run the random sampling and inference stages on
a larger number of smaller files rather than a massive, memory-consuming library file. Because
these processes are run on each file independently, any other value can be used instead of
10,000,000 to better fit specific computational setups (e.g., to have a number of files equal to the

PROTOCOL NATURE PROTOCOLS

678 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://files.docking.org/zinc20-ML/
https://doi.org/10.20383/102.0489
https://docs.conda.io/en/latest
https://docs.conda.io/en/latest
https://github.com/jamesgleave/DD_protocol
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://github.com/jamesgleave/DD_protocol
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
www.nature.com/nprot

number of cores available on a node to optimize the sampling). The number of resulting files will
depend on the size of the original database and the number of molecules specified for each file.

Enumerate stereoisomers, tautomers and protomers

c CRITICAL Stereoisomers, tautomers and protomers must be enumerated using, for instance, OpenEye
tools, and Morgan fingerprints must be calculated (Fig. 3). Other similar database preparation tools can
be used for the same purpose. The procedure described here calculates all the possible stereoisomers of
a given molecule and the dominant tautomer form (protonated at pH 7.4) for each isomer. These
commands can be changed, for example, to enumerate multiple tautomers and protomers
(see https://www.eyesopen.com/quacpac for guidance); each of these must be assigned a unique
name, however, resulting in a substantial increase in the number of unique library entries. For some
chemical libraries, the tautomers and protomers are partially or completely enumerated, and therefore
these steps may not be required.
4 For each file generated in Step 3, enumerate stereocenters with unspecified stereochemistry using

the flipper tool from the OpenEye OMEGA module, assigning a unique name to each isomer:

flipper -in smiles/smiles_all_1.smi -out smiles/smiles_all_1_isom.smi
-warts

5 Calculate the dominant tautomeric and protonation form of each isomer at pH 7.4 using the
tautomers tool from the OpenEye QUACPAC module:

tautomers -in smiles/smiles_all_1_isom.smi -out smiles/smiles_all_1_
states.smi -maxtoreturn 1 -warts false

Library

HN

HN

H

O

O

O

O
O

O

CI
N

N

N

N

CI

CI

CI

Splitting

Procedure 1. manual preparation

Procedure 2. automated preparation

Step 4

Flipper Tautomers Rename
Prepared smiles

Morgan fingerprints

Library_prepared/

Library_prepared_fp/

Smiles_all_1.txt

Smiles_all_1.txt

Smiles_all_2.txt

Smiles_all_2.txt

Smiles_all_n.txt

Smiles_all_n.txt

....

....

Morgan_fp.py

Step 5 Step 6

Steps 7

Step 2

Step 3

Compute_states.sh

Compute_morgan_fp.sh

Smiles_all_1.smi

Smiles_all_n.smi

....N

Fig. 3 | Chemical library preparation for DD. Initially, the library is obtained in SMILES format and split into evenly populated files to facilitate sampling
and inference. Depending on the available resources, the user can then follow two preparation procedures. Procedure 1 (manual preparation) requires
each preparation action to be executed manually (enumeration of stereoisomers, tautomers and protomers; renaming the files; and calculation of
Morgan fingerprints). Procedure 2 (automated) allows running all the preparation automatically; however, it requires access to a computing cluster
running with a job scheduler (Slurm). Both processes will generate a folder with the prepared SMILES and another one with the corresponding Morgan
fingerprints in DD format.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 679

https://www.eyesopen.com/quacpac
www.nature.com/nprot

6 Create a folder for the prepared files (library_prepared) and move the files generated in the previous
step inside it, renaming them and changing their extension from .smi to .txt:

mv smiles/smiles_all_1_states.smi library_prepared/smile_all_1.txt

Morgan fingerprints
7 Activate the conda environment and use the morgan_fp.py script (provided in the utilities folder of

the repository) to calculate the Morgan fingerprints of the prepared structures from their SMILES:

python morgan_fp.py --smile_folder_path ~/DeepDocking/library_prepared
--folder_name ~/DeepDocking/library_prepared_fp --tot_process 60

This will create a library_prepared_fp folder with the resulting fingerprints. The tot_process
argument controls how many files from library_prepared will be processed in parallel using
multiprocessing.

c CRITICAL STEP DD works exclusively with Morgan fingerprints of radius 2 and 1,024 bits in
the format generated by the morgan_fp.py script, which is the name of the molecule followed by the
indexes of fingerprint bits that are set to 1, comma separated (Box 1).

Stage II: receptor preparation ● Timing ~30 min
8 Obtain the PDB structure of the target molecule from a public repository (e.g., the PDB51). Where

possible, selecting target structures with bound ligands is recommended.
9 Use the Protein Preparation Wizard tool from Maestro suite36 to prepare and optimize the target

structure by following the procedure illustrated at https://www.schrodinger.com/training/videos/
protein-preparation. Any other protein preparation tool can be used for the same purpose.

10 Save the resulting optimized structure in PDB format.
11 Depending on the choice of docking software, the grid can be generated in different ways. Each

process has been described extensively elsewhere; therefore, in the present protocol, we describe
only the default workflows for Glide (A) and FRED (B). Detailed instructions on how to customize
the grid generation process can be found in the training videos provided by Schrödinger for Glide
(https://www.schrodinger.com/training/videos/docking-receptor-grid-generation) and in the manual
of OEDocking for FRED (https://docs.eyesopen.com/applications/oedocking/make_receptor/make_
receptor.html).
(A) Generation of the Glide docking grid

(i) Launch the Maestro graphical user interface (GUI).
(ii) Load the prepared PDB in Maestro using ‘File’ → ‘Import Structures …’
(iii) In the Tasks panel, search for ‘Receptor Grid Generation’ and select it.
(iv) In the Receptor panel, check the ‘Pick to identify the ligand’ box and select the bound

ligand in the Workspace.
(v) Press ‘Run’. The docking grid will be generated in zip format.

(B) Generation of the FRED docking grid
(i) Open Make Receptor GUI.
(ii) Import the prepared PDB structure using ‘File’ → ‘Open …’
(iii) Check the ‘Pro’ box for the target protein and the ′Lig′ box for the ligand.
(iv) Adjust the box size in the Box panel, if necessary.
(v) Press ‘Create Shape’ in the Shape panel.
(vi) Type the name of the protein and ligand in the respective boxes in the Finish panel and

press ‘Save’ to save the grid in oeb format.
12 Move the grid into a docking_grid directory in the DeepDocking folder.

Stage III: random sampling of molecules in the first iteration (DD phase 1)
● Timing ~15 min
13 In a projects directory, create a protein_test project folder. The DD process (Fig. 4) will output all

the results into this folder.
14 Activate the conda environment and use the molecular_file_count_updated.py script provided

in the scripts_1 folder with the following command to determine the number of molecules

PROTOCOL NATURE PROTOCOLS

680 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://www.schrodinger.com/training/videos/protein-preparation
https://www.schrodinger.com/training/videos/protein-preparation
https://www.schrodinger.com/training/videos/docking-receptor-grid-generation
https://docs.eyesopen.com/applications/oedocking/make_receptor/make_receptor.html
https://docs.eyesopen.com/applications/oedocking/make_receptor/make_receptor.html
www.nature.com/nprot

to sample from each library file to generate training, validation and test sets, each containing
1,000,000 molecules:

python molecular_file_count_updated.py --project_name protein_test
--n_iteration 1 --data_directory ~/DeepDocking/library_prepared_fp
--tot_process 60 --tot_sampling 3000000

A Mol_ct_file_updated_protein_test.csv file will be created in the ~/DeepDocking/library_prepared_fp
Morgan fingerprint folder, reporting the number of molecules to sample from each file.

c CRITICAL STEP The choice of molecular sample sizes in the first iteration is critical, because
validation and test sets are generated only during this iteration and should be as large as possible
(ideally, 1,000,000 molecules each). Refer to Experimental design for detailed information on how to
properly choose the sizes of validation, test and training sets.

15 Use the sampling.py script to perform random sampling:

python sampling.py --project_name protein_test --file_path ~/DeepDocking/
projects --n_iteration 1 --data_directory ~/DeepDocking/library_
prepared_fp --tot_process 60 --train_size 1000000 --val_size 1000000

Smiles
Morgan fingerprints of radius 2,

1,024 bits Docking grid

Phase 1
Steps 13–18

Phases 2–3
Steps 19–20

Phase 4
Steps 21–23

Phase 5
Steps 24–31

Steps 37–38

Steps 32–36

Random sampling from library

Training Validation Test

Conventional docking

DNN training

Inference for the library

Predict virtual hits

No

Yes

Conventional docking of virtual hits

Final iteration?

Augment training set

Random sampling of predicted
virtual hits

Fig. 4 | General DD workflow. The method comprises five phases to be repeated iteratively and one final phase in which predicted virtual hits are
conventionally docked to the target. Validation and test sets are generated and docked only in the first iteration. Step numbering refers to Procedure 1
(manual version).

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 681

www.nature.com/nprot

This step will create an iteration_1 folder inside the project directory and will generate three files
with the names of 1,000,000 molecules each. train_size and val_size arguments
control the number of molecules to sample for the training set and validation/test set files,
respectively. Validation and test sets will be read always from the iteration_1 folder, regardless of the
iteration.

c CRITICAL STEP The sum of the train_size and 2val_size argumentsmust be equal to the
tot_sampling value of Step 14 in the first iteration.

16 Remove the overlaps between sets using the sanity_check.py script:

python sanity_check.py --project_name protein_test --file_path ~/Deep-
Docking/projects --n_iteration 1

17 Extract the fingerprints of the sampled molecules:

python extracting_morgan.py --project_name protein_test --file_path
~/DeepDocking/projects --n_iteration 1 --morgan_directory ~/DeepDocking/
library_prepared_fp --tot_process 60

This will create amorgan folder in the iteration directory, with three .csv files containing the fingerprints
of the molecules.

18 Extract the corresponding SMILES:

python extracting_smiles.py --project_name protein_test --file_path
~/DeepDocking/projects --n_iteration 1 --smile_directory ~/DeepDocking/
library_prepared --tot_process 60

The SMILES will be extracted into a smile folder inside the iteration directory.

Stage IV: ligand preparation (DD phase 2) ● Timing ~12 h
19 The following procedures can be used to prepare molecules for docking with Glide SP (A) and

FRED (B) using an OMEGA module (https://docs.eyesopen.com/applications/omega/). Alternative
conformer generation programs can be used for the same purpose.
(A) Ligand preparation for Glide docking

(i) Create an sdf folder in iteration_1. Run OMEGA conformer generation in classic mode
(one conformer per molecule):

oeomega classic -in smile/train_smiles_final_updated.smi -out
sdf/training_sdf.sdf -maxconfs 1 -strictstereo false -mpi_np 60
-log training.log -prefix conf_training

for each smi file inside the smile folder.
(B) Ligand preparation for FRED docking

(i) Go to the iteration_1 directory and create an sdf folder. Run OMEGA 3D conformer
generation in pose mode:

oeomega pose -in smile/train_smiles_final_updated.smi -out sdf/
training_sdf.oeb.gz -strictstereo false -mpi_np 60 -log training.
log -prefix conf_training

for each file inside the smile folder. When running in pose mode, OMEGA will output a
ligand-dependent number of 3D conformations for each molecule in a oeb.gz file in the
sdf folder.

Stage V: molecular docking (DD phase 3) ● Timing ~20 h
20 Docking of the sampled molecules can be performed using Glide SP (https://www.schrodinger.com/

products/glide) (A) or FRED (https://docs.eyesopen.com/applications/oedocking/fred/fred.html)
(B) or any other docking program:

PROTOCOL NATURE PROTOCOLS

682 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://docs.eyesopen.com/applications/omega/
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://docs.eyesopen.com/applications/oedocking/fred/fred.html
www.nature.com/nprot

(A) Glide SP docking
(i) From scripts_1, run:

python input_glide.py --project_name protein_test --file_path
~/DeepDocking/projects --grid_file ~/DeepDocking/docking_grid/
glide_grid.zip --iteration_no 1 --glide_input ~/DeepDocking/
DD_protocol/scripts_1/glide_template.in

to create a docked folder in iteration_1 and generate a docking input script for each file in
the sdf folder. Note that input_glide.py will modify only the GRIDFILE and LIGANDFILE
line of the glide_template.in script in scripts_1, whereas all the other docking parameters
will be used as they are specified. Hence, the template can be modified to run alternative
Glide docking protocols (e.g., Glide XP).

(ii) Go to the docked folder. Note that the $SCHRODINGER environment variable must have
been set to the installation directory of the program using:

export SCHRODINGER=schrodinger-installation-directory

Further details can be found at https://www.schrodinger.com/kb/1842. Run Glide from the
command line:

$SCHRODINGER/glide -OVERWRITE -JOBNAME docking_train training_
docked.in

for each docking input file generated in the previous step. The user can also use the
-NJOBS option to run multiple subjobs in parallel, or run docking from Maestro GUI.
Refer to the Glide manual or watch https://www.schrodinger.com/training/videos/docking-
ligand-docking/glide-ligand-docking-calculation for more detailed instructions.

(B) FRED docking
(i) Create a docked folder and run:

fred -receptor ~/DeepDocking/docking_grid/fred_grid.oeb -dbase
sdf/training_sdf.oeb.gz -docked_molecule_file docked/phase_3_
training_docked.sdf -hitlist_size 0 -mpi_np 60 -prefix training_
docking

for each oeb.gz file in sdf to dock the molecules.

c CRITICAL STEP Regardless of the program, the docking results must be saved in sdf
format to be processed correctly by the next steps; gz compression is allowed. One single
docking output file must be saved for each input molecular set. The docking result files
must contain the word ‘test/valid/train’ in their name, depending on which set they
derive from.

Stage VI: model training (DD phase 4) ● Timing ~3 h
21 In the DD workflow, a user-defined number of DNN are trained with molecular fingerprints

and docking scores of sampled molecules (converted to binary labels). The process is trivially
adaptable to train score predictors for any docking program, because the only difference is the
keyword used to extract scores from the docking results. Run the extract_labels.py script from the
scripts_2 folder:

python extract_labels.py --project_name protein_test --file_path
~/DeepDocking/projects --iteration_no 1 --tot_process 3 --score_keyword
‘r_i_docking_score’

The docking scores for each molecular set will be saved to a corresponding txt file inside iteration_1.
The number of processes should match the number of docking sdf files (usually three). The
score_keyword argument must match the title of the field that stores the docking score of a

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 683

https://www.schrodinger.com/kb/1842
https://www.schrodinger.com/training/videos/docking-ligand-docking/glide-ligand-docking-calculation
https://www.schrodinger.com/training/videos/docking-ligand-docking/glide-ligand-docking-calculation
www.nature.com/nprot

molecule in the sdf files. For example, for Glide SP results, the field title is ‘r_i_docking_
score’, and for FRED results, it is ‘FRED Chemgauss4 score’.
? TROUBLESHOOTING

22 Activate the environment and run simple_job_models_manual.py from scripts_2:

python simple_job_models_manual.py --iteration_no 1 --morgan_directory
~/DeepDocking/library_prepared_fp --file_path ~/DeepDocking/projects/
protein_test --number_of_hyp 24 --total_iterations 11 --is_last False
--number_mol 1000000 --percent_first_mols 1 --percent_last_mols 0.01
--recall 0.90

to generate the scripts for model training.

c CRITICAL STEP The setup of DNN models is a critical part of DD. The arguments for the script
are explained in detail in Table 1. The recommended values are based on our experience in
screening 1B+ libraries.

23 Model training can be performed using the entire training set generated during random sampling
(A). Alternatively, it is possible to evaluate performances at different training sizes without
additional docking and choose an optimal training size for the user’s system to be used in successive
iterations (B). Option B works only for the first iteration, and it requires that model training and
selection are performed for each investigated size; thus, it may significantly increase the
computational cost. Importantly, if the user is using a docking program relying on a stochastic
algorithm for pose generation (e.g., Autodock52), the database reduction power associated with a
specific training size will be higher for more ‘deterministic’ runs (converging to the same outcome
at the cost of more time-consuming simulations), and larger training sets will be required to obtain
the same performances for more ‘random’ runs (Supplementary Fig. 2).
(A) Regular training

(i) Go to the simple_job folder of iteration_1 and run each script (preferably on a GPU) after
activating the environment, to train the corresponding model:

bash simple_job_1.sh

Table 1 | Parameters for model training

Argument Description Recommended values

--number_of_hyp Number of models that will be trained (with different combinations of the
hyperparameters described in ref. 10)

24; allowed values are 16, 24, 48,
72 and 144

--total_iterations Number of total iterations. This value will influence how the definition of
virtual hits will linearly change across iterations

4–11 (11 is recommended to obtain
size-reduction values similar to
those obtained in ref. 10)

--is_last Last iteration (False/True)? False, except for the last iteration

--number_mol Number of molecules to use for test and validation 1,000,000

--percent_first_mols Percentage of top-scoring validation molecules that are considered virtual
hits in the first iteration. This value is linearly decreased in subsequent
iterations to reach percent_last_mols in the last iteration

1 (equal to 1%)

--percent_last_mols Percentage of top-scoring molecules to be considered as virtual hits in the
last iteration. This number should be selected on the basis of how many
compounds the user wants to prioritize for the next level of the virtual
screening process

0.01 (equal to 0.01%)

--recall Recall, fraction of virtual hits that will be retrieved by the model in the
validation set and inference stage. Based on the training, the DNN model
assigns to each molecule in the validation set a probability of being a virtual
hit (top-scoring molecule). A threshold is then chosen for the molecules in
the validation set, for which the specified fraction of virtual hits shows
probability values above such threshold. The threshold is then applied to the
whole library during the inference stage, and molecules with probabilities
below the threshold are classified as low scoring and hence discarded

0.90

PROTOCOL NATURE PROTOCOLS

684 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

www.nature.com/nprot

The models are saved in the all_models folder, and a hyperparameter_morgan_with_
freq_v3.txt file will be created in iteration_1. The file will report details for each trained
model: model number, training time, hyperparameter values (oversampling, batch size,
learn rate, number of hidden layers, number of units per layer, dropout frequency and class
weight), score cutoff for virtual hits in the validation set, area under the curve (AUC)53

values for validation and test sets, precision for the validation and test sets, recall in the test
set, number of true virtual hits in the test set and remaining molecules in the library on the
basis of validation and test sets. In the first iteration, training should take ≤3 h per model.

(B) Evaluation of different training sample sizes
(i) Use the progressive_evaluator.py script from scripts_2 in add_train_num_mol mode to

scale down the number of molecules used for training to 250,000 (or any desired value) in
the sh scripts of simple_job folder of iteration_1:

python progressive_evaluator.py --sample_size 250000 --project_
name protein_test --project_path ~/DeepDocking/projects/ --mode
add_train_num_mol

(ii) Go to the simple_job folder of iteration_1 and run each script (preferably on a GPU) after
activating the environment, to train the corresponding model:

bash simple_job_1.sh

In the first iteration, training should take ≤3 h per model.
(iii) Activate the environment, preferably on a GPU, and use the hyperparameter_result_

evaluation.py script in scripts_2 to run a grid search to identify the best-performing model:

python hyperparameter_result_evaluation.py --n_iteration 1
--data_path ~/DeepDocking/projects/protein_test --morgan_directory
~/DeepDocking/library_prepared_fp --number_mol 1000000 --recall
0.90

(iv) Run the progressive_evaluator.py script from scripts_2 with finished_iteration mode
to extract the performance values of the best selected model:

python progressive_evaluator.py --sample_size 250000 --project_
name protein_test --project_path ~/DeepDocking/projects/ --mode
finished_iteration

This will generate an evaluation_250000 folder in the project folder, storing the files
generated during model training and selection. It will also generate an evaluation.csv file in
the project folder, reporting sample size, test set recall value, test set precision and
predicted number of remaining molecules (based on the test set).

(v) Repeat Step 23B(i–v) for any desired training set size smaller than or equal to the original
number of molecules in the training set.

(vi) The evaluation.csv file (example in Supplementary Table 3) can be used to plot the expected
number of remaining molecules at each sample size, identifying the value that represents a
good balance between the number of molecules that can be docked as part of DD training
on the user’s system and model performance in terms of database reduction power. See
Steps 25–28 for further information on how to interpret the values reported in evaluation.csv
and best_model_stats.txt (in the respective evaluation_N folder) files for the selected size.

(vii) Once a training set size has been chosen, move the content of the respective evaluation_N
folder to iteration_1 and proceed to Step 25 (Step 24 has already been performed as part of
the model evaluation).

Stage VII: inference (DD phase 5) ● Timing ~4 h
24 In the final phase of a DD iteration, the model with the highest precision is identified and used

to predict the virtual hit-likeness of all molecules in the chemical library; molecules with virtual

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 685

www.nature.com/nprot

hit-likenesses below the probability threshold selected to ensure the predefined recall in the
validation set are then discarded. Activate the environment, preferably on a GPU, and use the
hyperparameter_result_evaluation.py script in scripts_2 to perform a grid search on the models:

python hyperparameter_result_evaluation.py --n_iteration 1 --data_path
~/DeepDocking/projects/protein_test --morgan_directory ~/DeepDocking/
library_prepared_fp --number_mol 1000000 --recall 0.90

The performances and statistics of the best model will be saved in a best_model_stats.txt file in the
iteration folder (Box 2); the Total Left Testing value in that file indicates an estimation of the
number of molecules from the library that will be classified as prospective virtual hits, calculated by
scaling the values observed for the test set. The model will be saved in the best_models folder
together with a thresholds.txt file reporting model number, virtual hit probability threshold and
docking score threshold for virtual hits.

25 Read the recall value in the test set, reported in the Model Recall line in best_model_stats.txt.
This should match the value that was chosen at Step 22.

c CRITICAL STEP A test recall value that differs by >0.015 from the predefined value indicates poor
model generalizability caused by validation and test sets that are not sufficiently large. As already
indicated in the Critical step of Step 14, the user should generate validation and test sets of as large
a size as possible in the first iteration.

26 (If needed) If at any iteration the test set recall significantly differs from the predefined value,
increase the size of validation and test sets and restart training at Step 21.
? TROUBLESHOOTING

27 Check the precision and number of remaining molecules estimated from the test set, indicated by
the Model Precision and Total Left Testing lines of best_model_stats.txt, respectively.
These values will depend on the size of the training set and the predefined recall value. Low
precision values (and consequently high numbers of remaining molecules) are due to a small
training set and/or a challenging target. The procedure illustrated at Step 23B can guide the user to
select a properly sized training set without additional docking.

28 (If needed) When during the first iteration the precision value is <0.0225 (2.25%) and the number
of remaining molecules is >40% of the starting number in the database, restart the iteration and
increase the training set size. If the training set cannot be further increased or its increase does not
have a significant effect on the number of remaining molecules, we recommend rerunning model
training from Step 22 by decreasing the recall value at Steps 22 and 24 by 0.05 and repeating this
process until <40% of the original molecules are retained; then, keep the new recall value for the
remainder of the run. Two illustrative cases are reported in Box 2, where a DD iteration has been

Box 2 | Comparison between results from test set sizes of 3,000 and 700,000 molecules

Shown below are two best_model_stats.txt files resulting from the grid search for runs using training, validation
and test set sizes of 3,000 and 700,000 molecules. Both iterations were run against the ligand binding domain
of the androgen receptor (PDB ID: 1T7R54) using a FRED docking program and a recall value of 0.90. The
screened chemical library was ZINC20 (~1 billion molecules).

Example 1. Training, validation, test set size: 3,000 molecules
* Best Model Stats *

- Model Cutoff: -13.711672409898348
- Model Precision: 0.01588310038119441
- Model Recall: 0.9259259259259259
- Model Auc: 0.7905723905723906
- Total Left: 533724567.64106053
Example 2. Training, validation, test set size: 700,000 molecules
* Best Model Stats *

- Model Cutoff: -13.72898444870879
- Model Precision: 0.04121249730196417
- Model Recall: 0.8926223520818115
- Model Auc: 0.9213150997969082
- Total Left Testing: 214126186.75484607

PROTOCOL NATURE PROTOCOLS

686 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://www.wwpdb.org/pdb?id=pdb_00001T7R
www.nature.com/nprot

run against the same target using (i) excessively small and (ii) properly sized molecular sets. In the
first case (Example 1), the recall value in the test set differs by 0.026 from the expected value (0.90).
Moreover, the precision is low (1.59%), and >50% of the original molecules in the library are
retained. Setting the size of the molecular sets to 700,000 molecules (Example 2) resulted in
substantially higher precision and AUC values, which allowed us to discard ~79% of the original
molecules, and improved model generalizability as well.

29 Use simple_job_predictions_manual.py in scripts_2 to generate the scripts for inference:

python simple_job_predictions_manual.py --project_name protein_test
--file_path ~/DeepDocking/projects --n_iteration 1 --morgan_directory
~/DeepDocking/library_prepared_fp

One inference script per file in library_prepared_fp will be generated in the simple_job_predictions
folder, inside the iteration directory.

30 Activate the environment, preferably on a GPU, and launch all the inference script from the
simple_job_predictions folder of iteration_1:

bash simple_job_1.sh

The names and virtual hit-likenesses for the qualified molecules will be saved in the
morgan_1024_predictions folder of iteration_1.

31 (Recommended) When inference is finished, compare the number of positively predicted molecules
in morgan_1024_predictions with the Total Left value in best_model_stats.txt to confirm model
generalizability. If the values are substantially different, larger validation and test sets must be
regenerated, and training and inference must be repeated, as described in Step 26.

Successive iterations ● Timing ~27 h per iteration
32 In subsequent iterations, molecules are sampled from the pool of positive predictions of the

previous iteration rather than the original library. For iteration N, activate the environment and
from scripts_1 run:

python molecular_file_count_updated.py --project_name protein_test --n_
iteration N --data_directory ~/DeepDocking/projects/protein_test/
iteration_N-1/morgan_1024_predictions --tot_process 60 --tot_sampling
1000000

The script will generate a Mol_ct_file_updated_protein_test.csv file inside the morgan_1024_predic-
tions folder of the N–1 iteration, reporting the number of molecules to sample from each file
generated during the previous inference stage. Note that the total number of molecules to sample
can now be reduced to 1,000,000 for training augmentation, because validation and test sets are
generated only during the first iteration.

33 Run the sampling.py script as:

python sampling.py --project_name protein_test --file_path ~/DeepDocking/
projects --n_iteration N --data_directory ~/DeepDocking/projects/
protein_test/iteration_N-1/morgan_1024_predictions --tot_process 60
--train_size 1000000 --val_size 1000000

c CRITICAL STEP train_size must be equal to tot_sampling value of Step 32. The
val_size refers always to the size of validation and test sets that were generated in the first
iteration.

34 Run the procedure from Steps 14–31 as described previously, modifying the argument of number of
the current iteration where requested. Model training will require more time, up to 12 h per model.

35 (If needed) The progress of a DD campaign can be monitored using the plot_progress.py
program in scripts_2. To do this, start by activating the conda environment. Then, plot the variation
in the number of remaining molecules and the corresponding receiver operating characteristic
(ROC) curves55 with the following command:

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 687

www.nature.com/nprot

python plot_progress.py --project ~/DeepDockingProjects/projects/
protein --size_test_set 1000000 --start_iteration 1 --end_iteration N
--output_folder ~/DeepDocking

start_iteration and end_iteration arguments can be adjusted to any range of iterations
that the user would like to analyze. The program will generate a figure file in the folder specified by
--output_folder argument, showing the number of remaining molecules at each iteration,
as well as the ROC curve and AUC value (calculated in the test set), indicating the model
performance.

36 Run the predefined number of iterations or stop earlier if the number of prospective virtual hits is low
enough to be actually docked with the available computational resources. After completing the last DD
iteration, the remaining molecules should be explicitly docked to eliminate misclassified low-scoring
entries and focus on true top-scoring molecules. Different strategies can be adopted to post-process the
remainder of the library, depending on its size and available resources (see also Troubleshooting):
● Dock all the remaining molecules to the target conventionally and identify virtual hits by their
docking scores.

● Decrease the recall value and re-run the final iteration; then, dock the resulting smaller set of the
remaining molecules.

● Rank the prospective hits by their virtual hit-likeness and dock only a top-ranked subset to the
target. This strategy has been proven effective to retain active compounds both in retrospective10

and prospective14 virtual screening campaigns.
● Run additional iteration(s) until reaching a number of ‘dockable’ molecules. Additional iterations
with more stringent virtual hit selectivity criteria can be run after the predefined iterations have
been completed. To do this, run Steps 14–31 by changing the number of the current iteration and
by updating the number of total iterations (--total_iterations) and the percentage of
top-scoring molecules to be considered as virtual hits in the additional iteration (--percent_
last_mols) in Step 22.
? TROUBLESHOOTING

Stage VIII: final phase ● Timing Depends on the number of final predicted virtual hits
37 Extract the SMILES of molecules predicted as virtual hits in the last iteration. To extract all the

remaining molecules, activate the environment and run the final_extraction.py script available in
utilities:

python final_extraction.py -smile_dir ~/DeepDocking/library_prepared
-prediction_dir ~ /DeepDocking/projects/protein_test/iteration_11/
morgan_1024_predictions -processors 60

The script will save the SMILES of the predicted virtual hits into a smiles.csv file and the names and
virtual hit-likeness into an id_score.csv file.

38 Prepare the SMILES for docking as described in Step 19 and dock the resulting structures into the
target site. Virtual hits can be identified by comparing their docking scores with the score threshold
used in the last iteration (printed to the thresholds.txt file in best_models).

Procedure 2: automated DD

Stage I: chemical library processing ● Timing ~13 h

c CRITICAL As in Procedure 1, stereoisomers, tautomers and protomers must be enumerated using for
instance OpenEye tools, and Morgan fingerprints must be calculated (Fig. 3). Other similar database
preparation tools can be used for the same purpose. The procedure described here calculates all the
possible stereoisomers of a given molecule and the dominant tautomer form (protonated at pH 7.4) for
each isomer. These commands can be changed, for example, to enumerate multiple tautomers and
protomers (see https://www.eyesopen.com/quacpac for guidance); each of these must be assigned a
unique name, however, resulting in a substantial increase in the number of unique library entries. For
some chemical libraries, the tautomers and protomers are partially or completely enumerated, and
therefore these steps may not be required.

PROTOCOL NATURE PROTOCOLS

688 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://www.eyesopen.com/quacpac
www.nature.com/nprot

1 Prepare the DD repository and SMILES files as described in Steps 1–3 of Procedure 1.

c CRITICAL STEP To run the jobs for automated DD on a computing cluster, the user must either
modify the script headers or pass the values for the #SBATCH lines from command to meet the
requirements of a specific Slurm cluster. Useful resources for translating Slurm syntax to other schedulers
can be found at https://www.msi.umn.edu/slurm/pbs-conversion (Slurm/Portable Batch System (PBS)
conversion) or https://srcc.stanford.edu/sge-slurm-conversion (Slurm/Sun Grid Engine (SGE) conversion).

2 Use the compute_states.sh script provided in the utilities folder to submit SMILES preparation jobs
(Fig. 3):

for i in $(ls ~/DeepDocking/smiles/smile_all_*.smi); do sbatch compute_
states.sh $i ~/DeepDocking/library_prepared; done

The prepared files will be output in a library_prepared folder.
3 Use the compute_morgan_fp.sh script to calculate the corresponding Morgan fingerprints:

sbatch --cpus-per-task 60 compute_morgan_fp.sh ~/DeepDocking/library_
prepared ~/DeepDocking/library_prepared_fp 60 dd-env

The script arguments are the path to the project folder, the name of the project folder, the number
of cores for multiprocessing and the name of the conda environment. The job will save the
fingerprint files in a library_prepared_fp folder.

c CRITICAL STEP See the Critical step of Step 7 of Procedure 1.

Stage II: receptor preparation ● Timing ~30 min
4 Follow Steps 8–12 of Procedure 1 to prepare a receptor for docking.

Stage III: automated phase 1 ● Timing ~15 min
5 Create a project folder inside ~/DeepDocking/projects called protein_test_automated.
6 Using a text editor, create a logs.txt file (Box 3) in the project folder, listing the path to the project

folder, the project folder name, the location of the docking grid, the location of the fingerprint
library, the location of the SMILES library, the docking program (either Glide or FRED), the
number of models to train at each iteration (the recommended value is 24; allowed values are 16,
24, 48, 72 and 144), the desired size of validation and test sets and the location of the Glide template
docking script (not required if a different docking program is used).

c CRITICAL STEP See the Critical step of Step 14 of Procedure 1.
7 Run the phase_1.sh script in the DD_protocol folder to submit a Slurm job for automated random

sampling:

sbatch --cpus-per-task 60 phase_1.sh 1 60 ~/DeepDocking/projects
protein_test_automated 1000000 dd-env

The arguments for phase_1.sh script are the current iteration number, the number of cores to
use for multiprocessing (on a single CPU node), the path to the project folder, the name of the
project folder, the desired size of the training set and the name of the conda environment.

Box 3 | Example of logs.txt project file for automated DD

/home/DeepDocking/projects
protein_test_automated
/home/DeepDocking/docking_grid/glide_grid.zip
/home/DeepDocking/library_prepared_fp
/home/DeepDocking/library_prepared
Glide
24
1000000
~/DeepDocking/DD_protocol/scripts_1/glide_template.in

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 689

https://www.msi.umn.edu/slurm/pbs-conversion
https://srcc.stanford.edu/sge-slurm-conversion
www.nature.com/nprot

Stage IV: automated phase 2 ● Timing ~12 h
8 The OpenEye OMEGA package is used for automated generation of 3D conformations of sampled

molecules. Molecules can be prepared for docking with Glide (A) or FRED (B). For customizing
the ligand preparation process, refer to OMEGA documentation at https://docs.eyesopen.com/
applications/omega/.
(A) Ligand preparation for Glide docking

(i) From the DD_protocol folder, run:

sbatch phase_2_glide.sh 1 60 ~/DeepDocking/projects protein_test_
automated cpu-partition

The script requires the following arguments: the current iteration number, the number of
cores to use per CPU node (note that three jobs on three nodes will be submitted, each
using the specified number of cores to process one of the molecular sets), the path to the
project folder, the name of the project folder and the name of the CPU partition. The 3D
conformations will be generated in an sdf folder of iteration_1.

(B) Ligand preparation for FRED docking
(i) From the DD_protocol folder, run:

sbatch phase_2_fred.sh 1 60 ~/DeepDocking/projects protein_test_
automated cpu-partition

The script requires the following arguments: the current iteration number, the number of
cores to use per CPU node, the path to the project folder, the name of the project folder
and the name of the CPU Slurm partition. The 3D conformations will be saved in an sdf
folder of iteration_1.

Stage V: automated phase 3 ● Timing ~20 h
9 Phase 3 can be performed by using either Glide SP (A) or FRED (B) docking:

(A) Glide SP docking
(i) Use the provided Slurm script to submit Glide docking jobs:

sbatch phase_3_glide.sh 1 600 ~/DeepDocking/projects protein_
test_automated

The arguments of the script are the current iteration number, the total number of Glide
jobs to submit, the path to the project folder and the project folder name. Note that the
$SCHRODINGER environment variable must have been set to the installation directory of
the program to perform Glide docking (see Step 20A(ii) of Procedure 1).

(B) FRED docking
(i) Use the provided Slurm script to submit FRED docking jobs:

sbatch phase_3_fred.sh 1 60 ~/DeepDocking/projects protein_test_
automated cpu-partition

The script requires the following arguments: the number of the current iteration, the
number of cores to use per CPU node, the path to the project folder, the name of
the project folder and the name of the CPU Slurm partition.

Stage VI: automated phase 4 ● Timing ~3 h
10 In the first iteration, the whole training set can be used to train the models (A). Alternatively, the

user can evaluate the performances at different training sizes without any additional docking, to
select an optimal sample size to use for the remainder of the run (B). Note that option B can be
performed only in the first iteration and requires retraining the model multiple times and can
therefore significantly increase the required time.

PROTOCOL NATURE PROTOCOLS

690 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://docs.eyesopen.com/applications/omega/
https://docs.eyesopen.com/applications/omega/
www.nature.com/nprot

(A) Regular training
(i) From the DD_protocol, run:

sbatch phase_4.sh 1 3 ~/DeepDocking/projects protein_test_auto-
mated gpu-partition 11 1 0.01 0.90 00-20:00 dd-env

The arguments required by the phase_4.sh script are the current iteration number, the
number of sdf docking files, the path to the project folder, the name of the project folder, the
name of the GPU Slurm partition, the total number of iterations, the percentage of top
molecules considered as virtual hits in the first iteration, the percentage of top molecules
considered as virtual hits in the last iteration, the recall value, the maximum training time
(in the format days-hours:minutes) after which a training job is canceled and the name of the
conda environment. In the first iteration, training usually does not require more than 3 h.

c CRITICAL STEP See the Critical step of Step 22 of Procedure 1 for recommendations on
how to choose the values of the arguments of the script.

(B) Evaluation of different training sample sizes
(i) From the DD_protocol, run:

sbatch progressive_evaluation.sh ~/DeepDocking/projects protein_
test_automated gpu-partition 1 0.01 0.90 1000000 250000 4 00-20:00
dd-env

to automatically perform training with four different set sizes between 250,0000 and
1,000,000 molecules (modify the script arguments for other ranges). The script arguments
are the path to the project folder, the name of the project folder, the name of the GPU
partition, the percentage of top molecules considered as virtual hits in the first iteration, the
percentage of top molecules considered as virtual hits in the last iteration, the recall value,
the maximum size to consider for training (must not exceed the original number of
sampled training molecules), the minimum size to consider for training, the number of
sizes to evaluate between minimum and maximum (included), the maximum training time
(in the format days-hours:minutes) after which a training job is canceled and the name of
the conda environment. This will generate four evaluation_N (N = 250,0000; 500,000;
750,0000; and 1,000,000) folders in the project directory, storing the related files generated
during model training and selection. It will also generate an evaluation.csv file in the
project folder, reporting sample sizes, test set recall value, test set precision and the
predicted number of remaining molecules.

(ii) Perform Step 23B(vi) of Procedure 1.
(iii) Once a training set size has been chosen, move the content of the respective evaluation_N

folder to iteration_1 and proceed with Step 11.
? TROUBLESHOOTING

Stage VII: automated phase 5 ● Timing ~4 h
11 From the DD_protocol, run:

sbatch phase_5.sh 1 ~/DeepDocking/projects protein_test_automated
0.90 gpu-partition dd-env

The script arguments are the current iteration number, the path to the project folder, the project
folder name, the recall value, the name of the GPU partition and the name of the conda environment.
Predicted virtual hits will be saved in a morgan_1024_predictions folder of iteration_1.

c CRITICAL STEP See the Critical step of Step 25 of Procedure 1.
? TROUBLESHOOTING

12 When inference jobs are completed, we suggest comparing the number of positively predicted
molecules in morgan_1024_predictions with the Total Left value in best_model_stats.txt, to
confirm model generalizability. If the values are significantly different, validation and test sets must be
regenerated with a larger size, and training and inference must be repeated, as described in Step 26
and the related Troubleshooting for Procedure 1.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 691

www.nature.com/nprot

Successive iterations ● Timing ~27 h per iteration
13 Perform all the steps from Step 7 to Step 12 as indicated before, modifying the values of the current

iteration where necessary. Model training will require increasingly higher times, but no more
than 12 h.

14 (If needed) Run Step 35 of Procedure 1 to analyze the progress of the campaign.
15 Run the predefined number of iterations or until the number of remaining molecules is low enough

to be docked. If the number of molecules is still too high after the completion of the last iteration,
additional iterations with higher hit-selectivity criteria can be run by performing Steps 7–12 and
updating the number of the current iteration. In this case, it is also required to modify the number
of total iterations in Step 10 as well as the percentage of top-scoring molecules that are considered
virtual hits in the additional iteration (increasing in this way the virtual hit selectivity). This
and other strategies to further reduce the number of compounds are illustrated in Step 36 of
Procedure 1 and Troubleshooting.
? TROUBLESHOOTING

Stage VIII: automated final phase ● Timing Depends on the number of final predicted
virtual hits
16 To obtain the SMILES and virtual hit-likenesses of the retained molecules in the last iteration, run

from utilities:

sbatch --cpus-per-task 60 final_extraction.sh ~/DeepDocking/library_
prepared /DeepDocking/projects/protein_test/iteration_11/morgan_1024_
predictions 60 ‘all_mol’ dd-env

The arguments required by the script are the location of the original SMILES library, the location of
the prospective virtual hits identified in the last iteration, the number of cores to use
for multiprocessing, the number of molecules to extract (if this value is set to ‘all_mol’, the
SMILES of all the prospective virtual hits will be extracted) and the name of the environment.
SMILES and virtual hit-likeness of the molecules will be saved in two respective files in the folder
where the script is launched.

17 Perform Step 38 of Procedure 1.

Troubleshooting

Troubleshooting advice can be found in Table 2.

Table 2 | Troubleshooting table

Step Problem Possible reason Solution

N/A For all Python scripts, the
script might never
terminate

The Python version is not
3.0+

Check that the correct Python version is being used

21 (Procedure 1) The .txt files created by
extract_labels.py are
empty except for the
first line

The score keyword
specified for extracting the
scores is incorrect

Open one of the sdf files in docked with a text editor and
locate the score field; use the corresponding title as the
score keyword

26 (Procedure 1)
and 11
(Procedure 2)

The recall value in
best_model_stats.txt
differs more than 0.015
from the user-
defined value

Validation and test sets
contain a very limited
number of positive
samples, and the resulting
models are not
generalizable

Re-perform random sampling in the iteration_1 folder for
validation and test sets using a larger size, to provide a larger
number of positive samples, and restart the run from the
training stage of the iteration where the problem was
detected:
• Move the following files from iteration_1 into a different
location: train_smiles_final_updated.smi (can be found in
smile), train_morgan_1024_updated.csv (in morgan),
train_set.txt and training_labels.txt. These training set files
are used for training augmentation in later iterations and
do not need to be modified

• Remove smile and morgan directories from iteration_1, as
well as label .txt files and set .txt files

Table continued

PROTOCOL NATURE PROTOCOLS

692 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

www.nature.com/nprot

Table 2 (continued)

Step Problem Possible reason Solution

• Regenerate validation and test sets of larger size by
running Steps 14–18 of Procedure 1 or Steps 6 (modify only
the validation/test size line of the logs.txt file) and 7 of
Procedure 2, selecting a larger size for validation and
test sets

• Prepare and dock to the target only the new validation and
test sets that have been created in the smile folder

• Move the sdf of docking results for the new validation and
test sets in the docked folder of iteration_1

• Run Step 21 of Procedure 1 to extract the labels of the new
validation and test sets in the iteration_1 folder

• Move back the original train_smiles_final_updated.smi,
train_morgan_1024_updated.csv, train_set.txt and
training_labels.txt to their respective locations in iteration_1,
replacing the new generated training files

• In this way, training data from the first iteration remain the
same, while validation and test data have been expanded;
restart the training stage of the iteration where the issue
was detected and continue the run

10 and 11
(Procedure 2)

Individual training and
inference jobs cannot
be submitted

The header template used
in simple_job_models.py
and simple_job_predictions.
py does not match the
syntax of the
Slurm system

Modify the last lines of the two job-writing scripts to match
the #SBATCH lines required by the system

36 (Procedure 1)
and 15
(Procedure 2)

The prospective virtual
hits remaining after the
last iteration are too
many to be docked with
the available resources

DD performances are
target dependent, and in
certain cases, the model
precision may be
significantly low

1) Decrease the recall value and repeat training and
inference stages in the last iteration
2) Perform Step 37 of Procedure 1 by extracting a subset of
molecules to dock (here, 10 million), selected by their virtual
hit-likeness ranks10:
python final_extraction.py -smile_dir
~/DeepDocking/library_prepared
-prediction_dir ~ /DeepDocking/projects/
protein_test/iteration_11/
morgan_1024_predictions -processors 60
-mols_to_dock 10000000 or use the automated version
(Procedure 2, Step 16):
sbatch --cpus-per-task 60 final_extraction.sh
~/DeepDocking/library_prepared
/DeepDocking/projects/protein_test/
iteration_11/morgan_1024_predictions 60
10000000 dd-env
3) Run additional iteration(s) using more-selective
virtual hit definitions in Step 22 of Procedure 1 or
Step 10 of Procedure 2. For example, if the number
of molecules is significantly high after 11 predefined
iterations have been completed, start iteration 12 and
after random sampling, docking and score extraction
steps, run:
python simple_job_models_manual.py
--iteration_no 12 --morgan_directory
~/DeepDocking/library_prepared_fp --time
00-20:00 --file_path ~/DeepDocking/projects/
protein_test --number_of_hyp 24
--total_iterations 12 --is_last False
--number_mol 1000000 --percent_first_mols 1
--percent_last_mols 0.005 --recall 0.90
to set up the training to consider the top 0.005% of
molecules in the validation set as virtual hits, for Procedure 1.
Alternatively, for Procedure 2, run:
sbatch phase_4.sh 1 3 ~/DeepDocking/projects
protein_test_automated gpu-partition 12 1
0.005 0.90 00-20:00 dd-env

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 693

www.nature.com/nprot

Timing

The timing for running the protocol was estimated on a cluster with 640 cores (64 cores per CPU node)
and 50 GPUs using 60 cores for each OpenEye job.
Steps 1–7 of Procedure 1 and Steps 1–3 of Procedure 2, chemical library processing: ~13 h
Steps 8–12 of Procedure 1 and Step 4 of Procedure 2, receptor preparation: ~30 min
Steps 13–18 of Procedure 1 and Steps 5–7 of Procedure 2, random sampling: ~15 min
Step 19 of Procedure 1 and Step 8 of Procedure 2, ligand preparation: ~12 h
Step 20 of Procedure 1 and Step 9 of Procedure 2, docking: ~20 h
Steps 21–23 of Procedure 1 and Step 10 of Procedure 2, model training: ~3 h for a single training set size
Steps 24–31 of Procedure 1 and Steps 11 and 12 of Procedure 2, inference: ~4 h
Steps 32–36 of Procedure 1 and Steps 13–15 of Procedure 2, successive iterations: ~27 h per iteration
Steps 37 and 38 of Procedure 1 and Steps 16 and 17 of Procedure 2, final phase: depends on the size of
the remainder

Anticipated results

The goal of the DD iterative workflow is to progressively improve the docking score prediction and to
focus on the most-promising molecules in a library while rapidly discarding low-scoring entries.
Hence, the number of predicted virtual hits is expected to always decrease for each new iteration
compared to the previous one, as illustrated in the example of Fig. 5a. At the same time, the accuracy
of the models, as measured by the AUC values of the ROC curves (Fig. 5b), should also increase
at each iteration. As described in the procedure, the progress of a DD campaign can be monitored
using the plot_progress.py program, which will automatically plot the number of predicted
virtual hits and ROC curves with associated AUC values for a given range of iterations (Fig. 5).
Notably, Procedures 1 and 2 that are presented in the protocol differ only by the level of automation

250a

b

200

150

100

R
em

ai
ni

ng
 m

ol
ec

ul
es

, M
T

P
R

50

0
1

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6

FPR

0.8

AUC it. 1 = 0.917
AUC it. 2 = 0.940
AUC it. 3 = 0.950
AUC it. 4 = 0.956
AUC it. 5 = 0.961
AUC it. 6 = 0.966
AUC it. 7 = 0.971
AUC it. 8 = 0.975
AUC it. 9 = 0.978
AUC it. 10 = 0.981
AUC it. 11 = 0.987

1.0

2 3 4 5 6
Iteration

7 8 9 10 11

Fig. 5 | Iterative model improvement during DD iterations (virtual screening of ZINC20 library against the active
site of SARS-CoV-2 papain-like protease (PDB ID: 7LBR56) using Glide SP). a, Decreasing number of prospective
virtual hits in the library. b, Increasing AUC values. FPR, false-positive rate; it, iteration; TPR, true-positive rate.

PROTOCOL NATURE PROTOCOLS

694 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://www.wwpdb.org/pdb?id=pdb_00007lbr
www.nature.com/nprot

and required resources; hence, it is expected that both Procedures will lead to the same outcomes for a
DD campaign.

For most cases, the protocol can reduce the size of the docking library from a billion entries to a
manageable number of molecules (10–40 million). For certain targets, however, the number of
predicted qualifying hits (after completing the predefined number of iterations) can still be rather
high (100+ million) to process with conventional docking. It is possible to detect early such pro-
blematic cases by checking the database reduction that is achieved in the first iteration, which is a
reliable indication of the overall quality of score prediction; empirical approaches that we have often
found effective are to either increase the training set size or lower the recall value repeat training and
inference until ≥60% of the library molecules are discarded in the first iteration and then proceed with
the new recall for subsequent iterations (see Step 28 of Procedure 1 for more details). If the number of
molecules is still challenging to dock with the available resources after the predefined number of DD
iterations has been reached, we recommend making use of the strategies outlined at Step 36 of
Procedure 1 and Step 15 of Procedure 2. By using the most suitable approach, a DD user should be
able to explicitly dock the remaining molecules with the disposable computational resources, to
identify top-scoring molecules that can advance to further CADD refinement (if needed) and
experimental evaluation.

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Data availability
The prepared version of ZINC20 can be freely obtained from https://files.docking.org/zinc20-ML/.
The example iteration is freely available from the Federated Research Data Repository (https://doi.
org/10.20383/102.0489). Source data for Figs. 2 and 5 are freely available from the Federated Research
Data Repository (https://doi.org/10.20383/102.0489).

Code availability
The DD code is freely available at https://github.com/jamesgleave/DD_protocol.

References

1. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).
2. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580,

663–668 (2020).
3. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579,

609–614 (2020).
4. Grygorenko, O. O. et al. Generating multibillion chemical space of readily accessible screening compounds.

iScience 23, 101681 (2020).
5. Acharya, A. et al. Supercomputer-based ensemble docking drug discovery pipeline with application to

Covid-19. J. Chem. Inf. Model. 60, 5832–5852 (2020).
6. Shoichet, B. K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).
7. Cherkasov, A., Ban, F., Li, Y., Fallahi, M. & Hammond, G. L. Progressive docking: a hybrid QSAR/docking

approach for accelerating in silico high throughput screening. J. Med. Chem. 49, 7466–7478 (2006).
8. Svensson, F., Norinder, U. & Bender, A. Improving screening efficiency through iterative screening using

docking and conformal prediction. J. Chem. Inf. Model. 57, 439–444 (2017).
9. Ahmed, L. et al. Efficient iterative virtual screening with Apache Spark and conformal prediction.

J. Cheminform. 10, 8 (2018).
10. Gentile, F. et al. Deep Docking: a deep learning platform for augmentation of structure based drug discovery.

ACS Cent. Sci. 6, 939–949 (2020).
11. Sterling, T. & Irwin, J. J. ZINC 15—ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).
12. McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 51, 578–596 (2011).
13. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and

assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).
14. Ton, A.-T., Gentile, F., Hsing, M., Ban, F. & Cherkasov, A. Rapid identification of potential inhibitors of

SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inf. 39, e2000028 (2020).
15. Muratov, E. N. et al. A critical overview of computational approaches employed for COVID-19 drug

discovery. Chem. Soc. Rev. 50, 9121–9151 (2021).

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 695

https://files.docking.org/zinc20-ML/
https://doi.org/10.20383/102.0489
https://doi.org/10.20383/102.0489
https://doi.org/10.20383/102.0489
https://github.com/jamesgleave/DD_protocol
www.nature.com/nprot

16. Gentile, F., Ton, A.-T., Mslati, H., Ban, F. & Cherkasov, A. Discovery of SARS-CoV-2 main protease
inhibitors through Deep Docking of 1.36 billion compounds. in 26th Congress of the European Society of
Biomechanics (European Society of Biomechanics, 2021).

17. Rossetti, G. G. et al. Identification of low micromolar SARS-CoV-2 Mpro inhibitors from hits identified by in
silico screens. Preprint at bioRxiv https://doi.org/10.1101/2020.12.03.409441(2020).

18. Jastrzębski, S. et al. Emulating docking results using a deep neural network: a new perspective for virtual
screening. J. Chem. Inf. Model. 60, 4246–4262 (2020).

19. Al Saadi, A. et al. IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads.
in ACM International Conference Proceeding Series (Association for Computing Machinery, 2021);
https://doi.org/10.1145/3472456.3473524

20. Berenger, F., Kumar, A., Zhang, K. Y. J. & Yamanishi, Y. Lean-docking: exploiting ligands’ predicted docking
scores to accelerate molecular docking. J. Chem. Inf. Model. 61, 2341––2352 (2021).

21. Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through
molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).

22. Yang, Y. et al. Efficient exploration of chemical space with docking and deep-learning. Preprint at
https://chemrxiv.org/engage/chemrxiv/article-details/60c755bf842e65adc6db4393 (2021).

23. Sessions, Z. et al. Recent progress on cheminformatics approaches to epigenetic drug discovery. Drug Discov.
Today 25, 2268–2276 (2020).

24. Coley, C. W. Defining and exploring chemical spaces. Trends Chem. 3, 133–145 (2021).
25. Irwin, J. J. et al. ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model.

60, 6065–6073 (2020).
26. Enamine. REAL Database https://enamine.net/library-synthesis/real-compounds/real-database# (2021).
27. Enamine. REAL Space https://enamine.net/compound-collections/real-compounds/real-space-navigator

(2021).
28. Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A. & Stahl, M. T. Conformer generation with

OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge
Structural Database. J. Chem. Inf. Model. 50, 572–584 (2010).

29. The RDKit Documentation—The RDKit 2020.03.1 Documentation. https://www.rdkit.org/docs/ (2020).
30. QUACPAC 2.0.2.2. (OpenEye Scientific Software, 2019).
31. O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).
32. Kochev, N. T., Paskaleva, V. H. & Jeliazkova, N. Ambit-Tautomer: an open source tool for tautomer

generation. Mol. Inf. 32, 481–504 (2013).
33. Morgan, H. L. The generation of a unique machine description for chemical structures—a technique

developed at Chemical Abstracts Service. J. Chem. Doc. 5, 107–113 (1965).
34. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
35. Extended Connectivity Fingerprint ECFP https://docs.chemaxon.com/display/docs/extended-connectivity-

fingerprint-ecfp.md (ChemAxon, 2021).
36. Maestro v9.3. (Schrödinger, 2019).
37. Molecular Operating Environment 2019 (Chemical Computing Group, 2019).
38. Moustakas, D. T. et al. Development and validation of a modular, extensible docking program: DOCK 5.

J. Comput. Aided Mol. Des. 20, 601–619 (2006).
39. Shaffer, P. L., Jivan, A., Dollins, D. E., Claessens, F. & Gewirth, D. T. Structural basis of androgen receptor

binding to selective androgen response elements. Proc. Natl Acad. Sci. USA. 101, 4758–4763 (2004).
40. Santos-Martins, D. et al. Accelerating AutoDock4 with GPUs and gradient-based local search. J. Chem.

Theory Comput. 17, 1060–1073 (2021).
41. Alhossary, A., Handoko, S. D., Mu, Y. & Kwoh, C.-K. Fast, accurate, and reliable molecular docking with

QuickVina 2. Bioinformatics 31, 2214–2216 (2015).
42. Abagyan, R., Totrov, M. & Kuznetsov, D. ICM—a new method for protein modeling and design: applications

to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506
(1994).

43. Neves, M. A. C., Totrov, M. & Abagyan, R. Docking and scoring with ICM: the benchmarking results and
strategies for improvement. J. Comput. Aided Mol. Des. 26, 675–686 (2012).

44. Giga Docking Guide—Orion Programming Guide. 1.0 documentation https://docs.eyesopen.com/orion-
developer/2020-2-1/modules/large-scale-floes/docs/source/giga_docking_guide.html (OpenEye Software, 2020).

45. LeGrand, S. et al. GPU-accelerated drug discovery with docking on the Summit supercomputer: porting,
optimization, and application to COVID-19 research. Preprint at https://arxiv.org/abs/2007.03678 (2020).

46. Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).
47. Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).
48. OEDOCKING v3.3.0.3 (OpenEye Scientific Software, 2021).
49. Abadi, M. et al. TensorFlow: a system for large-scale machine learning. Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation, OSDI 2016 265–283 (The USENIX Asso-
ciation, 2016).

50. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2012).
51. Berman, H. M. The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000).
52. Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free

energy function. J. Comput. Chem. 19, 1639–1662 (1998).

PROTOCOL NATURE PROTOCOLS

696 NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot

https://doi.org/10.1101/2020.12.03.409441
https://doi.org/10.1145/3472456.3473524
https://chemrxiv.org/engage/chemrxiv/article-details/60c755bf842e65adc6db4393
https://enamine.net/library-synthesis/real-compounds/real-database#
https://enamine.net/compound-collections/real-compounds/real-space-navigator
https://www.rdkit.org/docs/
https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md
https://docs.chemaxon.com/display/docs/extended-connectivity-fingerprint-ecfp.md
https://docs.eyesopen.com/orion-developer/2020-2-1/modules/large-scale-floes/docs/source/giga_docking_guide.html
https://docs.eyesopen.com/orion-developer/2020-2-1/modules/large-scale-floes/docs/source/giga_docking_guide.html
https://arxiv.org/abs/2007.03678
www.nature.com/nprot

53. Melo, F. Area under the ROC curve. in Encyclopedia of Systems Biology (eds. Dubitzky, W. et al.) 38–39
(Springer, 2013).

54. Hur, E. et al. Recognition and accommodation at the androgen receptor coactivator binding interface.
PLoS Biol. 2, E274 (2004).

55. Melo, F. Receiver operating characteristic (ROC) curve. in Encyclopedia of Systems Biology (eds. Dubitzky, W.
et al.) 1818–1823 (Springer, 2013).

56. Shen, Z. et al. Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding
cooperativity. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.1c01307 (2021).

Acknowledgements
F.G. is supported by fellowships from the Canadian Institutes for Health Research (MFE-171324), the Michael Smith Foundation for
Health Research/VCHRI & VGH UBC Hospital Foundation (RT-2020-0408) and the Ermenegildo Zegna Foundation. F.B. is supported
by a UBC Data Science Institute fellowship. We thank J. Irwin for his support in sharing the DD-prepared version of the ZINC20 library.

Author contributions
F.G. and A.C. conceived the work. F.G. wrote the manuscript with the help of M.F., J.C.Y., J.G., A.-T.T. and F.B. F.G. developed the
protocol, with the help of J.C.Y., J.G. and A.S. J.C.Y., J.G. and F.G. wrote the current version of the code. A.-T.T. and M.F. provided
support with critical evaluation and tested user-friendliness of the protocol. A.S. contributed to discussing and revising the protocol.
A.C. supervised experiments and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41596-021-00659-2.

Correspondence and requests for materials should be addressed to Artem Cherkasov.

Peer review information Nature Protocols thanks John Karanicolas and Ying Yang for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 June 2021; Accepted: 8 November 2021;
Published online: 4 February 2022

Related links
Key references using this protocol
Gentile, F. et al. Chem. Sci. 12, 15960–15974 (2021): https://doi.org/10.1039/d1sc05579h
Gentile, F. et al. ACS Cent. Sci. 6, 939–949 (2020): https://doi.org/10.1021/acscentsci.0c00229
Ton, A.-T. et al. Mol. Inform. 39, e2000028 (2020): https://doi.org/10.1002/minf.202000028

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 17 |MARCH 2022 | 672–697 |www.nature.com/nprot 697

https://doi.org/10.1021/acs.jmedchem.1c01307
https://doi.org/10.1038/s41596-021-00659-2
http://www.nature.com/reprints
https://doi.org/10.1039/d1sc05579h
https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/10.1002/minf.202000028
www.nature.com/nprot

1

nature research | reporting sum
m

ary
April 2020

Corresponding author(s): Artem Cherkasov

Last updated by author(s): Oct 8, 2021

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Library enumeration was done using OpenEye's flipper (v. 3.1.2.2, https://docs.eyesopen.com/applications/omega/flipper.html) and
tautomers (v. 2.0.2.2, https://docs.eyesopen.com/applications/quacpac/tautomers/tautomers.html). 3D conformer generation was done
using OpenEye's omega (v. 3.1.2.2, https://www.eyesopen.com/omega). Receptor preparation was done with Schrodinger's Maestro (v. 12.0,
https://www.schrodinger.com/products/maestro) or OpenEye's Make Receptor (v. 3.3.0.3, https://docs.eyesopen.com/applications/
oedocking/make_receptor/make_receptor.html). Docking was done with Glide (v. 83012, https://www.schrodinger.com/products/glide) or
FRED (v. 3.4.0.2, https://www.eyesopen.com/oedocking). All the other calculations were performed with Deep Docking, freely available from
https://github.com/jamesgleave/DD_protocol.

Data analysis Data analysis with Deep Docking, freely available from https://github.com/jamesgleave/DD_protocol.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The prepared version of ZINC20 can be freely obtained from https://files.docking.org/zinc20-ML/

2

nature research | reporting sum
m

ary
April 2020

The example iteration is freely available from the Federated Research Data Repository, DOI: 10.20383/102.0489
Source data for Figure 2 and 5 are freely available from the Federated Research Data Repository, DOI: 10.20383/102.0489

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size N/A

Data exclusions N/A

Replication N/A

Randomization N/A

Blinding N/A

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Artificial intelligence–nobreakenabled virtual screening of ultra-large chemical libraries with deep�docking
	With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a s
	Introduction
	Development of DD to accelerate structure-based virtual screening
	Experimental design
	Preparation of chemical libraries
	Receptor preparation
	Molecular sample size
	Model training and inference
	Applications
	Comparison with alternative methods
	Limitations
	Overview of the protocol

	Materials
	Equipment
	Molecular data
	Software
	Hardware

	Procedure 1: manual DD
	Stage I: chemical library processing
	Enumerate stereoisomers, tautomers and protomers
	Morgan fingerprints
	Stage II: receptor preparation
	Stage III: random sampling of molecules in the first iteration (DD phase 1)
	Stage IV: ligand preparation (DD phase 2)
	Stage V: molecular docking (DD phase 3)
	Stage VI: model training (DD phase 4)
	Stage VII: inference (DD phase 5)
	Successive iterations
	Stage VIII: final phase

	Procedure 2: automated DD
	Stage I: chemical library processing
	Stage II: receptor preparation
	Stage III: automated phase 1
	Stage IV: automated phase 2
	Stage V: automated phase 3
	Stage VI: automated phase 4
	Stage VII: automated phase 5
	Successive iterations
	Stage VIII: automated final phase

	Troubleshooting
	Timing
	Anticipated results
	Reporting Summary
	References
	References

	References
	ACKNOWLEDGMENTS

