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Abstract

The fifth generation (5G) wireless communication networks are currently being deployed, and be-

yond 5G (B5G) networks are expected to be developed over the next decade. Artificial intelligence

(AI) technologies and, in particular, machine learning (ML) have the potential to efficiently solve the

unstructured and seemingly intractable problems by involving large amounts of data that need to be

dealt with in B5G. This article studies how AI and ML can be leveraged for the design and operation

of B5G networks. We first provide a comprehensive survey of recent advances and future challenges

that result from bringing AI/ML technologies into B5G wireless networks. Our survey touches different

aspects of wireless network design and optimization, including channel measurements, modeling, and

C.-X. Wang (corresponding author) is with the National Mobile Communications Research Laboratory, School of Information

Science and Engineering, Southeast University, Nanjing, 210096, China, and also with the Purple Mountain Laboratories, Nanjing,

211111 (e-mail:chxwang@seu.edu.cn).

M. D. Renzo is with Universit Paris-Saclay, CNRS, CentraleSuplec, Laboratoire des Signaux et Systmes, 91190, Gif-sur-

Yvette, France (e-mail: marco.direnzo@l2s.centralesupelec.fr).
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estimation, physical-layer research, and network management and optimization. Then, ML algorithms

and applications to B5G networks are reviewed, followed by an overview of standard developments

of applying AI/ML algorithms to B5G networks. We conclude this study by the future challenges on

applying AI/ML to B5G networks.
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I. INTRODUCTION

Global demand for wireless communication networks continues to increase, mainly due to the ever-

growing numbers of wireless users and new emerging wireless services. The fifth generation (5G) and

beyond 5G (B5G) wireless networks are expected to be developed in the future and offer higher data rates,

improved coverage, better cost efficiency, resource utilization, security, adaptability, and scalability [1].

Artificial intelligence (AI) technologies have the potential to efficiently solve unstructured and seemingly

intractable problems involving large amounts of data that need to be dealt with in the design and

optimization of 5G and B5G wireless networks.

AI is “the simulation of human intelligence processes by machines, especially computer systems” [2].

It is usually defined as the science of making computers perform tasks that require intelligence like

humans. Whereas AI is a broader concept of machines being able to carry out tasks smartly, machine

learning (ML) is a current (probably the most popular) application of AI that enables machines to learn

from large amounts of data and act accordingly without being explicitly programmed. As a special type

of ML, deep learning studies artificial neural networks (ANNs) that contain more than one hidden layer

to “simulate” the human brain. Currently, deep learning is one of the most widespread ML methods as

it has successfully been applied to different fields such as the computer vision, speech recognition, and

bioinformatics.

AI technologies will not only reduce or even replace manual efforts for the network development,

configuration, and management, but also deliver better system performance, reliability, and adaptability

of communication networks by making real-time robust decisions based on predictions of the networks and

users’ behavior. ML, as a typical AI technologies, is widely expected to rapidly become a key component

of B5G communication networks. It will make a full use of the big data to overcome the challenges of

designing and operating B5G networks. Potential benefits of introducing ML into communication systems

include the following. Firstly, channel and interference models are extremely complicated in reality due

to the dynamic nature of wireless communication channels, especially in B5G scenarios. ML techniques

may automatically extract the unknown channel information by learning from the communication data and

prior knowledge. Secondly, as the density of wireless access points continues increasing, there is an urgent

need for global optimization of communication resources and fine tuning of system settings. However,

the enormous amount of resources, system parameters to be optimized, and their coupled correlations

render these tasks notoriously difficult to solve using existing approaches. In contrast, sophisticated ML

algorithms, e.g., deep learning and probabilistic learning methods, may be able to model the highly non-
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linear correlations and estimate (sub-)optimal system parameters. Lastly, ML will realize learning-based

adaptive configuration of networks by finding out behavioral patterns and responding timely and flexibly

to various scenarios, e.g., anticipating traffic and planning ahead rather than simply reacting to unexpected

events.

Current cellular networks designed and operated based on previous postulates may systematically

fail to enable future communication services, since they cannot keep pace with the data explosion and

the underlying complexity of the generated data while guaranteeing the required capacity, reliability,

and adaptability. Thus, the network cannot quickly react and anticipate events that might deteriorate

communication services in real-time. However, as most AI algorithms and applications are not specifically

designed for wireless communication networks, it is hard to directly apply existing AI algorithms to B5G

networks.

Compared to earlier survey papers such as [2], this article aims to explore the advantages of combining

AI technologies with B5G wireless networks, leveraging the potential of AI technologies to tackle

challenges that cannot be efficiently addressed using conventional communication technologies. This

article focuses on the following five aspects that bring AI technologies into B5G wireless networks as

shown in Fig. 1. Accordingly, the remainder of the paper is organized as follows. In Section II, we discuss

channel measurements, modeling, and estimation for B5G networks using AI technologies. Section III

studies physical-layer researches for B5G networks using AI technologies. In Section IV, we provide a

survey of network management and optimization for B5G networks using AI technologies. AI algorithms

and applications to B5G networks are given in Section V. Section VI provides an overview of standard

developments of AI technologies and ML algorithms for B5G networks. Conclusions are drawn and

future challenges are discussed in Section VII.

II. CHANNEL MEASUREMENTS, MODELING, AND ESTIMATION FOR B5G NETWORKS USING AI
TECHNOLOGIES

A. Channel Measurement Data Processing and Channel Modeling

For B5G wireless communication systems, the diversity of frequency bands, including sub-6 GHz,

millimeter wave (mmWave), terahertz (THz), and optical bands, has made channel modeling more

complex. To address the B5G channel modeling requirements, the existing channel models are extended

with a much higher computational complexity. When modeling for new scenarios, channel measurements

must be conducted to understand new channel characteristics, which is a time-consuming task. Apart

from a recent work in [3], there are very few investigations that studied the benefits of applying AI to
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channel modeling and most existing works only employ very simple AI techniques on a very limited part

of the channel modeling process. There is no work that comprehensively investigates the application of

AI technologies to channel measurements.

Due to the high complexity to model the signal propagation in diverse scenarios, conventional methods

make many assumptions and approximations to simplify the processing and modeling methods. Wireless

channel features can be extracted from the huge amount of existing measurement data and, at the same

time, the channel modeling problem can be tackled in a data-driven manner, seamlessly integrating

with model-based methods. A good balance of the accuracy-complexity trade-off of both processing and

modeling techniques will be maintained.

ML can be utilized to channel features prediction, channel impulse response (CIR) modeling, multipath

component (MPC) clustering, channel parameter estimation, and scenario classification, based on channel

measurement data and environment information. Authors in [4] proposed a big data enabled channel model

based on both feed-forward neural network (FNN) and radial basis function neural network (RBF-NN).

It can predict channel statistical properties including the received power, root mean square (RMS) delay

spread (DS), and RMS angle spreads (ASs) with input parameters of transmitter (Tx) and receiver (Rx)

coordinates, Tx–Rx distance, and carrier frequency. The performances of FNN and RBF-NN were fully

compared based on both real channel measurement data and synthetic data. An example of the measured

and predicted path loss and RMS DS is shown in Fig. 2. Both FNN and RBF-NN show good potential

for channel modelling. In [5], the ANN was applied to remove the noise from measured CIR, and the

principal component analysis (PCA) was utilized to exploit the features and structures of the channel and

model the CIR. In [6], several clustering algorithms were investigated for MPC clustering and tracking,

including K-means, fuzzy C-means (FCM), and density-based spatial clustering of applications with noise

(DBSCAN). In [7], the convolutional neural network (CNN) was used to automatically identify different

wireless channels and help decide which relevant wireless channel features should be used. The MPC

parameters like amplitude, delay, and Doppler frequency were extracted and used as input parameters in

the CNN, and the output of the CNN was the class of the wireless channels.

B. Channel Estimation Associated with ML

In wireless communications, the channel state information (CSI) can be acquired through blind and

pilot-based channel estimation techniques. However, blind channel estimation extracts statistical properties

by using abundant received symbols. For the pilot-based technique, with the deployment of 5G key

technologies, pilot overhead, non-linear channel, and high mobility channel, etc., are challenges to be
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conquered in channel estimation. For example, the pilot overhead can be intolerable for massive multiple-

input multiple-output (MIMO) channels and ultra-dense networks (UDNs). Thus, the trade-off between

pilot length and channel estimation accuracy should be considered. The non-linear characteristics of

visible light communication (VLC) channel and mmWave channel make it hard to get accurate CSI. In

addition, with the development of high speed railways (HSRs), accurate channel estimation is important

to guarantee the quality-of-service (QoS) and efficient information transmission.

Researchers resort to ML techniques to solve above mentioned problems. To address the channel

estimation in a fast fading time-varying multipath channel, a two dimensional (2D) non-linear complex

support vector regression (SVR) based on a RBF kernel was proposed to achieve accurate channel

estimate [8]. In [9], a deep learning based channel estimation algorithm was proposed for beamspace

mmWave massive MIMO systems. It can learn channel structure and estimate channel from a large

number of training data. In [10], an off-grid sparse Bayesian learning based channel estimation algorithm

was proposed for mmWave massive MIMO uplink. It can identify the angles and gains of the scatterer

paths by exploiting spatial sparse structure in mmWave channels.

For this topic, one future direction is the generalized ML-based channel estimation scheme, which can

be directly used in different scenarios without further training. In order to build this generalized scheme,

vast amount of pre-collected communication data have to be used by machine/deep learning algorithms

to learn the channel feature of different environments.

III. PHYSICAL-LAYER RESEARCH FOR B5G NETWORKS USING AI TECHNOLOGIES

A. Large-scale Sensing via Massive Radio Interfaces

The use of large antenna arrays offer not only the unprecedented performance in terms of reliable

and high-rate communications (as exploited in massive MIMO), but also provide enormous amounts of

baseband-level data that can be used to make inferences about the environment. Emerging more novel use

cases include inference problems, for example, detection of the presence of moving objects, estimation

of the amount of traffic on a road, counting of the number of persons in a room, or guarding against

intrusion in protected spaces. Particular technical challenges that lie within reach are the sensing of open

spaces, indoor venues, and even through-the-wall. There are emerging commercial use cases and also

many applications in security, surveillance, and monitoring.

ML algorithms are particularly suitable to analyze the vast amounts of data generated by large antenna

arrays, especially massive MIMO arrays, as typically parametric models are unavailable or inaccurate,

hence classical estimation/detection algorithms are inapplicable. More specifically, in terms of algorithmic
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approach, deep learning networks and methodology from image processing and video analytics may offer

the most promising path. It is important to note the distinction to conventional radar imaging, where the

objective is to create an image or map of the environment, whereas the goal of emerging large-scale

sensing is to extract specific features of the dynamics of the environment and make inference about

specific phenomena [11].

Important future research directions should include both pertinent physical modeling work and the

construction of an algorithmic foundation that exploits relevant ML tools. Trained deep neural networks

represent an important technology component in this regard, but also various forms of dictionary learning

might be used. Simulated channel models should be used for evaluation, along with experimentally

obtained real data. Through the use of these techniques, research along this direction could significantly

advance the state-of-the-art in sensing of open spaces, indoor venues, and through-the-wall and accomplish

inference tasks that are impossible with conventional model-based signal processing. Another application

that may benefit from the technology is gesture recognition, especially when implementing sensing at

higher frequencies.

B. Signal Processing

Massive MIMO technologies have been adopted in 5G communication systems. It is one of the obvious

use cases that AI can be deployed. Although massive MIMO has many advantages, such as spectrum

efficiency, energy efficiency, security, and robustness, it can produce a large volume of data. For example,

in channel measurements, a massive MIMO system with 32×56 antennas and 100 MHz bandwidth can

produce data larger than 32 Gbyte. Both detection and channel estimation for massive MIMO systems

are usually time-consuming processes and require great computational power. The big data property

of massive MIMO system makes researchers think of ML methods. In [12], the large amount of data

generated from massive MIMO system is represented by large random matrices and analyzed using the

single ring law. One of the challenges for massive MIMO system is pilot contamination, which can make

a significant impact on the performance of massive MIMO systems. The pilot contamination stems from

the pilot interference between adjacent cells and can limit the ability of systems to obtain accurate CSI.

As the number of antennas increases, channels in beamspace are approximately sparse, i.e., most of the

MPC power results from a few paths gathered into clusters in the space and the channel matrix contains

a small number of nonzero elements [13]. Based on the sparsity property of channels in beamspace,

authors in [14] obtain the CSI of massive MIMO systems using the sparse Bayesian learning method.

Compared with the conventional CSI estimators, the Bayesian learning method can achieve a better
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performance in terms of pilot contamination. The sparse recovery problem is an important research issue

for the Bayesian compressive sensing. It aims to estimate a non-negative compressible vector from a set

of noiseless measurements.

C. Data-driven Localization in Wireless Networks

Accurate positioning is valuable for context awareness and location based network management and

services. Most of current wireless positioning techniques use channel information and fingerprinting to

estimate locations. In reality, the channel information needs to be frequently updated to reflect the true

channel characteristics since they are susceptible to a variety of dynamic and time-varying transmission

impediments, e.g., path loss, interference, and blockage. This periodic and long-term maintenance is

time-consuming and labor-intensive, especially for large-scale B5G systems. As the amount and diversity

of sensing and communication data dramatically increase in the B5G systems, data-driven localization is

a promising solution, i.e., positioning devices and users through learning from raw sensing and commu-

nication data with ML algorithms. The data-driven localization algorithms will not only be self-adaptive

to the real-time dynamic transmission impediments, but also evolve over time by consistently learning

from data. The wireless channel locations can be continuously updated and improved by automatically

learning from the crowd-sourced big data from a vast number of mobile devices. Benefiting from the

accurate localization results, users will enjoy better location based services in return.

IV. NETWORK MANAGEMENT AND OPTIMIZATION FOR B5G NETWORKS USING AI TECHNOLOGIES

A. From Model-based to Data-driven Optimization of UDNs

The current approach to the management and optimization of cellular networks is based on “models”.

This approach is used across all the network functionalities, from the design of the physical-layer to

the deployment of network infrastructure. However, it is insufficient for the design of future networks,

which will be based on multiple and diverse radio access technologies, ultra-densely deployed, and have

to serve a broad class of applications and requirements. A so complicated network eco-system cannot

be optimally designed and orchestrated based on “models” that reproduce only in part actual network

deployments and that are not accurate in practice. For example, let us consider a typical on-demand

network deployment that relies on the use of unmanned aerial vehicles (UAVs) for rescue operation,

disaster recovery, etc. Such a network needs to be deployed in an ad hoc manner and cannot rely on

models that do not even exist for the specific case of interest. Based on these premises, there is a

compelling need for radically changing the way future networks will be engineered and optimized. The
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complexity of future networks and the broad set of requirements that they need to fulfill necessitate them

to go beyond the concept of models for network design and to exploit the large availability of “data”.

In this context, a paradigm-shift for the efficient design of B5G networks is necessary: To leverage AI

and ML in order to take advantage of big data analytics to enhance the situational awareness and overall

network operation of future networks. AI can parse through massive amounts of data generated from

multiple sources such as wireless channel measurements, sensor readings, and drones and surveillance

images, to create a comprehensive operational map of the massive number of devices within the network.

It can be exploited to optimize various functions, such as fault monitoring and user tracking, across

the wireless network. Resource management mechanisms based on AI will be able to operate in a fully

online manner by learning the states of the wireless environment and the network’s users in real time.

Such mechanisms will be able to continuously improve their own performance over time which in turn

will enable more intelligent and dynamic network decision making.

In order to substantiate the potential of using ANNs for the design of communication networks,

we consider the optimization of a typical threshold-based demodulator for Poisson channels, which

find applications in optical and molecular communication networks that are known to be difficult to

model in the presence of inter-symbol interference (ISI). We compare the typical approach employed

in communications, where the system/channel model is assumed to be perfectly known and the optimal

demodulation threshold is obtained by minimizing the analytical expression of the error probability that

accounts for the ISI, against a data-driven approach, where nothing is known about the channel model

and ANNs are used in order to learn the best demodulator and thus, the optimal demodulation threshold

without prior information on the system model. As far as the data driven-approach is concerned, the ANN

is trained by using supervised learning. In particular, we use the Bayesian regularization back propagation

method, which updates the weights and biases of the ANN by using the Levenberg-Marquardt optimization

algorithm. Fig. 3 shows the optimal demodulation threshold for two values of the ISI (small and large

values) in different signal-to-noise ratios (SNRs). In both cases, we note that a data-driven approach

provides one with the same demodulation threshold and consequently the same error probability, by

dispensing the system designer to perfectly know the system/channel model.

B. Proactive Wireless Networking for Online Software Networks Orchestration

Recently, the industry has witnessed the increasing maturity of software-defined networking (SDN) and

network function virtualization (NFV), which constitute fundamental enabling technologies to realize

the 5G PPP vision of software/programmable networking. With the evolution of SDN and NFV, 5G
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cellular networks have advocated a revolutionary concept called network slicing (NS). Instead of building

dedicated networks for different services, NS allows operators to intelligently create customized network

pipes to provide optimized solutions for different services that require diverse functionalities, performance

metrics, and isolation criteria. Specifically, mobile edge computing, edge caching, etc., have potentially

evolved to replace its forwarding-only functionality to an area equipped with storage, memories, and

computational power capabilities. Enabling future cellular architectures with NS is a fundamental necessity

for optimal network orchestration and for offering services with so diverse requirements, notably enhanced

mobile broadband (eMBB) that needs bandwidth-consuming and throughput-driving to new services such

as ultra-reliable and low-latency communications (uRLLC) and massive machine-type communications

(mMTC). Todays networks and even 5G networks are conceived, designed, and optimized based on

the reaction principle which passively responds to incoming demands and serves them when requested.

This principle is not adequate for the new service capabilities that future networks need to provide. The

future networks will be heterogeneous software-defined networks. Even different services are logically

independently operated, their data traffic will finally be mixed, which can result in a highly-dynamic

and unmanageable manner to the reaction principle. Besides, for future networks, the requirements of

some services cannot be fulfilled by the current reaction principle. For example, uRLLC applications

may not accept the delay associated with this reaction principle. On the other hand, future networks

need prediction capabilities, which enable them to anticipate the future and proactively allocate network

resources. In a proactive approach, rather than passively responding to incoming demands and serving

them when requested, network architectures with NS can predict traffic patterns and determine future

off-peak times on different spectrum bands so that incoming traffic demands can be properly allocated

over a given time window. Predicting the users’ behaviors will result in a better utilization of the network

resources and will allow us to optimally allocate end-to-end network slices in an online fashion. This

paradigm-shift from reactive to proactive network design can only be made possible with the aid of AI

and ML techniques.

V. AI ALGORITHMS AND APPLICATIONS FOR B5G NETWORKS

A. Distributed ML Algorithms for B5G Networks

In current communications applications, signal processing and ML algorithms are typically executed

centrally. An archetype architecture is the cloud-radio access network (C-RAN), where joint estimation

and data processing for all network devices is performed at a central unit (e.g., the cloud). In the presence

of a large number of devices and communication limitations on the fronthaul/backhaul links, however,
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various network functions should be executed locally or with minimal information exchange with the

cloud. Therefore, of central importance is the provisioning of a decentralized functional architecture,

which adapts dynamically on the network requirements [15]. As shown in Fig. 4, lightweight deep

learning model can be applied to cloud, fog, and edge computing networks. The cloud network is the

data and computing center, the fog network includes many nodes, and the edge network contains enormous

end users and devices. In parallel, there is the need for decentralized learning, classification, and signal

processing algorithms, which seamlessly adapt to the number and the type of the information sources,

considering the available communication bandwidth. In the presence of a dynamic edge computing

architecture, the advantages of decentralized and centralized algorithms should be combined, thereby

trading-off complexity, latency, and reliability. This requires integration and further development of

methods for data fusion, compression, and distributed decision-making.

In the distributed setting, there is also the need of developing solutions that are capable of learning the

relationships between the network entities and their time evolution. Since dynamical network inference

is a complex task in general, scalable solutions are required. Therefore, it is necessary to evaluate the

potential of online learning methods, such as kernel-based adaptive filters, high-dimensional set-theoretic

algorithms, and other robust statistical estimation methods. Additional examples include Bayesian ap-

proaches in conjuncture with approximate inference methods, such as approximate message passing and

generalizations therein.

B. ML Algorithms for Ultra-fast Training and Inference

ML algorithms are mostly designed for systems and applications which do not need to achieve high-

frequency performance. Unfortunately, this is not the case in the context of B5G networks, which must

ensure high data processing rates for ultra-low latency. This imposes a strict requirement on the speeds

of training and, particularly, inference of ML models. Therefore, one big challenge is to develop ML

algorithms with ultra-fast training and inference capability for future wireless communications.

There are two potential directions to accelerate ML training speed. One is implementing ML algorithms

in hardware, which should result in low power consumption and high efficiency. The other option is to

reduce the complexity of ML algorithms while keeping a reasonable accuracy.

C. Light-weight ML Algorithms for Universal Embedded Systems

Existing ML algorithms mainly focus on computer vision, natural language processing, and robotics

with powerful graphics processing unit (GPU) or central processing unit (CPU) enabled computing to
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operate in real. However, communication systems are full of resource-constrained devices, e.g., embedded

and Internet of things (IoT) systems. Therefore, the ML algorithms for communications should not only

learn complex statistical models that underlie networks, consumers, and devices, but also effectively work

with embedded devices having limited storage capabilities, computational power, and energy resources.

It is challenging yet highly rewarding to develop light-weight ML algorithms, especially deep learning

models, for embedded systems.

In this aspect, one potential direction will be the combination of ML and distributed computing

frameworks such as fog computing and edge computing. Another important research direction is the

investigation of high-level ML development library and toolbox.

VI. AI/ML FOR B5G NETWORKS IN STANDARDS AND STUDY GROUPS

Although the convergence of AI/ML and communication networks is rapidly progressing, it is still in

the early stage. As the various sensors, devices, applications, and systems connected in B5G networks will

produce a variety of formats and sizes of data to be transmitted, it is extremely complex to standardize

ML algorithms for B5G networks. No standard or baseline ML algorithm has been established and it is

unclear for the whole communication community which types of ML algorithms suit the B5G systems

best.

Recently, there have been some preliminary works on applying AL/ML to B5G networks in standards

including ITU and 3GPP, as well as other study groups such as FuTURE, telecom infra project (TIP),

and 5G PPP, as shown in Table I. ITU started a focus group on “Machine learning for future networks

including 5G (ML5G)”1 by ITU-T Study Group 13 at its meeting in Geneva, 6–17 November 2017.

The focus group will draft technical reports and specifications for ML for future networks, including

interfaces, network architectures, protocols, algorithms, and data formats. The three working groups are

“Use cases, services and requirements”, “Data formats & ML technologies”, and “ML-aware network

architecture”. 3GPP standards group developed a ML function that could allow 5G operators to monitor

the status of a network slice or third-party application performance on “Zero Touch & Carrier Automation

Congress”2 in Madrid, 22 March 2018. The network data analytics function (NWDAF) forms a part of

the 3GPP’s 5G standardization efforts and could become a central point for analytics in the 5G core

network. Note that the NWDAF is still in the “early stages” of standardization but could become “an

1 https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx [Accessed: 26-June-2018]
2 http://www.tech-invite.com/3m29/tinv-3gpp-29-520.html [Accessed: 26-June-2018]
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interesting place for innovation”. A white paper named “Wireless big data for smart 5G”3 was published

on FuTURE forum in November 2017. This white paper is a collection of pioneering research works

on big data for 5G in China, both in academic and industry. It proposed the concept of “smart 5G” and

believed that 5G network needs to embrace new and cutting-edge technologies such as wireless big data

and AI to efficiently boost both spectrum efficiency and energy efficiency, improve the user experience,

and reduce the cost. TIP launched a project group “AI and applied machine learning”4 in November

2017. It will apply AI and ML to network planning, operations, and customer behavior identification

to optimize service experience and increase automation. The objective is to define and share reusable,

proven practices, models and technical requirements for applying AI and ML to reduce the cost of

planning and operating telecommunications networks, understand and leverage customer behavior, and

optimize service quality for an improved experience. 5G PPP also launched its efforts on combining AI

with wireless communications, such as CogNet 5. It aims to build an intelligent system of insights and

action for 5G network management. These developments in standards and study groups aim to use AI for

physical layer and network management, which will greatly boost the performance of wireless networks.

VII. CONCLUSIONS AND FUTURE CHALLENGES

In this article, we have investigated how AI and ML can be used to efficiently solve the unstructured and

seemingly intractable problems in future B5G wireless communication networks. A comprehensive survey

of recent advances on the combination of AI/ML and wireless networks has been provided, including

channel measurements, modeling, and estimation, physical-layer research, and network management and

optimization. Challenges and potential future research directions have been discussed. AI algorithms and

their applications to B5G networks have been introduced. An overview of developments for applying

AI/ML to B5G systems carried out by standard organizations and study groups have also been provided.
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Fig. 1. Research aspects that bring AI technologies into B5G wireless networks.
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Fig. 4. Application of deep learning in cloud, fog, and edge computing networks.
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