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SARS-COV-2 has roused the scientific community with a call to action to combat the

growing pandemic. At the time of this writing, there are as yet no novel antiviral agents

or approved vaccines available for deployment as a frontline defense. Understanding

the pathobiology of COVID-19 could aid scientists in their discovery of potent antivirals

by elucidating unexplored viral pathways. One method for accomplishing this is the

leveraging of computational methods to discover new candidate drugs and vaccines

in silico. In the last decade, machine learning-based models, trained on specific

biomolecules, have offered inexpensive and rapid implementation methods for the

discovery of effective viral therapies. Given a target biomolecule, these models are

capable of predicting inhibitor candidates in a structural-based manner. If enough data

are presented to a model, it can aid the search for a drug or vaccine candidate by

identifying patterns within the data. In this review, we focus on the recent advances of

COVID-19 drug and vaccine development using artificial intelligence and the potential of

intelligent training for the discovery of COVID-19 therapeutics. To facilitate applications

of deep learning for SARS-COV-2, we highlight multiple molecular targets of COVID-19,

inhibition of which may increase patient survival. Moreover, we present CoronaDB-AI, a

dataset of compounds, peptides, and epitopes discovered either in silico or in vitro that

can be potentially used for training models in order to extract COVID-19 treatment. The

information and datasets provided in this review can be used to train deep learning-based

models and accelerate the discovery of effective viral therapies.
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INTRODUCTION

Coronaviridae is a viral family responsible for causing
pneumonia-like symptoms that has been a global threat
since its first outbreak in 2002 (Jabeer Khan et al., 2020).
Severe Acute Respiratory Disease (SARS) and Middle Eastern
Respiratory Syndrome (MERS), emerging in 2002 and 2013,
respectively, caused diseases marked by both gastrointestinal and
pulmonary dysfunction (Hilgenfeld and Peiris, 2013). In 2019,
SARS-COV-2 was the causative agent of a third Coronavirus
outbreak and has been identified as the virus responsible for
COVID-19, the symptoms of which range from those of the
common cold to more severe respiratory failure (Kong W.-H.
et al., 2020). Despite its having been declared a pandemic by the
World Health Organization (WHO), COVID-19 has continued
to spread and has infected at least 20 million individuals,
reaching a death toll of over half a million at the time of this
review (Worldometer, 2020).

While hospitals are resorting to trial and error tactics for
COVID-19 drug discovery, Virtual Screening (VS) has emerged
as a popular method for discovering potent compounds due
to the inefficiency of lab-based high throughput screening
(HTS) (Jin et al., 2020; Kandeel and Al-Nazawi, 2020). VS for
rational drug discovery is essentially an approach that involves
computationally targeting a specific biomolecule (e.g., DNA,
protein, RNA, lipid) of a cell to inhibit its growth and/or
activation (Shoichet, 2004; Lionta et al., 2014). Structure-based
and ligand-based drug discovery and design are two important
subgroups of this type of screening (Lionta et al., 2014; Yu and
Mackerell, 2017; Arshadi et al., 2020; Broom et al., 2020). Given
our access to computationally and experimentally determined
viral protein structures (Senior et al., 2020; Zhang L. et al., 2020),
VS provides a rapid and cost-effective strategy for identifying
antiviral candidates.

Additionally, conventional vaccine discovery methods have
been costly, and it may takemany years to develop an appropriate
vaccine against a specified pathogen. In the early 1990s, the
introduction of a genome-based vaccine design approach dubbed
“Reverse Vaccinology” (RV) (Rappuoli, 2000; Bullock et al.,
2020), revolutionized the field to a more efficient status, due in
part to the fact that bacterial culturing was no longer required
for identifying vaccine targets (Bruno et al., 2015; Heinson
et al., 2015; Soria-Guerra et al., 2015). Moreover, all of the
putative target protein antigens can be identified, rather than
identification being limited to those isolated from bacterial
cultures (Xiang and He, 2009; Bowman et al., 2011). All of
these advantages taken together led scientists to generate RV
prediction programs.

Over the past decade, artificial intelligence (AI)-based models
have revolutionized drug discovery in general (Zhong et al.,
2018; Duan et al., 2019; Lavecchia, 2019). AI has also led to the
creation of many RV virtual frameworks, which are generally
classified as rule-based filtering models (Naz et al., 2019; Ong
et al., 2020a). Machine learning (ML) enables the creation of
models that learn and generalize the patterns within the available
data and can make inferences from previously unseen data. With
the advent of deep learning (DL), the learning procedure can also

include automatic feature extraction from raw data (Lecun et al.,
2015). Moreover, it has recently been found that deep learning’s
feature extraction can result in superior performance compared
to other computer-aided models (Ma et al., 2015; Chen et al.,
2018; Zhavoronkov et al., 2019).

In this review, we provide a survey of AI-based models for
COVID-19 drug discovery and vaccine development. Moreover,
we identify and evaluate the best candidate targets for future
treatment development. We propose that a concerted effort
should be made to leverage the knowledge from pre-existing
data by using machine learning approaches. To that end, we
present a wide-ranging collection of small molecules, peptides,
and epitopes for therapy discovery that could also direct AI-based
models, screening, or generation, in an intelligent manner.

BACKGROUND OF MACHINE LEARNING
METHODS FOR THERAPY DISCOVERY

In recent years, machine learning has revolutionized many fields
of science and engineering. It has largely transformed our daily
lives, from speech and face recognition (Alaghband et al., 2020;
Grover and Toghi, 2020; Sun et al., 2020) to customized targeted
advertisements (Zhai et al., 2016). The power of automatic
abstract feature learning, combined with a massive volume of
data, has immensely contributed to the successful application of
ML (Lecun et al., 2015). Two of the most impactful areas affected
are drug and vaccine discovery (Chen et al., 2018), in which
ML has offered compound property prediction (Ma et al., 2015),
activity prediction (Zhavoronkov et al., 2019), reaction prediction
(Fooshee et al., 2018), and ligand–protein interaction.

On the prediction front, Graph Convolutional Neural
Networks (GCNN) have been the favorite tool for drug discovery
applications (Duvenaud et al., 2015; Kearnes et al., 2016).
These networks are able to handle graphs and extract features
via encoding the adjacency information within the features.
Successful representation learning frommolecules using GCNNs
has been demonstrated in drug property prediction (Heskett
et al., 2018; Bazgir et al., 2019; Liu et al., 2019), protein
interface estimation (Fout et al., 2017), reactivity prediction
(Coley et al., 2019), and drug–target interactions (Torng and
Altman, 2019; Wang et al., 2020). Sequence-based models
such as genomics, proteomics, and transcriptomics have also
gained some attention in recent years due to the advancements
made in the natural language processing domain. The more
recent generation of context-based models are transformers
that use attention mechanisms and self-supervision to extract
representations from sequences (Vaswani et al., 2017; Devlin
et al., 2018). Transformers have demonstrated the capacity to
predict drug–target interactions (Shin et al., 2019), model protein
sequences (Choromanski et al., 2020), and predict retrosynthetic
reactions. These models learn to extract features from sequences
on the location, context, and order of the input tokens (Belinkov
and Glass, 2018). Recurrent neural networks (RNNs) and
long short-term memory (LSTM) networks have successfully
demonstrated the ability to perform when trained on molecules
or protein sequences to predict secondary structure (Pollastri
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et al., 2002), quantitative structure–activity relationship (QSAR)
modeling (Chakravarti et al., 2019), and function prediction (Liu,
2017).

On the lead generation front, de novo design has benefitted
the most from the application of deep learning. This subfield
has drastically evolved from its traditional usage of ligand-based
models and creating molecules from sub-blocks (Acharya et al.,
2010). The current approach involves the use of state-of-the-art
deep learning models such as Generative Adversarial Networks
(GANs) to create data-oriented molecules (Guimaraes et al.,
2017). Traditional de novo design fails to fully implement this
exploration by constraining the generation of molecules with
ligand or fragment libraries. More recent approaches utilize
deep learning generative models such as variational autoencoders
(VAE) (De Cao and Kipf, 2018) in order to create sequences of
atoms. This approach lifts the constraints of ligand-based designs
and allows the generation of unique molecules with greater
diversity (Guimaraes et al., 2017; De Cao and Kipf, 2018; Jin et al.,
2018; Liu et al., 2018; Simonovsky and Komodakis, 2018).

Machine learning has also improved the field of vaccine design
over the past two decades. VaxiJen was the first implementation
of ML in RV approaches and has shown promising results for
antigen prediction (Doytchinova and Flower, 2007; Heinson
et al., 2017). In addition, the recent development of Vaxign-ML, a
web-based RV program leveraging machine learning approaches
for bacterial antigen prediction, is a testament to the success
of exercising mathematical ML-based in RV (He et al., 2010a;
Heinson et al., 2017). In essence, these pipelines consist of feature
extraction, feature selection, data augmentation, and cross-
validation implemented to predict vaccine candidates against
various bacterial and viral pathogens known to cause infectious
disease. The use of biological, structural, and physiochemical
features is prevalent among the approaches in this domain, as
seen in reverse vaccinology and immunoinformatic methods
such as IEDB and BlastP, which are feature extractors for AI-
based models like RNN in the study of different pathogenic
viruses (Flower et al., 2010; He and Zhu, 2015; Abbasi,
2020). More recently, graph-based features have also shown
the ability to represent the antibodies instead of an expert-
designed feature; Magar et al. showed that graph featurization is
followed bymean pooling, and then classification is implemented
using shallow and deep models (Magar et al., 2020). Deep
Learning approaches have also revolutionized the field of cancer
vaccinology through the improved prediction of neoantigens and
their HLA binding affinity (Sher et al., 2017; Tran et al., 2019;
Wu et al., 2019). Autoencoders of deep learning have shown
promising improvement in extracting characteristics of human
Leukocyte Antigen (HLA-A), which could be utilized in both
transplantations and vaccine discovery (Miyake et al., 2018).

Key aspects of therapy discovery are safety and reliability.
The Vaccine Adverse Event Reporting System (VAERS) and
Vaccine Safety Databank (VSD) have been among the most
popular immunization registries for tracking, recording, and
predicting vaccine safety. In prior decades, implementations
of computational simulation and mathematical modeling have
significantly improved the tradeoff between the assessment of
safety and efficacy by using the aforementioned resources (He

et al., 2010b; Vaishnav et al., 2015). Zheng et al. implemented
Natural language Processing (NLP) for the identification of
adverse events related to Tdap vaccines (Zheng et al., 2019).

In drug development cases, the final drug candidate produced
in the process of drug discovery needs to be safe for human
consumption. This requires an observation of the drug’s side
effects as well as confirmation that the drug is non-toxic. To
accomplish this, the Toxicology in the 21st Century program
(Tox-21) has screened ∼10,000 compounds from 70 screening
assays, creating a database that can be used to facilitate toxicity
modeling. Furthermore, the project has also expanded to contain
700 assays with nearly 1,800 molecules in the ToxCast dataset.
On the side-effect prevention front, the off-target interactions
are predicted and minimized in silico. In doing so, potential
drug candidates are chosen, with consideration given to their off-
target polypharmacological profiles (Zhou H. et al., 2015). In a
different approach, AI-based studies were implemented to detect
the potential prolongation of QT intervals and cardiotoxicity
of a candidate drug, hydroxychloroquine, using ECG data from
smartwatches (Li J. et al., 2020)1.

In summary, artificial intelligence has been applied to many
subfields of drug discovery and vaccine development. This
improvement is crucial for the current situation and immediate
SARS-COV-2 therapy discovery for several key reasons. Firstly,
the automatic feature extraction ability of deep learning can
support models with better accuracy and deliver more reliable
results. Secondly, the generative ability demonstrated by deep
learning models can be utilized to create more druggable
molecules and better epitope prediction, lowering the chance
of failure in the trial pipeline. Lastly, the novelty of the virus
causes the data around its possible therapies to be scarce, which
is a suitable scenario for transfer learning and leveraging the
learned knowledge from previous tasks (e.g., TranscreenTM)
(Salem et al., 2020). Transfer learning has been shown to alleviate
this problem through the transferring of learned knowledge and
parameters from a secondary task with big data available to the
task at hand (Weiss et al., 2016). Therefore, the use of deep
learning in therapy discovery for SARS-COV-2 is essential in
order to make a timely and accurate response to the virus.

COVID-19 MOLECULAR MECHANISM AND
TARGET SELECTION

Coronaviruses are enveloped viruses with a positive-sense single-
stranded RNA genome (Fehr and Perlman, 2015). They are
known to infect both humans and other eukaryotes (Andersen
et al., 2020; Hoffmann et al., 2020). The novel coronavirus
manages to bind to the host receptor with a higher affinity than
SARS due to the increased modification of its viral spike, among
other structural proteins, resulting in enhanced transmission
(Zhou Y. et al., 2020).

1AI study launched to monitor cardiac safety of COVID-19 patients receiving

hydroxychloroquine. Available online at: https://cardiacrhythmnews.com/ai-

study-launched-to-monitor-cardiac-safety-of-covid-19-patients-receiving-

hydroxychloroquine/ (accessed July 04, 2020).
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SARS-CoV-2 interaction with host cells begins with
attachment via the viral spike (S) protein to the host ACE2
receptor (Hoffmann et al., 2020; Zhou P. et al., 2020). ACE2
binding induces the host surface serine protease, TMPRSS2, to
prime the S protein via cleavage at its S1/S2 border, facilitating
viral fusion with the cell membrane (Hoffmann et al., 2020).
Once inside the cell, the viral RNA genome is released into
the cytosol, where it is translated by host ribosome machinery,
producing two polyproteins: pp1a and pp1ab, which are then
cleaved by viral 3CL protease (main protease) and PL protease.
This gives rise to several non-structural proteins (nsps) as the
foundation of RNA-dependent RNA polymerase (RdRP); this
RdRP then transcribes a template strand of the genomic RNA,
from which it then transcribes subgenomic mRNA products to
be translated. These products encode the structural proteins S,
E, M, and N, as well as additional accessory nsps (Figure 1) (Lai
and Cavanagh, 1997; Kim D. et al., 2020).

The severity of the host response depends on an innate
response to viral recognition, involving the expression of
type-1 IFNs and pro-inflammatory cytokines (Pazhouhandeh
et al., 2018; Prompetchara et al., 2020). If the antiviral
response is delayed or inhibited, viral proliferation can lead
to the large-scale recruitment of neutrophils and monocyte-
macrophages to the lungs, creating a hyperinflammatory
environment (Prompetchara et al., 2020). Overactive release
of pro-inflammatory cytokines, i.e., cytokine storm (CS), has
been found in COVID-19 patients and can lead to severe
complications like acute respiratory distress syndrome (ARDS)
(Moore and June, 2020). It has been found that levels of IL-1B,
IL-1RA, IL-8, IL-10, IFNγ, IP10, MCP1, and MIP1s are higher
in COVID-19 patients than in healthy adults (Huang et al.,
2020). IL-6, in particular, has been highly implicated in CRS and
COVID-19 severity, and inhibition of IL-6/IL-6R activity may
lead to improved patient outcome, increasing its desirability as a
target (Figure 1) (Scheller et al., 2014; Tanaka et al., 2016; Zhang
C. et al., 2020).

Throughout the process of viral entry, replication, and
dissemination, there are several proteins that can serve as suitable
targets for therapeutic intervention. The S protein is one of the
candidates receiving the most focus, as it is necessary for viral
entry into host cells and is highly specific to the virus itself. The
host receptor ACE2 is another possible target, but the presence
of ACE2 in non-lung tissues such as heart, kidney, and intestine
(Hamming et al., 2004) could complicate its inhibition. Another
host protein, the TMPRSS2 protease, is essential for viral entry
into the cell, making it an additional viable target (Hoffmann
et al., 2020).

COVID-19 DRUG DISCOVERY

Protein-Based
The recent applications of Artificial Intelligence for COVID-19
include the virtual screening of both repurposed drug candidates
and new chemical entities. For repurposed drugs, the goal has
been to rapidly predict and exploit interconnected biological
pathways or the off-target biology of existing medicines that are
proven safe and can thus be readily tested in new clinical trials.

In one of the early attempts, Gordon et al. paved the way for the
repurposing of candidate drugs by experimentally identifying 66
human proteins linked with 26 SARS-CoV-2 proteins (Gordon
et al., 2020). In addition to wet-lab approaches, network-based
model simulation has been the main computational approach for
analyzing the virus–host interactome (Messina et al., 2020). Li
et al. identified 30 drugs for repurposing by analyzing the genome
sequence of three main viral family members of the coronavirus
and then relating them to the human disease-based pathways
(Li X. et al., 2020). In a different approach, Zhou et al. offered
a combination of network-based methodologies for repurposed
drug combination (Zhou Y. et al., 2020).

UK-based BenevolentAI leveraged its AI-derived knowledge
graph, which integrates biomedical data from structured and
unstructured sources (Richardson et al., 2020). It targeted the
inhibition of host protein AAK1 and identified Baricitinib,
an approved drug for the treatment of rheumatoid arthritis
(Stebbing et al., 2020). Similarly, Beck et al. published an
application of their DL-based drug–target interaction model
that predicted commercially available antiviral drugs that may
target the SARS-COV-2-related protease and helicase (Beck
et al., 2020a). Atomwise has also focused on targeting several
SARS-CoV-2 protein binding sites that are highly conserved
across multiple coronavirus species in an effort to develop
new broad-spectrum antivirals. Using its AtomNet R© deep
convolutional neural network technology (Wallach et al., 2020),
Atomwise is screening millions of virtual compounds against
these diverse targets alongside 15 different partnerships with
academic researchers that will test the predicted compounds in
their in vitro assays2.

There have been several other applications of multi-task deep
learning models for identifying existing drugs that can target the
main viral proteins, especially the main protease (3CLpro) and
spike protein (Hu et al., 2020; Kadioglu et al., 2020; Kim J. et al.,
2020; Redka et al., 2020). One impressive example is Cyclica’s
creation and mining of PolypharmDB, a platform of known
drugs and their predicted binding to human protein targets that
uncovered off-target applications of 30 existing drugs against the
viral protein 3CLpro and the ACE2 binding site as two examples
(Redka et al., 2020). At least two other applications of DL-
based virtual screening for the SARS-CoV-2 main protease have
been published and include the open sharing of newly predicted
chemical structures (Bung et al., 2020; Zhang H. et al., 2020).

ML-aided molecular docking has been one of the most
prevalent approaches for virtual screening. This process normally
requires the following: (1) Dataset of Druglike or Approved
Molecules, (2) Crystal Structure or Homology Model of the
target, (3) Molecular Docking Program, and (4) Compute
Resources (Ewing et al., 2001; Pagadala et al., 2017). Through
docking, many molecules have been reported to fit the binding
site of various SARS-CoV-2 proteins essential for viral replication

2Atomwise Partners with Global Research Teams to Pursue Broad-Spectrum

Treatments Against COVID-19 and Future Coronavirus Outbreaks |

Business Wire. Available online at: https://www.businesswire.com/news/home/

20200521005238/en/Atomwise-Partners-Global-Research-Teams-Pursue-

Broad-Spectrum (accessed June 28, 2020).
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FIGURE 1 | The pipeline of AI-based drug discovery and vaccine development for COVID-19.
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and infection. 3CLpro, Spike Protein, RdRP, and PLpro are among
those screened, as well as the host ACE2 receptor and TMPRSS2
protease (Chen et al., 2020; Choudhary et al., 2020; Kong R.
et al., 2020; Smith and Smith, 2020; Wu et al., 2020). As an
example, Ton et al. identified at least 1000 protease inhibitors
by creating and utilizing the Deep Docking (DD) network
technology approach. However, as they used the QSAR for
training their model, no novel docking score was provided (Ton
et al., 2020).

It is clear that 3CLpro is the most popular target for virtual
screening (Figure 1). Themain reason for this is its pivotal role in
viral replication and transcription and its well-defined structural
information. Viral protease inhibitors have been extensively
studied as treatments for other viruses. In addition, deep
learning-aided approaches have been the main focus of research,
as their automatic feature extraction accelerates discovery. The
datasets cited often rely on the ZINC database (Wu et al.,
2020), while other screened datasets include the FDA-approved
LOPAC library (Choudhary et al., 2020), SWEETLEAD library
(Smith and Smith, 2020), or all purchasable drugs (Drugs-lib)
(Chen et al., 2020). Moreover this review sampled a variety of
publications witch used different computational resources. It can
be carried out on a small scale on a MacOS Mojave Workstation
with an 8 core Zeon E5 processor or on a large scale as with
the world’s strongest supercomputer, SUMMIT, for enhanced
parallelization (Choudhary et al., 2020; Smith and Smith, 2020).

RNA-Based
Conserved structured elements have already been shown to play
critical functional roles in the life cycles of Coronaviruses (Yang
and Leibowitz, 2015). Through direct interactions with host
RNA-binding proteins and helicases, structural elements add a
layer of complexity to the regulatory information that is encoded
in the viral RNA. Targeted disruption of the regulatory functions
of these structural elements provides a largely unexplored
strategy that can limit viral loads with minimal impact on the
biology of normal cells (Park et al., 2011). While this idea would
have been farfetched a mere 5 years ago, advances in AI-driven
computational modeling and high-throughput experimental
RNA shape analyses have all but overcome the critical barriers
(Alipanahi et al., 2015).

Highly conserved RNA structural elements have been
identified in a number of viral families, many of which have
been functionally validated (Jaafar and Kieft, 2019). Some of
these stem loops in SARS-CoV-2′s 5′UTRs structural elements
are conserved across beta coronaviruses and are known to
impact viral replication (Yang and Leibowitz, 2015). There are
many functional RNA structural elements that fall within the
coding sequence and the 3′UTR as well (Plant and Dinman,
2008; Stammler et al., 2011). Rangan et al. identified 106
structurally conserved regions that would be suitable biotargets
for unexplored antiviral agents (Rangan et al., 2020). Moreover,
they predicted at least 59 unstructured regions that are conserved
within SARS-CoV-2. Park et al. identified an RNA Pseudoknot-
Binding molecule against SARS-CoV-1 in target-based virtual
screening (Park et al., 2011; Nakagawa et al., 2016).

Studying the changes in RNA information also allows for the
identification of new and evolved targets. In a different approach,
Wu et al. showed that a recently FDA-approved drug named
Remdesivir could bind to the RNA-binding channel of the novel
coronavirus. They discovered other candidate drugs via analyzing
the proteins critical to RNA processing and pathways (Wu et al.,
2020). It seems that viral genome, RdRP, and processed mRNA
would make promising targets for drug repurposing.

Generative Approaches
Molecule generation has been one of the fields of drug discovery
that have been most revolutionized by the implementation of
artificial intelligence over the last decade. As mentioned, VAE
is a generator model for enhancing the diversity of generated
data. Autoencoders instruct molecules into a vector that captures
properties such as bond order, element, and functional group
(Bjerrum and Sattarov, 2018). Chenthamarakshan et al., together
with IBM Research, demonstrated a VAE that captures molecules
in a latent space. Once captured, variations are made on the
original molecule vectors based on desired properties. These can
then be decoded back into novel molecules (Chenthamarakshan
et al., 2020). To optimize the structures, QED, Synthetic
Accessibility, and LogP regressors were used to improve the latent
space variations.

In a different approach, Tang et al. overcame many of
the issues with traditional generative models by developing a
novel advanced deep Q-learning network with fragment-based
drug design (ADQN-FBDD). This allowed for the enhanced
exploration of space by assembling SARS-CoV-2 molecules
one fragment at a time rather than relying on latent space
adjustments. After making connections and rewarding molecules
with the most druglike connections, a pharmacophore and
descriptor filter was used to refine the set. They demonstrated
a robust method for designing novel, high-binding compounds
refined to the structure of SARS-CoV-2 3CLPro (Tang et al.,
2020). To design a drug-generative network, the following
is necessary: (1) collection of Druglike Molecules, (2) a
representation of these molecules in silico (i.e., Fingerprints,
Tokenizers), (3) a method of altering molecules to increase
diversity, and (4) screening and modification of the altered
molecules. Pursuing GAN-relatedmodels, InsilicoMedicine used
three of its previously validated generative chemistry approaches
to target the main protease, namely, crystal-derived pocked-
based generation, homology modeling-based generation, and
ligand-based generation (Zhavoronkov et al., 2020). Similar to
target-based virtual screening, the main protease has been the
main object of interest for scientists for de novo drug discovery.

COVID-19 VACCINE DISCOVERY

Identification of the best possible targets for the development of
a vaccine is crucial in order to counteract a virus’s high infection
rate (Choudhary et al., 2020). A host immune system fights
virus-infected cells either through the production of antibodies
by B cells or through the direct attack of T cells (Amanat and
Krammer, 2020). The HLA gene encodes MCH-I and MCH-II
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proteins, which present epitopes as antigenic determinants.
These proteins assist B-cell and T-cell antibodies in their ability
to bind and attack invaders (Dangi et al., 2018; Gupta et al.,
2020; Smith and Smith, 2020). Machine learning approaches,
including Random Forest (RF), Support Vector Machine (SVM),
and Recursive Feature Selection (RFE), have been basic tools for
identifying antigens from protein sequences (Bowick et al., 2010;
Rahman et al., 2019). However, due to their low sensitivity in the
prediction of locally clustered interactions in some cases, Deep
Convolutional Neural Networks (DCNN) have been a more valid
alternative for the binding prediction of MHC and peptides (Han
and Kim, 2017).

Since the outbreak of this first coronavirus, different AI-based
approaches have been used to predict potential epitopes so as to
design vaccines (Park et al., 2011; Yang and Leibowitz, 2015; Ton
et al., 2020). Fast and Chen used MARIA (Chen et al., 2019) and
NetMHCPan4 (Jurtz et al., 2017), two supervised neural network-
driven tools, to discover potential T-cell epitopes for SARS-CoV-
2 close to the 2019-nCoV spike receptor-binding domain (RBD)
(Fast and Chen, 2020). The Long Short-Term Memory (LSTM)
network has also shown some promising results. Abbasi et al.
used this type of RNN to predict epitopes for Spike (Abbasi,
2020). Using a similar tactic, Crossman et al. employed deep-
learning RNN and provided simulated sequences of Spike to
identify possible targets for vaccine design (Crossman, 2020).
RNN provided the sequences for a protein of interest with high
sequence identity to the BLAST match.

Using a separate method, Feng et al. leveraged the iNeo
tool to design a vaccine containing both B-cell and T-cell
epitopes. This multi-peptide vaccine could provide a new strategy
against SARS-CoV-2. Additionally, they discovered 17 vaccine
peptides involving both immune cells (Nakagawa et al., 2016;
Rangan et al., 2020). Ong et al. used Vaxign-RV to prioritize
non-structural proteins as vaccine candidates for SARS-CoV-2
(Ong et al., 2020b). Nsp3, the largest non-structural protein of
the coronavirus family, was identified as the most promising
potential target for vaccine development after Spike (Ong et al.,
2020b). Malone et al. also studied the entire SARS-CoV-2
proteome beyond Spike and provided a comprehensive vaccine
design blueprint for SARS-CoV-2 using NEC Immune Profiler,
IEDB, and BepiPred tools to create an epitope map for different
HLA alleles (Malone et al., 2020).

Natural language processing models, specifically language
modeling techniques, have also made an impact in the domain
of COVID-19 vaccine discovery. Pre-trained transformers were
used to predict protein interaction (Nambiar et al., 2020) and
model molecular reactions in carbohydrate chemistry (Pesciullesi
et al., 2020), which can be utilized in the process of vaccine
development. Chen et al. discussed the use-case of an LSTM-
based seq-2-seq model for predicting the secondary structure
of certain SARS-COV-2 proteins (Karpov et al., 2019)3. Also,
Beck et al. used transformers to repurpose commercially available
drugs by predicting their interactions with viral proteins of
SARS-COV-2 (Beck et al., 2020b).

3OSF Preprints. ZeroFold-Understanding Mutations of SARS-CoV-2 Spike

Protein base on Secondary Structure Event Extracting for guiding Vaccine

development. Available online at: https://osf.io/3vkuw/ (accessed Jul. 01, 2020).

Taking this work together, it is clear that spike protein has been
the most popular candidate for virtual vaccine discovery (Oany
et al., 2014). As the spike protein of SARS-COV-2 is crucial for
viral entry, specific neutralizing antibodies against the receptor-
binding domain of Spike can interrupt the attachment and fusion
of viral proteins (Wan et al., 2019). This method could provide
simulated sequences that can serve as a guide for further vaccine
discovery against COVID-19 and possibly new zoonosis that may
arise in the future.

DATA COLLECTION

Data-driven solutions rely on patterns embedded in the data in
order to extract mathematical models. That being said, a data
collection campaign will face a plethora of challenges in the case
of any recently emerged virus, primarily due to the existence of
bias and imbalance in the limited data available. Therefore, even
the most sophisticated of modeling approaches will be ineffective
when trained on such datasets. In order to overcome this issue,
we compiled a multifaceted and comprehensive investigation of
the existing literature, datasets, and online resources to provide
potential small molecules, peptides, and epitopes. Such elements
can be beneficial in the process of discovering or designing novel
drugs to treat COVID-19 when used with both conventional and
data-driven AI-based approaches.

We choose to focus on both potential antiviral agents and
host biotarget inhibitors. The provided data entitled CoronaDB-
AI in Table 1 includes the small molecules and peptides
proposed by both in-silico and in-vitro approaches. In addition to
candidate scaffolds against the coronavirus’s structural proteins,
the potential inhibition of other respiratory tract viruses is
taken into consideration to increase the therapeutic potential.
Antimicrobial peptides have been validated as potent antivirals
that disrupt either the viral membrane or an additional molecular
mechanism of the virus (Akaji et al., 2011; Han and Kraí, 2020;
Xia et al., 2020). As described before, the cytokine storm and an
elevated immune response of the host plays a vital role in disease
complication, so candidate immunosuppressants were also added
as host-targeted agents. In addition to the potency of a candidate
drug, it is crucial that the drug have high selectivity and low
toxicity. Therefore, we also gathered a complete toxicity dataset
from distinct databases, including ToxCast and Tox21. Finally,
we gathered a comprehensive epitope-based dataset that could
also guide deep learning-based models for improved vaccine
development and epitope generation.

DISCUSSION

SARS-COV-2 rapidly transformed into a global challenge,
costing thousands of lives, overwhelming healthcare systems,
and threatening the economy all around the world. As
we demonstrated above, it can be extremely challenging to
experimentally perform a comprehensive potency evaluation
of all drug and vaccine candidates in a timely fashion. We
believe that leveraging computational models capable of filtering
and generating reliable therapies can significantly speed up
these discovery efforts. Employing artificial neural networks
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TABLE 1 | CoronaDB-AI is a collection of small molecules, peptides, and epitopes for the purpose of COVID-19 therapy discovery.

Data provided Discovery Type Mechanism of action References

ANTIVIRAL DATA

Total of 59,107 Small molecules and peptides

50,000 In-silico Small molecule Antiviral 1

3,000 In-silico Small molecule Anti SARS2 protein Chenthamarakshan et al., 2020

1,000 In-silico Small molecule Anti-protease Ton et al., 2020

406 In-vitro Small molecule Inhibiting autophagy 2

802 In-vitro Small molecule Activating autophagy 2

393 In-vitro Small molecule Biotargets of coronaviruses 3

110 In-vitro Peptide and small molecule Coronavirus and respiratory disease Pillaiyar et al., 2020

1,000 In-silico Small molecule 3C protease inhibitor Zhavoronkov et al., 2020

11 In-silico Small molecule Main protease inhibitor Fischer et al., 2020

20 In-vitro Antimicrobial peptide Anti-SARS/MERS Mustafa et al., 2018

7 In-silico Antimicrobial peptide Anti-MERS Mustafa et al., 2019

277 In-vitro Antimicrobial peptide Antiviral Wang et al., 2015

4 In-silico Antimicrobial peptide Anti-spike of sars-Cov-2 Han and Kraí, 2020

379 In-vitro Small molecule Anti-respiratory syncytial virus Plant et al., 2015

13 In-vitro Small molecule Anti-recurrent respiratory papillomatosis by HPV-6 Alkhilaiwi et al., 2019

1,280 In-vitro Small molecule Anti-respiratory syncytial virus Rasmussen et al., 2011

16 In-silico Small molecules Anti-SARS-COV-2 Zhou Y. et al., 2020

77 In-silico Small molecules Anti-S Protein of SARS-COV-2 Smith and Smith, 2020

10 In-silico Small molecules Anti-SARS-COV2 Hu et al., 2020

25 In-silico Small molecules Anti SARS2 Proteins Kim J. et al., 2020

10 In-silico Small molecules ACE2 and Spike inhibitors Choudhary et al., 2020

78 In-silico Small molecules All SARS2 proteins Wu et al., 2020

47 In-silico Small molecules 3cl protease and M pro Tang et al., 2020

16 In-silico Small molecules 3cl protease inhibitor Chen et al., 2020

36 In-vitro Small molecules Anti- Coronavirus-OC43 Shen et al., 2019

90 In-vitro Small molecules Anti- SARS-COV-2 Touret et al., 2020

ANTI-HOST PROTEINS

Total of 677 Small molecules and peptides

6 In-vitro Small molecules Anti-IL-1β and TNFα Laufer et al., 2002

182 In-vitro Peptides Cytokine Signaling Inhibitors 4

269 In-silico Small molecules Anti-IL-6 Shukla et al., 2019

121 In-vitro Small molecules Severe acute respiratory 5

69 In-silico Small molecules Anti-protein-protein interaction of virus-host Gordon et al., 2020

30 In-silico Small molecules Anti-host & virus interaction Redka et al., 2020

TOXICITY DATA

Total of 25,333 Small molecules

11,800 In-vitro Small molecules Tox21 and ToxCast Toxicology, EPA’s National Center for

Computational, 2018

13,533 In-vitro Small molecules Toxic for HepG2 Cell Line Gamo et al., 2010

VACCINE DATA

Total of 517 Epitopes and vaccines

162 In-silico Epitopes Anti-SARS-COV-2 Ahmed et al., 2020

174 In-silico Epitope Anti-SARS-COV-2 Prachar et al., 2020

2 In-silico Epitope Anti-SARS-COV-2 Fast and Chen, 2020

30 In-silico Vaccine candidate Anti-SARS-COV-2 Feng et al., 2020

7 In-silico Epitope Anti-SARS-COV-2 Lon et al., 2020

12 In-silico Epitope Anti-SARS-COV-2 Tilocca et al., 2020

59 In-silico Epitope Anti-SARS-COV-2 Sarkar et al., 2020

71 In-silico Epitope Anti-SARS-COV-2 Bhattacharya et al., 2020

1Download CAS COVID-19 Antiviral Candidate Compounds Dataset | CAS. Available online at: https://www.cas.org/covid-19-antiviral-compounds-dataset (accessed April 27, 2020).
2Novel Coronavirus Information Center. Available online at: https://www.elsevier.com/connect/coronavirus-information-center (accessed April 27, 2020).
3https://www.elsevier.com/__data/assets/pdf_file/0004/978745/Copy-of-RMC-substances-coronovirus-targets-pX6.pdf (accessed April 27, 2020).
4Cytokines Inhibitor library|Targetmol|96-well. Available online at: https://www.targetmol.com/compound-library/Cytokines-inhibitors-Library (accessed April 27, 2020).
5https://www.elsevier.com/__data/assets/pdf_file/0007/977173/ResNet-Data_Coronavirus.pdf (accessed April 27, 2020).
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and supervised learning methods has proven to be a vital
game-changer when used for the purpose of virtual filtering
and de novo design. However, in order to achieve the desired
performance in such intelligent methods, one requires the
knowledge to recognize the most relevant biotargets in addition
to a large-scale training dataset. This fact motivated us to
perform a survey of biotargets that have been employed in
the virtual drug and vaccine discovery literature. We observed
that the viral spike protein and the main protease have
been the most prevalent choices for vaccine development
and drug discovery, respectively, due to their importance.
Furthermore, we gathered a list of datasets titled “CoronaDB-
AI” that can be used for our particular application. Having
access to these key elements removes the burden of collecting
training data and the required knowledge for both computer
scientists and bioinformaticians and consequently enhances
research outcomes.
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