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Abstract

Artificial intelligence (AI)-based diagnostic algorithms have achieved ambitious aims

through automated image pattern recognition. For neurological disorders, this

includes neurodegeneration and inflammation. Scalable imaging technology for big

data in neurology is optical coherence tomography (OCT). We highlight that OCT

changes observed in the retina, as a window to the brain, are small, requiring rigor-

ous quality control pipelines. There are existing tools for this purpose. Firstly, there

are human-led validated consensus quality control criteria (OSCAR-IB) for OCT.

Secondly, these criteria are embedded into OCT reporting guidelines (APOSTEL).

The use of the described annotation of failed OCT scans advances machine learning.

This is illustrated through the present review of the advantages and disadvantages of

AI-based applications to OCT data. The neurological conditions reviewed here for

the use of big data include Alzheimer disease, stroke, multiple sclerosis (MS), Parkin-

son disease, and epilepsy. It is noted that while big data is relevant for AI, ownership

is complex. For this reason, we also reached out to involve representatives from

patient organizations and the public domain in addition to clinical and research cen-

ters. The evidence reviewed can be grouped in a five-point expansion of the OSCAR-

IB criteria to embrace AI (OSCAR-AI). The review concludes by specific recommen-

dations on how this can be achieved practically and in compliance with existing

guidelines.

Introduction

Sophisticated artificial intelligence (AI)-based algorithms

not only enable discrete layer segmentation of retinal

optical coherence tomography (OCT) scans, but can iden-

tify novel retinal features. A prominent recent example is

automatic clinic referral via deep learning based on retinal

layer analysis.1 The current OSCAR-IB quality control
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(QC) criteria take algorithmic quality components into

account (the A-criterion) but the criteria are not adapted

to AI-based algorithms.2 Given the recent success and

rapid developments in this field, it is timely to build on

the OSCAR-IB QC criteria to address the challenges of AI

and big data specifically.

To this purpose, it is critical to acknowledge that accu-

racy is paramount to the interpretation of retinal OCT in

neurological disease. Judgments are highly dependent on

quantitative data of individual retinal layers. Key compo-

nents are thickness, degree of change, and alteration of

the topography. The retinal layer thickness changes seen

in neurological disorders are much more subtle3-7 than

the pathologies seen in the ophthalmologic diseases, now

successfully detected by AI-based methods.1,8,9 For neu-

rodegenerative diseases, relevant annual retinal layer atro-

phy rates are just above the axial image resolution of

contemporary spectral-domain and swept-source OCT

techniques.5 For this reason, image QC is paramount.

Over the past decade, big OCT data have accumulated in

neurodegenerative and neuroinflammatory diseases. These

data are attractive for the development of AI strategies.

The expectation is to improve the accuracy of OCT-based

quantification, diagnostic sensitivity and specificity, dis-

cover novel surrogates for monitoring disease progression

as well as outcome metrics for clinical trials. Fully auto-

mated AI-based strategies are transferable from highly

specialized services to primary care. The test throughput

is also scalable to include, for example, high street opti-

cians. Both will aid with the logistics of patient care

through local centers.

In 2012, we proposed the first consensus OCT QC cri-

teria, OSCAR-IB.2 The name served as a mnemonic for

seven distinct QC criteria to be remembered; (i) Obvious

errors, (ii) Signal strength, (iii) Centration of scan, (iv)

Algorithm failure, (v) Retinal pathology, (vi) Illumina-

tion, and (vii) Beam placement. This was followed by

international validation10 and endorsement to reporting

guidelines.11 The OSCAR-IB QC criteria were developed

in a multiple sclerosis (MS) network, and have since been

broadly accepted. This success is at least in part due to

the demand for clarity and transparency on being practi-

cal to “get simple things right”. A similar approach is

warranted for the role of AI in relation to OCT data in

neurodegenerative diseases.

Review of evidence for need of QC

AI-based strategies are at risk for propagation of system-

atic errors, imbalance, and bias due to subtle differences

in data acquisition or postprocessing. There is justified

concern about the lack of QC standards for big data.12,13

The rise of big data is in part driven by the hope of

improving P4 medicine: predictive, preventive, personal-

ized, and participatory care.14 For example, integrative

prediction models encompassing as many as 63 variables

have been proposed to enable personalized predictions of

individuals’ outcomes and guide treatment decisions in

myeloproliferative neoplasms.15 The implications that AI-

driven approaches will have for individuals can easily be

influenced by bespoke sources of bias fed into the model

as discussed below.

Importantly, minimal variation in image acquisition

can cause substantial errors in the quantitative data.16,17

Strategies based on AI are excellent in recognizing

changes between images, but do not necessarily know

how the human OCT operators have acquired an image.

This can mislead the AI-based strategy with a downstream

effect of possible misdiagnosis, mismanagement, and

harm. The risk for such a situation to occur increases

with rapidly rising numbers of OCT scans to be evalu-

ated. It may introduce systematic errors if imbalances

exist between populations and centers, for example, due

to service capacity issues or automation of our health-care

systems. The possible medico-legal ramifications are also

evident.

Review of failures and successes of
retinal OCT in neurological diseases

To date, OCT data in MS and related disorders are most

consistent as most reports adhered to the OSCAR-IB QC

criteria and followed the APOSTEL reporting guide-

lines.2,11 Results are more heterogeneous for other neuro-

logical diseases because of lack of standardization. There

is evidence for an early publication bias in Alzheimer dis-

ease (AD) reports.6 Subsequent data were not supportive

of the earlier enthusiasm. Few of the reports on AD fol-

lowed a rigorous QC approach. This similarly applies to

reports of OCT in Parkinson disease (PD),18,19 amy-

otrophic lateral sclerosis (ALS),20-23 stroke,24 epilepsy,4,25

and schizophrenia.26

Review of successes of AI in
neurological diseases

There are critical successes for the use of AI in neurologi-

cal disease. For example, urgent triaging of individuals

from brain imaging to neurosurgery27; earlier diagnosis of

AD28; identifying suitable candidates for epilepsy sur-

gery29; and regulation of adaptive deep brain stimulation

in movement disorders.30 Imaging-based trial outcome

measures in neurology include almost all neurodegenera-

tive, neurovascular, and neuroinflammatory conditions

alongside tumors.31 Imaging data have become multi-

modal. This adds to complexity and time needed by
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human readers and reporting. Likewise, histological data

can now be used for machine and deep learning.32

The review committee

The ophthalmological community has driven advances in

AI-based analysis of retinal OCT.1 The committee for this

review has been expanded (Table 1). We included repre-

sentatives from neurological sub-specialties who have

used retinal OCT data for diagnostic and prognostic pur-

poses, as well as treatment trial outcome measures. We

have also engaged with experts in the fields of AI and

bio-engineering and bio-statistics and two not-for-profit

organizations (www.ern-eye.eu and www.imsvisual.org).

The patient voice

The importance of patient involvement as a key stake-

holder has been recognized33 and contributed to the

development of conceptual models.34 On a day-to-day

practical level, the experience has demonstrated that indi-

viduals tolerate retinal OCT well. It is noninvasive, non-

contact, quick, and provides instant feedback. The

possibility to display images directly to the individuals

and discuss changes has given them more confidence and

insight in their care.35 This good partnership has helped

in working together to build trust, supporting treatment

decisions and making OCT scans available for research.

There is a need to maintain this mutual trust at a time

where the immense amount of data accumulated now

permit AI-inspired projects on big data. None of this is

possible without patient participation, their consent, and

feedback. A key concern of patients and their advocates is

that their data will be misused. Individuals have a higher

level of confidence in not-for-profit stakeholders than in

government or private companies.36

Data protection and privacy

Due to the requirement of very large training datasets for

optimal performance, most current clinical AI systems

have been developed using routinely collected data which

have been anonymized. Anonymization of medical images

presents specific challenges, however, particularly images

of individually unique structures such as the neurosensory

retina.37 Even when carefully anonymized, there is at least

a theoretical risk of re-identification for such images,

either now or with some future technology.38 Therefore,

we recommend a multistep approach to addressing data

protection and privacy. Firstly, retinal OCT scans should

be anonymized according to current national and interna-

tional standards.39 This includes removal of any imaging

meta-data such as patient names, dates of birth, or

medical record numbers, obscuration of hospital visit

dates, plus careful consideration of any associated clinical

meta-data (e.g., merging of categories/classes if they con-

tain only a limited number of examples).40 Secondly, a

range of additional safeguards should be put in place.

Technical safeguards include the requirement to store

data in trusted research environments with access controls

and audit logs; contractual safeguards include prohibi-

tions against linkage or attempted re-identification of

data. Importantly, every attempt should be made to mini-

mize the data shared to that required for the clinical or

research purpose – this is a fundamental principle of

much data protection regulations, including the European

General Data Protection Regulation (GDPR). Finally –
and perhaps most importantly – it is vital to engage in

patient and public engagement and involvement at the

earliest possible stage. This includes making patients

aware that their data are being used for research, publish-

ing study protocols, and giving patients the opportunity

to opt-out. By adopting a cautious and engaged approach

such as this, we believe it is possible to reduce any data

protection risks while maximizing the potential for future

patient benefit. In the future, a range of technical solu-

tions, including federated learning and homomorphic

encryption, should help further mitigate these risks.41

Search strategy and selection criteria

We reviewed three databases, PubMed, Web of Science,

and Google Scholar, between 01 January 1963 and 23

April 2020 without language restriction. We chose the

English version of a manuscripts if the same group had

published similar data in Dutch, French, German, Italian,

or Spanish. The search terms used were “optical coher-

ence tomography” or “OCT” combined with “artificial

intelligence”, “machine learning”, “deep learning”, “multi-

ple sclerosis”, “optic neuritis”, “dementia”, “Alzheimer”,

“Parkinson”, “motor neuron disease”, “amyotrophic lat-

eral sclerosis”, “stroke”, “cerebrovascular accident”,

“schizophrenia”, “patient voice”. We also reviewed articles

included in three systematic reviews previously con-

ducted.3,5,8

Methods

Firstly, we reviewed the original OSCAR-IB criteria to

clarify which of the QC failures require an individual to

be re-assessed or to be excluded if, for example, post hoc

homogenization approaches fail. Having to recall a

patient for a failed test is not desirable, is problematic,

and is expensive. Secondly, we reviewed approaches to

rectifying QC failures by image postprocessing. Thirdly,

we examined the outcome of our AI-based methods for
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irregularities, identical to the approach taken in the origi-

nal OSCAR-IB report.2 The terminology of terms explic-

itly related to AI is summarized in Table 2.

Defining QC for AI: RASCO

Firstly, there is a clear and justified fear of the misuse of

big data.37 Secondly, the patient–physician relationship

must be supported to provide an optimal experience.

Thirdly, demonstration of the capability of the AI strategy

enhances the ability to produce high-quality and relevant

effectiveness research. Fourthly, it promotes accountabil-

ity. Fifthly, it provides grounding for the production of

reproducible studies. Together, the definition of QC for

AI can be summarized by five pillars which were named

individually or in combination in the literature reviewed

(Figure 1). The mnemonic, RASCO, stands for Repro-

ducibility (R), Accountability for decisions made (A), to

be Supportive of the patient–physician relationship (S),

Capability ranging from machine learning (ML)-sup-

ported OCT quality control assessment to time and

resource-efficient decision-making (C), and Openness

with and trust in public opinion (O) is pertinent, given

the personal data protection issues discussed above.42

Big data

The utility of AI in medical applications is more depen-

dent on data quality than quantity. The new research field

of big data has contributed considerably to the advance-

ment of medical science by analysis of large datasets.

Until recently, it had not been easy to accumulate enough

data to create a large data repository and analyses were

too complicated or lacked statistical and computer power.

A critical area of weakness of big data can be the granu-

larity and quality of the source data entered. In essence,

the quality of outputs or results of AI-based assessments

should not be expected to exceed the underlying quality

of the data being analyzed (input data). This underpins

the importance of maintaining the highest standards of

quality, even in the AI space. As we are at the dawn of AI

for OCT research, one of our aims is to facilitate the gen-

eration of the high-quality data needed for future research

in the field.

Prospective OCT image QC

Each OCT scan should prospectively be labeled as QC fail

or not. There are several reasons why a scan may fail QC.

Each failed scan should be annotated with a complete list

of reasons. An efficient way is to use the capital letters of

the OSCAR-IB criteria.10 To avoid a potential bias by

eliminating scans from the sickest individual who may

have difficulties with the test, this needs to be explicitly

noted. Retinal and systemic co-morbidities require careful

clinical evaluation with more in-depth ophthalmic pheno-

typing than hitherto done in most neurological studies.43

Table 1. Expertise of the literature review committees.

Expertise Members

Patient voice Nils Wiegerink (patient), Russel Wheeler (patient

advocate), Christiaan Waters (President of

patient organization), Avril Daily (Retina

International, ERN-EYE), Christina Fasser (Retina

International, ERN-EYE), Orla Galvin Deborah

(Retina International, ERN-EYE), and Oshakuade

(Retina International, ERN-EYE)

AI Erik Bekkers, Siegfried Wagner, and Pearse

Keane

Public relation &

Media

Avril Daily

ALS Philip Albrecht and Orhan Atkas

Alzheimer disease Thomas Wisnewski

Epilepsy Josemir W. Sander

Parkinson disease Alexander Brandt, Philipp Albrecht, and Orhan

Atkas

Stroke Shadi Yaghi and Arvind CHANDRATHEVA

Multiple Sclerosis Alexander Brandt, Peter Calabresi, Laura Balcer,

Elliot & Tree Frohman, Friedeman Paul, Ari

Green, Pablo Villoslada, Axel Petzold, Philipp

Albrecht, Orhan Aktas, E. Ann Yeh, Bernardo

Sanchez-Dalmau, Jen Graves, Shiv Saidha,

Robert Bermel, IMSVISUAL, and ERN-EYE

Rare Diseases Alexander Brandt, Philipp Albrecht, Orhan Atkas,

Axel Petzold, Friedeman Paul, Frederike Oertel,

Alexander Brandt, E. Ann Yeh, Avril Daily

(Retina International, ERN-EYE), Christina Fasser

(Retina International, ERN-EYE), Orla Galvin

Deborah (Retina International, ERN-EYE)

Oshakuade (Retina International, ERN-EYE),

Bernardo Sanchez-Dalmau, and ERN-EYE

Ophthalmology Bernardo Sanchez-Dalmau, Pearse Keane,

Siegfried Wagner and ERN-EYE

Neuro-

ophthalmology

Fiona Costello, Ari Green, Axel Petzold, Laura

Balcer, Bernardo Sanchez-Dalmau, Jen Graves,

and ERN-EYE

OCT Alexander Brandt, Frederike Oertel, Hannah

Zimmerman, Philipp Albrecht, Orhan Atkas,

Peter Calabresi, Axel Petzold, Jen Graves,

Rachel Nolan-Kennedy, Laura Balcer, Shiv

Saidha, Bernardo Sanchez-Dalmau, Pablo

Villoslada, and Robert Bermel

OCTA Benjamin Knier, Shiv Saidha, Axel Petzold and

IMSVISUAL

Clinical trials OCT

QC

Alexander Brandt, Friedeman Paul, Sven

Schippling, Axel Petzold, Robert Bermel, Laura

Balcer and IMSVISUAL

Statistics and

epidemiology

David Crabb, Gary Cutter, Laura Balcer, Jen

Graves, Rachel Nolan-Kennedy, Kathryn

Fitzgerald, and Zhaoxia Yu
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QC failure may result in two situations: (1) where an

error can be corrected at postprocessing; and (2) where

the error requires recalling and repeating the test.

Human-led OCT image QC is a time-consuming task,

so it is desirable for this to be performed using AI

strategies. We suggest making use of the above-described

annotation of failed scans for ML of OSCAR-IB criteria

(Figure 2). This will enable the training of future AI

algorithms to separate good from insufficient quality

OCT scans. The next application step within the pool of

scans designated as being of inadequate quality will be to

identify those scans which may be subjected to post-ac-

quisition correction approaches, thereby making them

high quality, and enabling their safe and accurate utiliza-

tion. This is a crucial step as it allows for AI training in

auto-correction. Scans which failed OSCAR-IB and are

not correctable must be excluded from any further AI

steps.

Taken together this leaves a staged approach to QC in

AI: (1) Automated AI OCT QC rating using validated

OCT QC criteria2,10; (2) where possible AI QC correction

during image postprocessing, or if not possible patient

recall for repeat acquisition; and (3) final step of AI-based

image analysis. This will typically make use of pattern

recognition and be the key step forward for the primary

research questions. A limitation to keep in mind is that

Table 2. Terminology and basic concepts.

Artificial

Intelligence (AI)

Computer or machine-based intelligence which

enables “learning” and “problem solving”

Machine learning

(ML)

One subset of AI. Typically algorithms improve

automatically through experience after training

on a dataset. ML can be supervised or

unsupervised

Deep learning One subset of ML essentially based on artificial

neuronal networks. Very efficient and the basis

of most contemporary AI-based studies on

image recognition

Supervised Supervised ML works on a labeled training

dataset (e.g., OSCAR-IB OCT scans) and

reproduces the desired outcome

Unsupervised Unsupervised ML tries to discover previously

undetected patterns in a dataset

Over-fitting Over-fitting can be a problem with ML, a source

of over-enthusiastic reporting and reason for

lack of reproducibility

Figure 1. The goal of quality control in Artificial Intelligence (AI) rests on five pillars: RASCO. (1) Openness with and trust in the public opinion,

(2) to be Supportive for the patient–physician relationship, (3) Capability ranging from machine learning (ML)-supported OCT quality control

assessment to time and resource-efficient decision-making, (4) Accountability for decisions made, and (5) Reproducibility (RASCO).
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presently it is not possible to exclude ophthalmological

co-morbidities without a clinical assessment.

AI artifact vulnerability

We have not identified reports on the vulnerability of

algorithms to misclassification due to the use of different

OCT devices or software versions. Even seemingly small

updates have the potential to cause significant differences

which if left unnoticed can bias results.44

Ground truth

The definition of ground truth is disease-specific. It

should be stated explicitly how the ground truth was

defined. At the minimum for AD and other neurodegen-

erative dementias, epilepsy, MS, optic neuritis (ON), neu-

romyelitis optica spectrum disorder (NMOSD), PD,

adherence to consensus investigation protocols, and diag-

nostic criteria will be required. As diagnostic criteria in

most neurological diseases are regularly updated, this

needs to be taken into account.

Statistics

The descriptive statistics reviewed were mostly based on

binary classifiers such as a disease is present “yes/no”.

These models should include a comment on proportional

bias.45 This is needed to interrogate how much the AI-

based prediction agrees with the ground truth. The defini-

tion for an acceptable ground truth needs to include the

level of evidence on which it was based. For binary and

multiclassifier models, the degree of inter-rater agreement

should be stated to permit judging on how stable the

ground is.

Graphs can be presented in a way that allows judgment

of the degree of over-fitting and underestimation relevant

in comparing differences between AI and ground truth.

Many studies used Bland-Altman plots46 or analyzed the

performance of AI and ground truth based on a receiver

operator curve (ROC)-based area under the curve (AUC).

This gives comparative estimates of sensitivity, specificity,

and the positive predictive value (PPV) as a measure of

overall accuracy. This is particularly relevant for relatively

rare diseases. It was recommended to complementing area

Figure 2. The capability of AI to contribute interpreting OCT images depends on the optimization of each step contributing to the decision tree.

The first step relates to the quality of the raw data. Validated QC criteria for OCT image have been summarized as OSCAR-IB.2 The ground truth

of whether or not an OCT passes QC is based on human assessment. The seven OSCAR-IB criteria for QC rejection by a human assessor can

directly be used to train AI. Annotation of corrupted OCT scans permits for two outcomes: (1) image postprocessing and repair of artifacts or (2)

complete rejection and (if feasible) recall of patient and OCT rescan. Only a dataset that passed OCT image QC should be used for further AI

interpretation.
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under the curve ROC (AUROC) values by precision-recall

(precision is the PPV and recall is the sensitivity in the AI

literature) curves (AUPRC).8 This was found to be of rel-

evance for unbalanced datasets (substantially more sub-

jects in one of the groups compared).

Cut-off level calculation

Reporting of calculation of cut-off values included the use

of independent cohorts, a graphical ROC-based approach,

the Youden Index, k-fold cross-validation, or hold-out

validation approaches to obtain accurate estimations of

AI-based cut-off performance.

Power calculations

We did not yet find consistent reports of the inclusion of

power calculations to studies, which are relevant for ran-

domized controlled trials using AI-based outcome mea-

sures.47 It is recommended that sample size estimates be

performed before developing an algorithm and repeated

after study completion. The gain in power, meaning a

more robust statistical result, is just as informative for

future research as the potential cost savings by optimizing

numbers. Lastly, the standardized effect size, likely to

come from AI, was recommended to be aligned with dis-

tribution, and anchor health economics to inform clinical

trials on what will be a realistic difference.47,48

Cohort description

On review, cohort descriptions were mostly conform to

contemporary standards on demographic characteristics.

Cohort descriptions are relevant for AI, and will also

greatly limit/determine the usability of the system. This

reinforces the need to build on successful initiatives such

as the established Consolidated Standards of Reporting

Trials of Electronic and Mobile Health Applications and

online TeleHealth (CONSORT-EHEALTH)49 and the

CONSORT-AI guidelines.50 Documentation of develop-

mental changes is also relevant throughout pediatric care

and at the transition to adult care. A novel source of

potential biases related to the disease diagnostic criteria

used. For many of the conditions of interest to retinal

OCT, subsequent diagnostic criteria were published over

the past decades. While generally aimed at improving

practicability, sensitivity, and specificity, this bears the

risk that cohorts which are supposed to have the same

disease can be quite different in their composition. For

example, subsequent diagnostic criteria for MS, AD, and

PD have profoundly reshaped the patient base for clinical

research over time. Contemporary cohorts tend to be

milder than historical cohorts.51 Clinical trial populations

are different from observational studies. The co-morbidity

burden is relevant. Relevant items for the pooling of big

data are: reporting of the exact diagnostic criteria, a

detailed listing of all inclusion and exclusion criteria,

recruitment, referrals, and capability of individuals to

comply with the examinations. Minimization of the risk

of systematic bias will ensure that validation of AI in

other cohorts will be comparable.

Validation

For all AI algorithm development efforts, data used for

this purpose should be clearly described for discovery and

replication analyses. To avoid obtaining a distorted/biased

view on performance, data that are used for validation

(e.g., to assess performance) should not have been used

during algorithm development. There is a real risk for

over-fitting the AI models. It was recommended to per-

form a validation of the algorithm with the aid of a com-

parable out-of-sample population. Each AI classification

scheme should be rated to whether or not an external

validation was performed. This can be supported by pub-

lishing details on the building blocks of the AI. Relevant

are precise and meaningful definitions on a functional

and performance level. This entails a detailed description

of the AI architecture, hyper-parameters, as well as details

on how the available data were used to train such sys-

tems, preferably via open access code repositories. One of

the challenges with AI at regulatory level but also at the

clinical level found was the fact that neural networks can

learn with data and improve their performance. For this

reason, it was suggested to define in advance which type

of learning is allowed without requiring validation,

approval, or lack clinical risks.

Human versus machine and human
with machine

It was reported that AI might improve over human per-

formance in terms of accuracy and speed.52 For this “ma-

chine versus human” approach reporting included data

on sensitivity, specificity, positive, and negative predictive

values including the 95% confidence intervals (CI) and

the numbers on which the calculations were based. These

data permit to answer the question if AI can outperform

humans not only as seen with Chess and “Go” games,53,54

but also for classification of retinal appearances.55

There is a second, equally important question to be

answered. How can AI be used to enhance human perfor-

mance?56 Therefore, it was recommended to test if there

is a synergistic effect if the AI and human approach are

combined. This is typically referred to as human–AI sym-

biont/symbiotic.57
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Clinical practice

The relevance of potential clinical downstream effects has

been recognized.58-60 The big chances are to reduce the

burdens on physicians and help with service capacity

issues. It was recommended to indicate if an algorithm is

useful for clinical practice. This requires to test the algo-

rithm in clinical routine. There were different levels at

which algorithms added information: on an individual

level, on a cohort level, or for screening purposes. There

can be important consequences for daily clinical care and

health systems. Concerns reported related to misdiagnosis

and practicability. This has implications for disease classi-

fication.61

Guidelines

At the time of the review, the following guidelines were

relevant: APOSTEL, TRIPOD-AI, CONSORT-AI,50

SPIRIT-AI, and STROBE62 guidelines. They are regularly

updated and latest information can be found on the

equator network website at www.equator-network.org/.

Open access

Open access and data sharing were found to be essential for

accountability and reproducibility. The classified sample

dataset is just as valuable as the developed algorithm. Data-

sets can potentially be used by other groups, to facilitate

even greater improvements. Accordingly, data availability

may accelerate development in the field. Algorithms can

also be transferable and codes can be shared.

Black box

On review, there is a need to understand on what basis

an algorithm came to a particular conclusion.

Review of the black box of OCT in
neurology

There are a few careful predictions one can make regard-

ing the “black box” for neurodegeneration based on anat-

omy and progression pattern.

Firstly, anatomically each area in the retina is con-

nected by axons with a corresponding area in the brain

because of the hard-wired retino-cortical projections.3,5

The location of damage to the brain will determine the

location of expected OCT changes in a determined area

of the retina, a “Region of Interest” (ROI). It has been

shown that an ROI-based approach to quantification of

inner retinal layer atrophy is superior to occasionally per-

formed sector analysis5-7 or the generally adopted global

averaged approach because it can mask small areas of

atrophy.63,64

Secondly, the progression pattern is determined by

location and size of a lesion damaging the retino-cortical

projections.64-66 The speed of progression is highest and

the area of inner retinal atrophy most extensive with

direct retrograde axonal degeneration as seen with optic

nerve damage. More distal brain damage will still cause

localized atrophy in the retina by a mechanism called ret-

rograde trans-synaptic axonal degeneration.65,67 On

sequential OCT imaging, the time course of atrophy is

shorter with small brain lesions compared to larger brain

lesions.64 It can be anticipated that a smoldering, slowly

enlarging brain lesion will continue to drive the expan-

sion of OCT detectable retinal atrophy.68

Thirdly, inflammatory activity in demyelinating disease

has been related to transient increase of the inner nuclear

layer (INL) volume.69-73 Part of this INL thickening is

related to the development of microcystic macular edema

(MME).69,70,74 Vitreous traction had been implicated, but

is not required for the development of MMO.75 In most

(>80%) cases, MMO is a transient phenomenon.74 In the

remainder, it remains static over the years74,76 and is con-

sidered by some to represent a retrograde maculopathy77

due to axonotmesis in the anterior visual pathways as

known from experimental models.78

Fourthly, there are qualitative observations on the OCT

images, which have not yet been translated into auto-

mated forms of quantification. One example is the pres-

ence of hyper-reflective spots.74 There are two types of

these hyper-reflective spots on OCT, and one is static and

particularly visible at the upper and lower border of the

INL. With the advent of OCT-Angiography (OCTA) and

adaptive optics, it has become clear that they represent

reflectivity changes from the inner retinal vasculature.79

There is at least another type of hyper-reflective spot

noticed on serial OCT images, which migrates vertically

through the retina.

Fifthly, the vitreous has specific OCT signal characteris-

tics which can be reliably quantified from the raw image

data.80,81 The technique is useful in neurological disease

affecting younger adults where the vitreous body still

adheres to the retina such as the majority of people with

MS.82 The evaluation of the raw OCT data, rather than

analysis of an already postprocessed screen image, is

required due to signal changes.

Sixth, advanced image shape analyses now permit for

quantitative data on qualitative characteristics of the optic

disc. The technique has proved valuable in idiopathic

intracranial hypertension83,84 and possibly also idiopathic

moyamoya angiopathy.85 Similarly, the presence of peri-

papillary hyper-reflective ovoid mass-like structures

(PHOMS) is a novel OCT finding,86 which akin to MMO
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remained undetectable on conventional funduscopic

examination. Likewise, shape analysis of the fovea has

become possible.87,88

Seventh, functional assessment of individual retinal lay-

ers by OCT is possible using, for example, a dark adapta-

tion.79 One can anticipate that with the availability of

OCTA, the retinal equivalent of a blood-oxygen-level-de-

pendent (BOLD) signal for the brain will emerge.89

Increased, localized retinal metabolic activity will demand

increased oxygen supply and cause elevated perfusion of

the microvasculature.79 Pioneering data on OCTA in MS

imply that there is a need for AI-supported QC to

exclude artifacts.90-92 This will be relevant for reliable

quantitative OCTA data on the retinal microvasculature

which may help to differentiate between disease entities

such as MS and NMOSD.93

Eighth, inter-eye differences of individual retinal layers

are an attractive and highly sensitive method to screen for

optic neuritis and MS.43,94-101 Expanding on these find-

ings, there is a field for AI-based analyses of patterns of

retinal asymmetry in MS.43

Lastly, reflectivity changes of individual layers can be

interrogated to estimate tissue properties indirectly.102,103

Based on the above combination of numerous quanti-

tative and qualitative changes in retinal (neural and non-

neural tissue) architecture in neurological disease, there

are promising avenues for a supervised ML approach to

the analysis and interpretation of OCT data. Equally, for

researchers who prefer to follow a nonsupervised ML

approach, the committee recommends checking if find-

ings may be explainable, at least in part, by the above

summary of anatomically, biologically, and pathologically

plausible observations.

Summary

In summary, we reviewed several levels of AI-based OCT

research in neurology. The main points arising from this

review are summarized in Table 3 and based on five pil-

lars (RASCO). The practical conclusions from the multi-

ple levels of evidence reviewed and the summary table

may be found helpful on a practical level for future

research in the field.
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Table 3. Summary of key points from the literature review on OCT

and AI research in neurology. The categories are based on the mne-

monic “RASCO”. This table may be found helpful in guiding future

use of the reported data for AI-based studies.

Question Answer

REPRODUCIBLITY

OSCAR-IB OCT quality control compliant? Yes / No

APOSTEL OCT reporting guideline compliant? Yes / No

TRIPOD-AI compliant? Yes / No

CONSORT-AI compliant? Yes / No

SPIRIT-AI compliant? Yes / No

STROBE compliant? Yes / No

ACCOUNTABILITY

Training, test & validation sets explained? Yes / No

Potential for bias1 in big data addressed? Yes / No

Ground truth explicitly stated? Yes / No

Statement on proportional bias given? Yes / No

Precision-recall curves provided? Yes / No

Power calculations included? Yes / No

SUPPORTS PATIENT DOCTOR RELATIONSHIP

Patient voice included? Yes / No

Conflicts of interest, including political, explained? Yes / No

Shows how AI is used to enhance human performance? Yes / No

Tested in clinical practice? Yes / No

CAPABILITY OF ALGORITHM

Unsupervised AI?2 Yes / No

Has QC capabilities?3 Yes / No

Provides a glimpse into the black box?4 Yes / No

Vulnerabilities of AI explained?5 Yes / No

External Validation? Yes / No

OPENNESS

Data availability statement? Yes / No

Data deposited in repository? Yes / No

AI deposited in open access code repository? Yes / No

1Sources of bias can be analytical, clinical, statistical, imbalance in

populations, or centres where the original research was conducted.
2SeeTable 2
3SeeFigure 2
4See Figure 3
5Vulnerabilities to artifacts, use of different devices, hard- or software

updates of the OCT device.
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