
The electrocardiogram (ECG) is a ubiquitous tool in 
clinical medicine that has been used by cardiologists 
and non- cardiologists for decades. The ECG is a low- 
 cost, rapid and simple test that is available even in 
the most resource- scarce settings. The test provides a  
window into the physiological and structural condition 
of the heart but can also give valuable diagnostic clues 
for systemic conditions (such as electrolyte derange-
ments and drug toxic effects). Although the acquisition 
of the ECG recording is well standardized and repro-
ducible, the reproducibility of human interpretation of 
the ECG varies greatly according to levels of experience 
and expertise. In this setting, computer- generated inter-
pretations have been used for several years. However, 
these interpretations are based on predefined rules 
and manual pattern or feature recognition algorithms 
that do not always capture the complexity and nuances  
of an ECG. However, artificial intelligence (AI) in the 
form of deep- learning convolutional neural networks 
(CNNs), which have been used mostly in computer 
vision, image processing and speech recognition, has 
now been adapted to analyse the routine 12- lead ECG. 
This development has resulted in fully automated 
AI models mimicking human- like interpretation of 

the ECG, with potentially greater diagnostic fidelity 
and workflow efficiency than traditional rule- based 
computer interpretations.

Indeed, the ECG is an ideal substrate for deep- 
 learning AI applications. The ECG is widely available  
and yields reproducible raw data that are easy to store and  
transfer in a digital format. In addition to fully auto-
mated interpretation of the ECG, rigorous research 
programmes using large databanks of ECG and clin-
ical datasets, coupled with powerful computational 
capabilities, have been able to demonstrate the utility  
of the AI- enhanced ECG (referred to as the AI–ECG in 
the remainder of this Review) as a tool for the detection 
of ECG signatures and patterns that are unrecogniz able 
by the human eye. These patterns can signify cardiac dis-
ease, such as left ventricular (LV) systolic dysfunc tion, 
silent atrial fibrillation (AF) and hypertrophic cardio-
myopathy (HCM), but might also reflect systemic 
physio logy, such as a person’s age and sex or their serum 
potassium levels, as reviewed in detail herein. Among 
several potential clinical applications, a single 12- lead 
ECG might therefore allow the rapid phenotyping of an 
individual’s cardiovascular health and help to guide tar-
geted diagnostic testing in an efficient and potentially 
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cost- effective manner. Some of the main ECG datasets 
that have been used in the development of AI–ECG 
applications are listed in Table 1.

This transformative progress has not occurred without 
potential limitations and challenges that require atten-
tion. Challenges with AI applications are not necessarily 
unique to the ECG and include the need for data quality 
control, external validity, data security and the demon-
stration of superior patient outcomes with the imple-
mentation of AI- enabled tools, such as the AI–ECG.  
In this Review, we focus on the promise, clinical capa-
bilities, research opportunities, gaps and risk of the 
application of AI to the ECG for the diagnosis and man-
agement of cardiovascular disease. Finally, we discuss  
the numerous challenges to the development, validation 
and implementation of the AI–ECG in medicine.

Deep- learning methods applied to the ECG

Deep learning is a subfield of machine learning that 
uses neural networks with many layers (hence the term 
‘deep’) to learn a function between a set of inputs and 
a set of outputs. The training is done by presenting to 
the network a set of input data with their correspond-
ing output labels, and the model learns certain rules by 
applying and adjusting the network weights to minimize 
an error function until the model outputs are as close as 
possible to the actual data values. The strength of deep 
neural networks lies in using their ability to identify 
novel relationships in the data independent of features 
selected by a human. In the past, conventional statisti-
cal models, such as linear and logistic regression, and 
even neural networks with few layers (sometimes called 
‘shallow models’) were developed on the basis of inputs 
using human- selected data features. For example, in 
ECG analysis, the inputs were morphological and tem-
poral features, such as the QT, QRS and RR intervals or 
QRS and/or T- wave morphology, and the outputs would 
be the ECG rhythm, the serum potassium level or the LV 
ejection fraction (LVEF). As the inputs are features that 
were selected by humans, the model is limited to those 
features alone. In addition, any random or systematic 
error in calculating features will propagate to the output 
and will limit the accuracy of the model.

Conversely, in deep- learning networks, the represen-
tation of the input is learned by the network itself. The 
most common model for this type of representation 
learning is a subtype of neural networks called ‘CNNs’. 
CNNs were originally designed to solve computer vision 
tasks such as image recognition because they use a set of 
convolutional filters to select features used to represent 
the input into the model1. These filters start with random 
weights and, as the network self- trains, the architecture 
optimizes both the features used as a representation of the  
data and the rules applied to this representation and  
the outputs. Therefore, a neural network can be thought 
of as having two sequential components: the feature 
extraction layers (typically convolutional filters) and the 
mathematical model (such as pooling layers), which take 
feature output as their input to perform analysis and cre-
ate the ultimate output. The number and the shape of the 
convolutional filters are selected by the model architect 
and will affect the learned representation. In the ECG, 
one dimension is the spatial axis (each row in the input 
represents a time series from one of the leads) and the 
second dimension is the temporal axis (each column 
represents the voltage sampled at a specific time point 
across all leads) (Fig. 1a). Therefore, a convolution can be 
horizontal (combining information from more than one 
time point but only within one lead), vertical (combining 
information from many leads but at a single time point) 
or both horizontal and vertical (combining information 
on both axes). Using deep learning, the model can learn 
a representation of the input data that includes features 
that are relevant to the task that we are trying to accom-
plish without any human bias and without the need for 
human selection and engineering of features, which 
can be time- consuming, inaccurate and dependent on 
expertise and current physiological theories.

The agnostic approach in a neural network is an opti-
mal representation, but this approach is also non- linear,  
and the learned associations between input and output 
data are unexplainable at present, making the model 
a black box — humans cannot understand how the  
network makes its decisions — which is one of the con-
cerns raised regarding the clinical application of 
deep- learning CNNs2. Therefore, less agnostic machine- 
learning models, such as the more traditional logistic 
regression, reinforcement learning and random for-
est models, still hold promise and can help to inform 
research and clinical practice. For example, reinforce-
ment learning is a field of AI providing the framework 
for training of a clinical decision model in which certain 
decisions (model input) under specific conditions are 
linked to long- term outcomes. The optimal reinforce-
ment learning model is built through a continuous pro-
cess of updating of inputs and outcomes (or rewards)3. 
In addition, CNNs are supervised models, which require 
data to have a label assigned during training. Conversely, 
unsupervised machine- learning methods, such as clus-
tering models, do not require labelling of input data 
for their development, thereby minimizing the risk of 
random or systematic error introduced by a human.

In this Review, we also discuss natural language  
processing applications. The field of natural language pro-
cessing integrates AI, computer science and linguistics  
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methodology to structure unstructured data (such as 
free text in clinical notes in electronic health records), 
thereby making these data analysable. These methods 
include rule- based recognition of word patterns, text 
vectorization and topic modelling.

Fully automated interpretation of ECGs

One of the top priorities for the application of AI to the 
interpretation of ECGs is the creation of comprehensive, 
human- like interpretation capability. Since the advent of 
the digital ECG more than 60 years ago4, ongoing effort 
has been towards rapid, high- quality and comprehen-
sive computer- generated interpretation of the ECG. The 
problem seems tractable; after all, ECG interpretation is 
a fairly circumscribed application of pattern recognition 
to a finite dataset. Early programs for the interpretation 
of digital ECGs could easily recognize fiducial points, 
make discrete measurements and define common quan-
tifiable abnormalities5–7. Modern technologies have 
moved beyond these rule- based approaches to recognize 
patterns in massive quantities of labelled ECG data8,9.

Several groups have worked to create AI- driven algo-
rithms, and some of these algorithms are already in limi-
ted clinical use10. Some studies have developed CNNs 
from large datasets of single- lead ECGs and then applied 
them to the 12- lead ECG. For instance, using 2 million 
labelled single- lead ECG traces collected in the Clinical 
Outcomes in Digital Electrocardiology study, one group 
used a CNN to identify six types of abnormalities on 
the 12- lead ECG9. This study demonstrated the feasi-
bility of this approach, but widespread implementation 
or external validation in other 12- lead ECG datasets is 

forthcoming. Another group conducted a similar study 
of the application of CNNs to single- lead ECGs and 
demonstrated that the CNN could outperform practis-
ing cardiologists for some diagnoses8. However, whether 
this approach will translate to clinically useful software 
for 12- lead ECG interpretation remains to be seen.

In an evaluation published in 2020, a CNN was 
developed for the multilabel diagnosis of 21 distinct 
heart rhythms based on the 12-lead ECG using a 
training and validation dataset of >80,000 ECGs from 
>70,000 patients11. The reference standard consisted of 
consensus labels by a committee of cardiologists. In a 
test dataset of 828 ECGs, the optimal network exactly 
matched the gold standard labels in 80% of the ECGs, sig-
nificantly exceeding the performance of a single cardio-
logist interpreter. The model had a mean area under  
the curve (AUC) receiver operating characteristic score 
of 98%, sensitivity of 87% and specificity of 99%. Our 
group has worked with our internal dataset of >8 mil-
lion ECGs performed for clinical indications (which 
have all been labelled by expert ECG readers and are 
linked to the respective electronic health record) to 
generate a comprehensive ECG- interpretation infra-
structure. We demonstrated that a CNN can identify  
66 discrete codes or diagnosis labels, with favourable 
diagnostic performance12. Lately, we have developed a 
novel method that uses a CNN to extract ECG features 
and a transformer network to translate ECG features into 
ECG codes and text strings12. This process creates a model  
output that more closely resembles that of a human ECG 
reader — presenting information in a similar order, with 
similar language — and also makes sense of associated 

Table 1 | Major contemporary ECG databases used to develop deep- learning AI–ECG applications

Dataset Location Enrolment 
period

Number of 
patients

ECG type Conditions, outcomes and scope  
of application

Refs

Telehealth Network 
of Minas Gerais

Brazil 2010–2018 1,676,384 12- lead Automated ECG interpretation 9

Mayo Clinic USA 1994–2017 449,380 12- lead Automated ECG interpretation; left ventricular 
dysfunction, silent atrial fibrillation, hyper-
trophic cardiomyopathy, serum potassium level, 
and age, sex and race/ethnicity

22–24,32, 

45,48,59,66

Geisinger USA 1984–2019 253,397 12- lead Overall survival 67

Huazhong 
University, Wuhan

China 2012–2019 71,520 12- lead Automated ECG interpretation 11

iRhythm 
Technologies/
Stanford University

USA 2013–2017 53,549 Single- lead, 
ambulatory ECG 
monitoring

Classification of 12 rhythm types 8

University of 
California, San 
Francisco

USA 2010–2017 36,186 
(ECGs)

12- lead Left ventricular mass, left atrial volume, early 
diastolic mitral annulus velocity, pulmonary  
arterial hypertension, hypertrophic 
cardiomyopathy, amyloidosis and mitral valve 
prolapse

46

Health eHeart Study Multinational 2016–2017 9,750 Single- lead, 
smartwatch- based

Passive detection of atrial fibrillation 14

China Physiological 
Signal Challenge 
2018

China 2018 6,877 12- lead Classification of 9 rhythm types 68

Cleveland Clinic USA 2003–2012 and 
2017–2018

946 12- lead Response to cardiac resynchronization therapy 69

AI–ECG, artificial intelligence- enhanced electrocardiogram; ECG, electrocardiogram.
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codes, thereby avoiding the presentation of contradic-
tory or mutually exclusive interpretations that would not 
be presented by a human reader12.

This technology will be particularly important as we 
increasingly rely on ECG data obtained through novel, 
consumer- facing applications, which are massively 
scalable. For instance, AI–ECG algorithms have been 
applied to single- lead ECG traces obtained through 
mobile, smartwatch- enabled recordings for the detec-
tion of AF13. This democratization of ECG technology 
will exponentially increase the volume of signals that 

demand interpretation, which might quickly outstrip 
the capacity of human ECG readers. We anticipate 
that these models will be essential in facilitating tele-
health technologies (that is, automatic, patient- facing 
or consumer- facing technologies) and could allow the 
creation of core laboratory facilities capable of ingest-
ing and processing massive quantities of data. However, 
we caution that the signal quality obtained with these 
devices can be inconsistent, and AI–ECG might be less 
able than human expert over- readers to classify the 
heart rhythm using poor- quality tracings, as noted in 

Lead I

a

Sample signal

Convolutional
layer

Convolutional
layer

Pooling

Convolutional blocks

Model
output

Pooling

Pooling

Numerical values (μV)

Lead II

Sample signal

Pooling
Numerical values (μV)

Lead V
6

Sample signal
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ECG acquired over 10 s

Atrial fibrillation detected over a longer period than the ECG

AI–ECG analysis

b

0 4 14 29 29 43 53 58 –107 –107 –97 –97 –107 –112 –107 –107–112– – –

0 5 10 23 24 33 56 68 –98 –103 –101 –115 –54 –55 –87 –15–90– – –

0 2 20 29 34 39 44 59 –120 –101 –120 –91 –101 –85 –92 –103–83– – –

–

–

–

Fig. 1 | Development of a convolutional neural network using the 12-lead  

ECG and application to detect silent atrial fibrillation. a | The analogue 

electrocardiogram (ECG) signal is converted to a digital recording, resulting 

in a list of numerical values corresponding to the amplitude of the signal. 

(The numerical values depicted are arbitrary and shown for illustrative 

purposes only.) These numerical values are then convolved with the network 

weights within each lead and across leads, feeding sequential layers of 

convolutions until the final model output is reached. b | With the use of a 

trained, deep- learning artificial intelligence- enhanced ECG (AI–EGG) 

model, a one- off, standard, 12- lead, sinus- rhythm ECG can become a 

surrogate for prolonged rhythm monitoring for the detection of silent atrial 

fibrillation. Part a adapted with permission from reF.70, Elsevier.
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the aforementioned smartwatch study13. Similarly, in 
another study, a deep neural network developed using 
ECG recordings from smartwatches demonstrated good 
performance for passive detection of AF compared with 
the reference standard of AF diagnosed from 12- lead 
ECGs, but its performance was much less robust in 
reference to a self- reported history of persistent AF14.

Nevertheless, although great progress has been 
made towards a comprehensive, human- like ECG- 
 interpretation package, the realization remains on the 
horizon. Even in its most modern incarnation, the pack-
age lacks the accuracy needed for implementation with-
out human oversight15. Additionally, computer- derived 
ECG interpretation has the potential to influence human 
over- readers and, if inaccurate, can serve as a source of 
bias or systematic error. This concern is particularly rele-
vant if the algorithms are derived in populations that are 
distinct from those in which the algorithms are applied. 
This limitation underscores the need for a diverse deri-
vation sample (ideally including a diverse patient popu-
lation and varied means of data collection that reflect 
real- world practices), rigorous external validation stud-
ies and phased implementation with ongoing assess-
ment of model performance and effectiveness. Quality 
control systems based on regular over- reads by expert 
inter preters of ECGs who are blinded to the output of 
the CNN will allow continuous calibration of the model.

The ECG as a deep phenotyping tool

Interpretation of an ECG by a trained cardiologist relies 
on established knowledge of what is normal or abnor-
mal on the basis of more than a century of experience 
with assessing the ECG in patient care and based on our 
understanding of the electropathophysiology of various 
cardiac conditions. Despite the enormous potential to 
gain insights into cardiac health and disease from an 
expert interpretation of the ECG, the information gain 
is limited by the interpreter’s finite ability to detect iso-
lated characteristics or patterns fitting established rules. 
However, hidden in plain sight might be subtle signals 
and patterns that do not fit traditional knowledge and 
that are unrecognizable by the human eye. Harnessing 
the power of deep- learning AI techniques together 
with the availability of large ECG and clinical datasets, 
developing tools for systematic extraction of features  
of ECGs and their association with specific cardiac diag-
noses has become feasible. Of course, some conditions  
are not reflected in the ECG, which even an AI–ECG 
cannot resolve — even if these technologies can see 
beyond an expert reader’s capacity, they cannot see what 
is not there. In this section, we review the latest advances 
in the application of deep- learning AI techniques to the 
12- lead ECG for the detection of asymptomatic cardio-
vascular disease that might not be readily apparent, even 
to expert eyes.

Detection of LV systolic dysfunction. The systolic func-
tion of the left ventricle, traditionally quantified as the 
LVEF by echocardiography, is a key measure of cardiac 
function. A reduced LVEF defines a large subgroup of 
patients with heart failure, but a decline in LVEF can 
be asymptomatic for a long time before any symptoms 

trigger evaluation. Indeed, up to 6% of people in the 
community might have asymptomatic LV dysfunction 
(LVEF <50%)16. A low LVEF has both prognostic and 
management implications17. Detection of a low LVEF 
should trigger a thorough evaluation for any reversible 
causes that should be addressed in a timely fashion to 
minimize the extent of permanent myocardial damage. 
The early initiation of optimal medical therapy can result 
in improvements in systolic LV function and quality of 
life, but can also reduce heart failure- related morbidity 
and mortality18. However, in the absence of symptoms, 
identifying these patients remains a challenge and, there-
fore, asymptomatic LV dysfunction might be under- 
recognized. Several approaches to screening patients for 
asymptomatic LV systolic dysfunction have been investi-
gated, including risk factors, the standard 12- lead ECG, 
echocardiography and measuring the levels of circulat-
ing biomarkers19–21. However, none of these approaches 
has sufficient diagnostic accuracy or cost- effectiveness 
to justify routine implementation clinically.

The potential of the AI–ECG as a marker of asymp-
tomatic LV dysfunction has been demonstrated. With 
the use of linked ECG and echocardiographic data from 
44,959 patients at the Mayo Clinic (Rochester, MN, 
USA), a CNN was trained to identify patients with LV 
dysfunction, defined as LVEF of ≤35% by echocardiogra-
phy, on the basis of the ECG alone22. The model was then 
tested on a completely independent set of 52,870 patients, 
and its AUC was 0.93 for the detection of LV dysfunction, 
with corresponding sensitivity, specificity and accuracy 
of 93.0%, 86.3% and 85.7%, respectively. In individuals 
in whom the CNN seemingly incorrectly detected LV 
dysfunction (apparent false positive tests), those with a 
positive AI screen were fourfold more likely to develop 
LV dysfunction over a mean follow- up of 3.4 years than 
those with a negative AI screen, suggesting the ability of 
the model to detect LV dysfunction even before a decline 
in LVEF measured by echocardiography. Akin to the par-
adigm of the ischaemic cascade in myocardial infarction 
and ischaemic heart disease, the preclinical cascade of 
cellular- level alterations (such as changes to calcium 
homeostasis) and mechanical function alterations (such 
as abnormal lusitropy and strain rate) might be reflected 
in the ECG and detectable by a trained deep- learning 
CNN AI–ECG model. This observation raises the 
possibility that this model could be used to identify 
patients with early or subclinical LV dysfunction or even  
those with normal ventricular function who are at risk 
of heart failure. In a subsequent prospective validation 
from our group, the AI–ECG algorithm was applied in  
3,874 patients who underwent transthoracic echocardio-
graphy and an ECG recording within 30 days23. In these 
patients, the algorithm was able to detect an LVEF of 
≤35% with 86.8% specificity, 82.5% sensitivity and 
86.5% accuracy (AUC 0.918). This algorithm has been 
validated externally in patients presenting with dysp-
noea to the emergency department24. A validation effort 
in a multicentre, international cohort is also under way. 
Of note, the algorithm has also demonstrated high accu-
racy for detecting low LVEF when applied to a single- lead 
ECG, thereby allowing its application with the use of 
smartphone- based or even stethoscope- based electrodes.
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Although further rigorous clinical testing for patient 
outcomes is required, these data highlight the AI–ECG 
as a potential means to overcome the limitations of 
previously tested screening biomarkers for asympto-
matic LV dysfunction. Other future applications of the 
AI–ECG algorithm for the detection of LV dysfunction 
might include the longitudinal monitoring of patients 
with established congestive heart failure who are receiv-
ing medical therapy, the prognostication of the risk of 
incident cardiomyopathy in patients receiving cardio-
toxic chemotherapy in whom cardioprotective therapy 
might be instituted prophylactically or the longitudinal 
monitoring of patients with valvular heart disease in 
whom the development of LV dysfunction would sig-
nify an indication for surgical intervention. Additionally, 
the FDA issued an Emergency Use Authorization for the 
12-lead AI–ECG algorithm to detect LV dysfunction in 
patients with coronavirus disease 2019 (COVID-19)25. 
Broad clinical application across other specialties might 
also be possible.

Detection of silent AF from a sinus- rhythm ECG. AF 
portends an increased risk of impaired quality of life, 
stroke and heart failure, and results in frequent visits 
to the emergency department and frequent inpatient 
admissions. Among patients with an embolic stroke of 
undetermined source (ESUS), previously called ‘crypto-
genic stroke’, who undergo 30- day rhythm monitoring, 
about 15% are found to have previously undiagnosed 
paroxysmal AF26. In these patients, anticoagulation 
lowers the recurrence of stroke and might lower mor-
tality, whereas in the absence of documented AF, anti-
coagulation offers no clinical benefit and increases the 
risk of bleeding27,28. However, the diagnosis of AF can 
be elusive because up to 20% of patients are completely 
asymptomatic, and another approximately one- third of 
patients have atypical symptoms29. Moreover, AF is only 
intermittent (or paroxysmal) in many patients. Despite 
extensive research on the topic, the value of screening 
individuals for AF remains a matter of debate, and the 
US Preventive Services Task Force states that the data 
are currently insufficient to recommend routine AF 
screening in general populations30.

In the recent Apple Heart Study31, the largest prag-
matic evaluation of AF screening in a general popula-
tion using a smartwatch- enabled photoplethysmography 
technology, 0.52% of participants received notifications 
of possible AF over an average of >3 months of mon-
itoring. In approximately one- third of these individu-
als, AF was later confirmed by week- long patch ECG 
monitoring. This finding suggests that, although mass 
screening of unselected populations is feasible with 
current technologies, the yield of this approach is low 
and the clinical effect is uncertain. Simple and highly 
accurate approaches to the detection of asymptomatic 
paroxysmal AF would be important for the selection of 
patients for early institution of oral anticoagulation for 
the prevention of AF- related morbidity and death.

To assess the likelihood of silent AF, a group of inves-
tigators from the Mayo Clinic developed a CNN to pre-
dict AF on the basis of a standard 12-lead ECG obtained 
during sinus rhythm32. The algorithm was developed 

using nearly half a million digitally stored ECGs from 
126,526 patients and was validated and tested in sepa-
rate internal datasets. The model applied convolutions 
on a temporal axis and across multiple leads to extract  
morphological and temporal features during the training 
and validation processes (Fig. 1a). Patients with at least 
one ECG showing AF within 31 days after the sinus- 
 rhythm ECG were classified as being positive for AF.  
In the testing dataset, the algorithm demonstrated an 
AUC of 0.87, sensitivity of 79.0%, specificity of 79.5% 
and an accuracy of 79.4% in detecting patients with 
documentation of AF using only information from 
the sinus- rhythm ECG32. Therefore, the algorithm can 
detect nearly concomitant, unrecognized AF, rather 
than predict the long- term risk of AF. Conceptually, 
this AI tool converts a routine 10- s, 12- lead ECG into 
the equivalent of a prolonged rhythm- monitoring tool 
(Fig. 1b), although the duration of ‘monitoring’ and its 
yield require validation. Additionally, this tool can be 
applied retroactively to digitally stored ECGs from 
patients with a previous ESUS. This algorithm might 
facilitate targeted AF surveillance (such as using an 
ambulatory rhythm- monitoring patch or implantable 
loop recorder) in subsets of high- risk patients. This 
work is preliminary, but we are currently assessing the 
performance of this algorithm in identifying patients 
who might benefit from prospective AF screening 
or monitoring (with Holter or extended monitoring) 
and, ultimately, various stroke- prevention strategies. 
We also note that other groups have derived similar 
AF risk- prognostication tools that examine other elec-
trophysiological parameters, such as signal- averaged 
ECG- derived P- wave analysis33.

ECGs are ubiquitously performed for a variety of 
screening, diagnostic and monitoring purposes, thereby 
providing ample opportunities for the application of this 
algorithm. The ultimate clinical utility of this approach 
will be determined by the observed positive and nega-
tive predictive values of the algorithm when applied to a 
given population and by the cost and downstream con-
sequences, particularly for patient outcomes, related to 
follow- up diagnostic testing and therapies.

Unlike the traditional risk- prediction models that 
comprise predefined variables, the CNN described 
above is agnostic, because we do not know what ECG 
features the CNN is ‘seeing’ and which factors drive 
its performance. The performance of the algorithm is 
likely to be based on a combination of ECG signatures 
that are known risk factors for AF (such as LV hyper-
trophy, P- wave amplitude, atrial ectopy and heart rate 
variability) as well as others that are currently unknown 
or are not obvious to the human eye, in combination, in 
a non- linear manner34. The ECG is also likely to con-
tain information that correlates with known clinical 
risk factors.

AI- enabled ECG and rhythm tools in AF care. In 
addition to screening individuals for silent AF, CNNs 
can also be developed from ECGs or other rhythm- 
monitoring data (including those derived from perma-
nently implanted cardiac devices) for the stratification 
of stroke risk and the refinement of decision- making 
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about oral anticoagulant use. In an analysis using data 
from implanted cardiac devices in >3,000 patients with 
AF (including 71 patients with stroke), three different 
supervised machine- learning models of AF burden 
signatures were developed to predict the risk of stroke 
(random forest, CNN and L1 regularized logistic regres-
sion)35. In the testing cohort, the random forest model 
had an AUC of 0.66, the CNN model had an AUC of 
0.60 and the L1 regularized logistic regression model 
had an AUC of 0.56. By contrast, the CHA2DS2–VASc 
score, the most widely used stroke- prediction scheme 
in current practice36, had an AUC of 0.52 for stroke pre-
diction. However, the highest AUC (0.63) was achieved 
when the CHA2DS2–VASc score was combined with the 
random forest and CNN models35, indicating the prog-
nostic strength of approaches that combine AI- enriched 
models with traditional clinical tools. The performance 
of this model is still quite modest. The integration of 
additional information from the clinical history, imaging 
tests and circulating biomarkers might further improve 
risk stratification but this task is beyond current AI 
capabilities. For example, in an unsupervised cluster 
analysis of approximately 10,000 patients with AF in the 
ORBIT- AF registry, including patient- specific clinical 
data, medications, and laboratory, ECG and imag-
ing data, four clinically relevant phenotypes of AF were 
identified, each with distinct associations with clinical 
outcomes (low comorbidity, behavioural comorbidity, 
device implantation and atherosclerotic comorbidity 
clusters)37. However, although this finding offers a proof 
of concept, the clinical utility of these clusters has not 
yet been demonstrated. The hope is that phenotype- 
specific treatment strategies will lead to superior patient 
outcomes, but testing is required.

A fully automated, electronic health record- embedded 
platform powered with AI–ECG capabilities and other 
advanced machine- learning methods, including natu-
ral language processing, could be trained to collect data 
from the ECG, AF patterns and other diagnostic tests or 
even clinical notes in order to continuously assess the 
risk of stroke. When a high risk of stroke is detected, 
the clinician is alerted and the timely initiation of anti-
coagulation could prevent a potentially devastating 
adverse clinical event. Similarly, real- time modelling 
of the risk of stroke could be realized on the basis of 
information collected via wearable ECG technologies or 
consumer- facing, smartphone- based ECG technologies. 
Ultimately, developing an easy- to- implement tool that 
provides clinically actionable data that are fully vetted 
and validated will be required to allow interventions for 
stroke prevention.

Detection of HCM. HCM is infrequent in the general 
population, with an estimated prevalence of 1 in 200 
to 1 in 500 individuals38,39. However, HCM is one of 
the leading causes of sudden cardiac death among 
adolescents and young adults. HCM is also associated 
with substantial morbidity in all age groups40. Over 
the past 15 years, interest has focused on the screening 
of at- risk populations for HCM. This interest is often 
rekindled by highly publicized sudden deaths of ath-
letes and other young adults, events that are devastating 

and potentially preventable if a diagnosis of HCM had 
been established.

In most cases, a diagnosis of HCM can be established 
with echocardiography combined with the clinical his-
tory, but the widespread use of echocardiography for 
the detection of HCM in otherwise asymptomatic indi-
viduals is impractical. Therefore, alternative modalities, 
such as the ECG, have been considered as a means for 
screening. More than 90% of patients with HCM have 
electrocardiographic abnormalities41, but these abnor-
malities are non- specific and can be indistinguishable 
from LV hypertrophy. Generally, ECG screening has 
relied on manual or automated detection of particular 
features, such as LV hypertrophy, left axis deviation, 
prominent Q waves and T- wave inversions. However, 
these approaches have insufficient diagnostic perfor-
mance to justify routine ECG screening42. Moreover, 
several sets of ECG criteria have been proposed to dis-
tinguish between HCM and athletic heart adaptation, 
but their diagnostic performance has been inconsistent 
when external validations have been attempted43,44. The 
nature of a deep- learning AI approach might offer 
the advantage of an agnostic and unbiased approach 
to the ECG- based detection of HCM that does not rely 
on traditional criteria for LV hypertrophy.

With use of the ECGs of 2,500 patients with a val-
idated diagnosis of HCM and >50,000 age- matched 
and sex- matched control individuals without HCM, an 
AI–ECG CNN was trained and validated to diagnose 
HCM on the basis of the ECG alone45. In an independ-
ent testing cohort of 612 patients with HCM and 12,788 
control individuals, the AUC of the CNN was 0.96 (95%  
CI 0.95–0.96) with sensitivity of 87% and specificity 
of 90%. The performance of the model was robust in 
subgroups of patients meeting the ECG criteria for LV 
hypertrophy and among those with normal ECGs45. 
Importantly, performance was even better in younger 
patients (aged <40 years) but declined with increas-
ing age. Furthermore, the performance of the model 
did not seem to be affected by the sarcomeric muta-
tion status of the patient, given that the model- derived 
probabilities for a diagnosis of HCM were a median of  
97% and 96% in patients with HCM who either had or 
did not have confirmed variants in sarcomere- encoding 
genes, respectively45. The algorithm developed had 
equally favourable performance when implemented on 
the basis of a single lead (rather than all 12 leads of the 
ECG), meaning that this algorithm could be applied 
as a screening test on a large scale and across vari-
ous resource settings. Figure 2 shows an example of a 
woman aged 21 years with massive septal hypertrophy 
who underwent surgical septal myectomy45. Despite only 
modest abnormalities on her ECG before myectomy, the 
AI–ECG algorithm indicated a probability of HCM of 
72.6%, whereas after myectomy, the AI–ECG algorithm 
indicated a probability of HCM of only 2.5%, despite 
more obvious and striking ECG abnormalities.

Another group of investigators used a large, 12- lead 
ECG dataset to train machine- learning models for the 
detection of HCM together with other elements of car-
diac structure (LV mass, left atrial volume and early dias-
tolic mitral annulus velocity) and disease (pulmonary 
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arterial hypertension, cardiac amyloidosis and mitral 
valve prolapse)46. Although a different model archi-
tecture was applied from that in the aforementioned 
study, including a novel combination of CNNs and hid-
den Markov models, the performance of the model for 
the detection of HCM was also quite favourable, with 
an AUC of 0.91. Of note, the researchers also repor-
ted good performance for the detection of pulmonary 
arterial hypertension (AUC 0.94), cardiac amyloidosis  
(AUC 0.86) and mitral valve prolapse (AUC 0.77).

The favourable diagnostic performance of these 
models suggests that HCM screening based on fully 
automated AI–ECG algorithms might be feasible in 
the future. External validations in other populations 
with greater racial diversity, as well as in athletes and 
in adolescents, will be crucial in the evaluation of the 
AI–ECG algorithm as a future screening tool for HCM 
in individuals at risk of adverse outcomes, particularly 
sudden cardiac death. Direct comparisons with other 
possible screening methods and cost- effectiveness and 
other practical implementation issues also need to 
be evaluated.

Detection of hyperkalaemia. Numerous studies have 
shown that either hyperkalaemia or hypokalaemia is 
associated with increased mortality, and evidence sug-
gests that the mortality associated with hyperkalaemia 
might be linked to underdosing of evidence- based 
therapies47. Our group has evaluated the performance 
of an AI–ECG CNN for the detection of hyperkalaemia 
in patients with chronic kidney disease48,49. In the latest 
large- scale evaluation, the model was trained to detect 
serum potassium levels of ≥5.5 mmol/l using >1.5 million  
ECGs from nearly 450,000 patients who underwent con-
temporaneous assessment of serum potassium levels. 
This level of potassium was chosen because this thresh-
old was thought to be clinically actionable. At this cut- off 
point, the model demonstrated 90% sensitivity and 89% 
sensitivity in a multicentre, external validation cohort49. 
This algorithm could be applied to detect clinically silent 
but clinically significant hyperkalaemia without a blood 
draw and could facilitate remote patient care, including 
diuretic dosing, timing of haemodialysis or adjustment 
of medications such as angiotensin- converting enzyme 
inhibitors or angiotensin- receptor blockers in the setting 
of heart failure or chronic kidney disease.

Antiarrhythmic drug management. Dofetilide and 
sotalol are commonly used for the treatment of AF. 
Their antiarrhythmic effect is exerted on the myocar-
dium by prolonging the duration of the repolarization 
phase, meaning that QT prolongation is an anticipated 
effect of these drugs. Owing to the ensuing risk of sub-
stantial QT prolongation and potentially fatal ventricular 
proarrhythmia, patients require close monitoring with a 
continuous ECG in the hospital setting when these drugs 
are used, particularly for dofetilide. In addition, with 
the long- term use of these medications, the QT interval 
should be intermittently assessed because dose adjust-
ments might be necessary in cases of substantial QT pro-
longation, concomitant medications with QT- prolonging 
effects and fluctuations in renal function (both sotalol 
and dofetilide are primarily metabolized through the 
kidneys). Using serial 12- lead ECGs and linked informa-
tion on plasma dofetilide concentrations in 42 patients 
who were treated with dofetilide or placebo in a crosso-
ver randomized clinical trial, a deep- learning algorithm 
predicted plasma dofetilide concentrations with good 
correlation (r = 0.85)50. By comparison, a linear model 
of the corrected QT interval correlated with dofetilide 
concentrations with a coefficient of 0.64 (reF.50). This 
finding suggests that the QT interval might not accu-
rately reflect the plasma dofetilide concentration in some 
patients and so might underestimate or overestimate 
the proarrhythmic risk. Machine- learning approaches, 
including supervised, unsupervised and reinforcement 
learning, have also been used to determine the optimal 
dosing regimen during dofetilide treatment51.

In the future, patients treated with dofetilide, sotalol 
or other antiarrhythmic medications might avoid the 
need for hospitalization for drug loading or office vis-
its for routine surveillance ECGs by monitoring their 
own ECG using smartphone- based tools powered with 
AI capabilities to determine the plasma concentrations 
of the drug or the risk of drug- related toxic effects. 
The development of these AI algorithms applied to a 
single- lead ECG is still in progress.

Wearable and mobile ECG technologies

AI algorithms can be applied to wearable technologies, 
enabling rapid, point- of- care diagnoses for patients 
and consumers. Although many algorithms have been 
derived using 12- lead ECG data, some studies have 

Before myectomy
AI–ECG probability of HCM 72.6%

a After myectomy
AI–ECG probability of HCM 2.5%

b

Fig. 2 | The AI–ECG to detect HCM. Use of an artificial intelligence- enhanced electrocardiogram (AI–ECG) model to 

detect obstructive hypertrophic cardiomyopathy (HCM) in a woman aged 21 years before (part a) and after (part b) septal 

myectomy. Adapted with permission from reF.45, Elsevier.

www.nature.com/nrcardio

REV IEWS

472 | JULY 2021 | VOLUME 18 



demonstrated favourable performance even when algo-
rithms are deployed on single- lead ECGs8. The per-
formance of AI–ECG algorithms for the detection of 
HCM or the determination of serum potassium levels 
when applied to single- lead ECGs has been shown not 
to be significantly different from the performance when 
applied to 12- lead ECGs45,52. Additionally, signals other 
than the ECG can also be analysed using AI approaches. 
For instance, a deep neural network has been developed 
to detect AF passively from photoplethysmography sig-
nals obtained from the Apple Watch14. Newer iterations 
of the Apple Watch now allow users to confirm the pres-
ence of AF using electrophysiological signals obtained 
through a single bipolar vector14.

The COVID-19 pandemic has highlighted the need 
for rapid, point- of- care diagnostic testing. For instance, 
early interest in the use of hydroxychloroquine or azith-
romycin for the treatment of the infection resulted in a 
marked increase in the use of these medications. Given 
the potential for these medications to prolong myo-
cardial repolarization and increase the risk of dangerous 
ventricular arrhythmias, the FDA issued an Emergency 
Use Authorization for the use of mobile devices to 
record and monitor the QT interval in patients taking 
these medications. The FDA also issued an Emergency 
Use Authorization for the detection of low LVEF as a 
potential complication of COVID-19 using the AI–ECG 
algorithm integrated in the digital Eko stethoscope  
(Eko Devices)22,25. Furthermore, an international consor-
tium is currently evaluating the ECG as a potential means 
to diagnose COVID-19, cardiac involvement or the risk 
of cardiac deterioration, given the known ECG changes 
and cardiac involvement in patients with COVID-19 
(reFs53,54). Although results are not yet available, these 
types of investigation emphasize the potential power of 
digitally delivered AI technologies for timely deployment 
at the point of care and large- scale implementation.

Implementation of AI–ECG

In contrast to data obtained through the clinical history, 
medical record review or imaging tests, the ease and 
consistency with which ECG data can be obtained  
and analysed for the development and implementation 
of AI models are likely to accelerate the uptake of the 
AI–ECG in clinical applications, with ensuing increases 
in workflow efficiency. The demonstrated capabili-
ties of the AI–ECG described in the previous sections 
have the potential to influence the spectrum of patient 
care, including screening, diagnosis, prognostication, 
and personalized treatment selection and monitoring 
(Fig. 3). The preliminary data on the performance of the 
AI–ECG algorithms are clearly promising, but these 
technologies will be meaningful only inasmuch as they 
improve our clinical practice and patient outcomes55. 
To this end, several AI technologies are currently being 
tested in various clinical applications.

The algorithm to identify LV dysfunction using 
the ECG is currently being evaluated in a large- scale, 
pragmatic, cluster randomized clinical trial56. The 
EAGLE trial57 randomly assigned >100 clinical teams 
(or clusters) either to have access to the new AI screen-
ing tool results or to usual care at nearly 50 primary care 
practices (which will encompass >400 clinicians and 
>24,000 patients) in the Mayo Clinic Health System. 
Eligible patients include adults who undergo ECG for 
any reason and in whom low LVEF has not been pre-
viously diagnosed. The primary outcome is the detec-
tion of low LVEF (<50%), as determined by standard 
echocardiography. The objective of this study is twofold: 
to evaluate the real- world efficacy of the algorithm in 
identifying patients with asymptomatic or previously 
unrecognized LV dysfunction in primary care practices 
and to understand how information derived from AI 
algorithms is interpreted and acted on by clinicians — 
how do humans and machines interact? This study will 

Hardware Software Implementation of AI–ECG
AI–ECG capabilities in the
spectrum of patient needs

Secure
data sharing

Natural language
processing

Computational
power

Telemedicine

Core AI–ECG laboratory with automated
throughput of large volumes of data

One-step interface between
user and AI–ECG output

Low-cost implementation with
widely accessible tools

Live integration with electronic medical
records and external feedback loop for

continuous validation

Secure data exchange of
patient-owned data

Screening Diagnosis

Prognosis
Treatment

selection and
monitoring

Fully automated,
human-like

interpretation of ECGs

Detection of asymptomatic
cardiovascular disease

(atrial fibrillation, hypertrophic
cardiomyopathy, left

ventricular dysfunction)

Physiological and
structural cardiovascular

phenotyping

Mobile single-lead
and multilead ECGs

AI-enabled
stethoscope

Wearable and implanted
cardiac devices

Fig. 3 | Framework for AI–ECG applications in clinical practice. Current, versatile electrocardiogram (ECG)- recording 

technologies (wearable and implantable devices, smartwatches and e- stethoscopes) coupled with the ability to store, 

transfer, process and analyse large amounts of digital data are increasingly allowing the deployment of artificial 

intelligence (AI)- powered tools in the clinical arena, addressing the spectrum of patient needs. The science of AI- enhanced 

ECG (AI–ECG) implementation, including the interface between patients and the AI–ECG output, integration of AI–ECG 

tools with electronic health records, patient privacy, and cost and reimbursement implications, is in its infancy and 

continues to evolve.
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validate (or refute) the utility of this approach and will 
help us to understand potential barriers and opportu-
nities for the implementation of AI in clinical practice. 
Regardless of its results, the EAGLE trial57 will be an 
important study because it will be the prototype study 
for the implementation of AI- enabled tools.

Similarly, we are developing a protocol to assess the 
algorithm to identify concomitant silent AF or the risk 
of near- term AF using a 12- lead ECG obtained during 
normal sinus rhythm. The BEAGLE trial58 will seek to 
evaluate the utility of this AI algorithm for targeted AF 
screening in patients who would have at least a moderate 
risk of stroke if they had AF. Subsequent follow- up studies 
will test the role of empirical anticoagulation in selected 
patients without known documented AF who have a high 
probability of AF according to the AI–ECG. In the first 
pilot phase, patients at various levels of risk of AF on the 
basis of their AI–ECG will be fitted with cardiac event 
monitors to provide surveillance for incident AF. We 
anticipate that the AI–ECG output will help us to iden-
tify patients who are at risk of AF and that the AI–ECG  
might increase the diagnostic yield of screening.

Another application of this algorithm might be in 
guiding treatment decisions for patients with ESUS. We 
postulate that these patients might benefit from inten-
sified screening or even empirical anticoagulation on 
the basis of a high probability of AF, as indicated by the  
AI–ECG algorithm. Several studies have shown no bene-
fit of empirical anticoagulation in patients with ESUS27,28, 
but the AI–ECG might help to identify a subset of patients 
with ESUS in whom recurrent strokes can be prevented. 
At this point, this concept is speculative, but we intend to 
pursue this hypothesis by examining existing datasets and 
possibly in a prospective clinical trial.

We have demonstrated the potential utility of the  
AI–ECG for the diagnosis of HCM45. Screening individuals  

for HCM has attracted considerable controversy, driven 
mostly by the poor diagnostic performance of the ECG 
and the downstream consequences of false positive or 
equivocal findings. External validation of this algorithm 
in completely independent cohorts of patients with 
HCM is currently in progress. Evaluations of this algo-
rithm in various populations, including family members 
of patients with HCM, patients with undifferentiated 
syncope, athletes or even unselected patients through 
retrospective medical record review, are also being 
planned. These studies are likely to demonstrate the 
utility and limits of the AI–ECG for screening individ-
uals for rare conditions and will help us to understand 
how to apply appropriate thresholds based on Bayesian 
concepts of pretest risk and downstream effects of a test, 
including costs.

In addition to straightforward diagnostic tests, the 
AI–ECG might help to refine the clinical workflow. One 
such application might be the initiation and monitoring 
of antiarrhythmic medications that carry a risk of cardio-
toxicity or proarrhythmia and require close monitoring 
for QT prolongation and new ventricular arrhythmias 
in order to guide initial and subsequent dosing50. Other 
potential future applications of the AI–ECG in various 
settings with direct effects on cardiac clinical care are 
listed in box 1.

At the Mayo Clinic, we have developed an internal 
website (AI–ECG Dashboard) where the medical record 
number of any patient of interest can be entered for all 
their ECGs to be retrospectively analysed, with prob-
abilities reported for the presence of LV systolic dys-
function, silent AF and HCM, and their AI–ECG age 
and sex prediction also reported59. Figure 4a depicts the 
AI–ECG Dashboard output for the example of a patient 
with an ESUS who had a high AI–ECG- derived prob-
ability of AF on an ECG that preceded the thrombo-
embolic event by 12 years. At 5 years after the initial 
stroke, this patient had a recurrent stroke and was clin-
ically documented to have AF shortly thereafter, which 
was 17 years after the first ECG had indicated an ele-
vated risk of AF by AI analysis60. Figure 4b depicts an 
example of a different patient with a history of cardio-
myopathy who underwent heart transplantation in 2005, 
at which time the probability of low LVEF dropped 
precipitously and remained low until 2020, when the 
patient experienced graft rejection with LV dysfunction. 
At that point, the AI–ECG reported a high probability 
of low LVEF, correlating accurately with the clinical 
syndrome. The AI–ECG Dashboard has now been inte-
grated into the electronic medical record, and clinicians 
can rapidly access the results of the AI analysis on all 
of a patient’s available ECGs. Other tools, such as those 
for AI–ECG detection of valvular heart disease, cardiac 
amyloidosis and pulmonary arterial hypertension, have 
been developed and are undergoing testing before their 
addition to the dashboard.

Potential challenges and solutions

The AI–ECG technologies offer great promise, but it 
is important to acknowledge several potential chal-
lenges. Given that models are often derived from high- 
 quality databases with meticulously obtained ECGs and 

Box 1 | Potential future applications of the AI–ECG

•	Atrial fibrillation

 - Beyond the CHA2DS2–VASc score — electrocardiogram (ECG) markers of stroke  

risk integrated with electronic health record- based clinical information, imaging 

and biomarkers

 - Rhythm- pattern recognition (implantable and wearable cardiovascular electronic 

devices) to predict atrial fibrillation events and artificial intelligence- enhanced ECG 

(AI–EGG)- guided ‘pill- in- pocket’ (oral anticoagulation or class Ic antiarrhythmic 

drugs) in patients with paroxysmal atrial fibrillation

 - Smartphone- based surveillance of the QT interval for patients in whom treatment 

with sotalol, dofetilide or other medications that can affect repolarization is 

initiated or for patients longitudinally treated with sotalol, dofetilide or other 

medications that can affect repolarization

•	Sudden cardiac death: identifying which patients should receive an implantable 

cardioverter–defibrillator and integration with clinical and imaging markers

 - Beyond the left ventricular ejection fraction in patients with ischaemic or 

non- ischaemic cardiomyopathy

 - Risk stratification in patients with hypertrophic cardiomyopathy or inherited 

arrhythmia syndromes

•	Predicting the exacerbation of congestive heart failure on the basis of continuous 

ECG ambulatory data to prevent emergency department visits and hospitalizations

•	Severity and staging of heart failure, valvular heart disease and pulmonary arterial 

hypertension to guide clinical decision- making, prognosis and monitoring

•	Angina and stress ECG analysis — identifying high- risk patients who will benefit from 

invasive coronary evaluation and possible intervention
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well- phenotyped patients, their application to ECGs 
obtained in routine clinical practice in real- world set-
tings might be poor. Similarly, although the models 
might perform well in one population, they require 
rigorous evaluation for external validity in diverse 
popu lations. The aforementioned AI–ECG model for 
low LVEF has been validated in racially diverse cohorts, 
but validation data for the other AI–ECG model algo-
rithms are pending. Although models might perform 
well in terms of their individual performance charac-
teristics, this performance does not always translate 
into meaningful and actionable clinical information. 
For instance, screening tests for very rare conditions 
might be limited by low positive predictive value when 
applied to populations with low pretest probability 
of the disease. Although an algorithm might seem to 
predict a disease state well, if this information does 
not add to other readily available data (such as age, sex 
and comorbidities), the algorithm will add very little to 
clinical risk stratification. Many routinely used screen-
ing and diagnostic tests often do not produce consist-
ent improvements in downstream patient outcomes, 
thereby offering little incremental value to clinical 
care61. Similar assessments of the effects of routinely 
integrating the AI–ECG into clinical practice and its 
implications for patient outcomes and costs will be 
important. Clearly, the delivery of AI- related applica-
tions in the clinical environment generates a new set of 
previously unrecognized challenges.

As with most other AI- enabled tools, the develop-
ment of AI–ECG models requires large datasets for 
training, validation and testing. In some cases, multi-
centre collaborations might be necessary to assemble 
the sample sizes required for the development of high- 
 fidelity models. Such collaboration is particularly perti-
nent when the condition of interest is rare or when an 
urgent clinical need dictates the rapid development of a 
model, such as the AI–ECG tools for the diagnosis and 
risk stratification of COVID-19 during the current pan-
demic. In this process and during external validation of 
any AI–ECG model, large amounts of patient data are 
exchanged between research teams worldwide, generat-
ing concerns for the security and protection of sensitive 
patient information that might be susceptible to cyber-
attacks or other threats62. In the current environment, 
the use of traditional encryption methods might not 
be sufficient to alleviate these concerns. Among other 
possible novel data- protection solutions, blockchain 
techno logy might allow the secure and traceable sharing 
of patient data between investigators and institutions for 
the development, validation and clinical implementation 
of AI tools by generating a decentralized marketplace of 
securely stored patient data specifically intended to be 
used in AI applications63,64. Of note, even a miniscule 
artificial perturbation of the input data (such as a sin-
gle pixel in an image or an ECG) that is unrecognizable 
by the human eye might lead an otherwise well- trained 
CNN to misclassify the data and generate false output. 
CNNs are clearly vulnerable to adversarial perturba-
tions of input data, and shielding against these vulner-
abilities will be important for their future widespread 
implementation65.

We must also acknowledge that a risk of perpetuating 
bias exists with AI. Algorithms that are derived using 
current clinical practice patterns and outcomes will 
reflect the disparity present and pose a risk of reinforcing 
and perpetuating these inequities. To address this risk, 
investigators and consumers of these algorithms must 
consider how the data are collected (in what population 
and of what quality), how the models perform, how the 
model should best be applied and how the findings fit 
within existing knowledge.

Clinical and technical challenges also exist to the appli-
cation of the AI–ECG to patient care. AI analy sis relies on 
standardized digital ECG acquisition that is not universal 
in current clinical environments, even in high- resource 
settings. Poor- quality data can prevent the effective 
development and application of AI–ECG techno logies. 
Current AI tools cannot analyse ECGs stored as images 
(such TIFF or PDF file types), which limits generaliza-
bility in some clinical environments. Furthermore, the 
infrastructure to integrate AI–ECG results into electronic 
health records and make them available at the point of 
clinical care is not widely available.

An evidence base for the real- world effects of AI–ECG  
analysis on clinical care and ultimately on important 
patient outcomes remains to be established. Outcomes 
to be considered are the uptake by clinicians, effect on 
clinical decision- making (how does the result of AI ana-
lysis affect downstream testing and therapies?) and ulti-
mately whether AI–ECG analysis improves the provider 
and patient experience and patient- specific clinical 
outcomes. Similarly, how does the AI–ECG algorithm 
complement existing clinical or laboratory markers of 
disease? For example, can we use the AI–ECG algorithm 
to detect LV systolic dysfunction in addition to using 
measurements of plasma levels of N- terminal prohor-
mone of B- type natriuretic peptide and what does it 
add? Randomized clinical trials of the pragmatic imple-
mentation of the AI–ECG, such as the EAGLE56,57 and 
BEAGLE58 trials discussed previously, are now being 
conducted and will provide unique insights. Rigorous 
testing of AI–ECG tools in randomized trials is crucial 
for demonstrating their value, as with any other form of 
clinical intervention.

Lastly, the regulatory aspects of incorporating  
AI–ECG- derived diagnoses for direct clinical care are 
now starting to be formulated. The barrier to approval 
by regulatory bodies might be quite different from that 
for devices or medications and might vary according 
to the ability of a clinician to ‘over- read’ the AI–ECG 
findings. For algorithms that streamline workflow but 
perform a task that is usually done by humans (for exam-
ple, rhythm determination), the algorithm might be 
approved as a tool to aid clinician workflow. However,  
if the models perform an analysis that cannot be done 
by expert clinicians (for example, determination of ‘ECG 
age’ or the risk of future AF), additional approval com-
plexities might exist. Similarly, if algorithms are meant 
to be applied for patients and consumers at the point of 
care (without clinician oversight), a higher bar for per-
formance of the model might be required. A legal frame-
work to support AI- based clinical decision- making has 
not yet been established.
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Results (screenshot from AI–ECG Dashboard)Normal sinus rhythm. Normal ECG

Results (screenshot from AI–ECG Dashboard)Probable sinus tachycardia with first-degree AV block
Premature ventricular complexes. Right-axis deviation.

Incomplete right bundle branch block. Low anterior forces.
Non-specific ST and T-wave abnormalities.

90 1

0.5

0

1

0.5

0

1

0.5

0

80

70

60

60 70 80 90 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020

20

40

60

60 70 80 90

1

0.5

0
20102005 2015 2020

1

0.5

0
20102005 2015 2020

1

0.5

0
20102005 2015 2020

ECG age Probability of low EF Probability of HCM Probability of AF

ECG age

a

b Probability of low EF Probability of HCM Probability of AF

Median beatsComplete ECG

Median beatsComplete ECG

A
I–

E
C

G
 a

g
e

 (y
e

a
rs

)

Chronological age (years)

P
ro

b
a

b
il

it
y

A
I–

E
C

G
 a

g
e

 (y
e

a
rs

)

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

P
ro

b
a

b
il

it
y

Year Year Year

Chronological age (years) Year Year Year

www.nature.com/nrcardio

REV IEWS

476 | JULY 2021 | VOLUME 18 



Conclusions

The true potential of deep- learning AI applied to the ubi-
quitous 12- lead ECG is starting to be realized. The util-
ity of the AI–ECG is being demonstrated as a tool for 
comprehensive human- like interpretation of the ECG,  

but also as a powerful tool for phenotyping of cardiac 
health and disease that can be applied at the point of 
care. The implementation of the AI–ECG is still in its 
infancy, but a continuously growing clinical investigation 
agenda will determine the added value of these AI tools, 
their optimal deployment in the clinical arena and their 
multifaceted and so- far largely unpredictable implica-
tions. As with any medical tool, the AI–ECG must be 
vetted, validated and verified, and clinicians must 
be trained to use it properly, but when integrated into 
medical practice, the AI–ECG holds the promise to 
transform clinical care.
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Fig. 4 | AI–ECG Dashboard linked from within the electronic health record  

for point-of-care application. a | A patient with embolic stroke of undetermined  

source had an increased probability of silent atrial fibrillation (AF; red data points) that 

predated the clinical documentation of atrial flutter. b | A patient with a history of heart 

transplantation in 2005 who experienced graft rejection with left ventricular systolic 

dysfunction in 2020. At that point, the artificial intelligence- enhanced electrocardiogram 

(AI–ECG) reported a high probability of low ejection fraction (EF), correlating with the 

graft rejection. AV, atrioventricular; HCM, hypertrophic cardiomyopathy.
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