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Abstract—The emergence of 5G enables a broad set of diversi-
fied and heterogeneous services with complex and potentially con-
flicting demands. For networks to be able to satisfy those needs,
a flexible, adaptable, and programmable architecture based on
network slicing is being proposed. Moreover, a softwarization
and cloudification of the communications networks is required,
where network functions (NFs) are being transformed from
programs running on dedicated hardware platforms to programs
running over a shared pool of computational and communication
resources. This architectural framework allows the introduction
of resource elasticity as a key means to make an efficient use of
the computational resources of 5G systems, but adds challenges
related to resource sharing and efficiency. In this paper, we
propose Artificial Intelligence (AI) as a built-in architectural
feature that allows the exploitation of the resource elasticity of
a 5G network. Building on the work of the recently formed
Experiential Network Intelligence (ENI) industry specification
group of the European Telecommunications Standards Institute
(ETSI) to embed an AI engine in the network, we describe a
novel taxonomy for learning mechanisms that target exploiting
the elasticity of the network as well as three different resource
elastic use cases leveraging AI. This work describes the basis of
a use case recently approved at ETSI ENI.

Index Terms—Resource elasticity, artificial intelligence, net-
work orchestration, slice lifecycle management ETSI ENI.

I. INTRODUCTION

In order to achieve the 5G Key Performance Indicators

(KPIs), the most relevant standardization bodies have already

defined the fundamental structure of the 5G architecture.

By leveraging Software Defined Networking (SDN), Network

Function Virtualization (NFV) and modularization, the new

architecture proposed by relevant organizations such as the

3rd Generation Partnership Project (3GPP) or the European

Telecommunications Standards Institute (ETSI) will natively

support the service diversity targeted by the future commercial

ecosystem [1], [2].

Besides the design of access and core functions, one of

the most challenging tasks to be accomplished is network
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management. That is, the transition from the rather fixed

operations support system/business support system (OSS /

BSS) capabilities, to a new hierarchy of elements that have

to deal with a very complex ecosystem of tenants, network

slices, and services, each one with different requirements.

In addition to management, 5G networks need orchestration

capabilities that in turn, are further divided into two main

categories: service orchestration and resource orchestration.

The former deals with the specific virtual network functions

(VNFs) that compose a network slice, while the latter takes

care of assigning resources to them. Tasks such as deciding

whether a VNF shall be shared across slices or across ten-

ants, their location in a possibly highly heterogeneous cloud

infrastructure, or the number of allocated CPU cores are just a

few examples of the Management and Orchestration (MANO)

layer responsibilities.

The design of an efficient multi-service, multi-slice, and

multi-tenant MANO entails challenges on both architectural

and algorithmic levels. Although the state-of-the-art MANO

already provides baseline functionality, high computational

resource efficiency is a real challenge today, and it is further

aggravated by the complexity introduced by a 5G architecture

based on the infrastructure sharing principle of network slic-

ing. Our assertion is that an optimized utilization of cloud

resources in the network, while providing desired Service

Level Agreement (SLA) under 5G network slicing, can only

be achieved if fast and very fine-grained AI algorithms are

designed and integrated into the network architecture itself.

This allows for a more cost-efficient network management

and orchestration by avoiding both resource under- and over-

provisioning, which are the main causes of service outages

and excessive expenditure, respectively.

Resource Elasticity

In order to solve the aforementioned problems, we have

introduced the concept of resource elasticity for networks [3].

In a nutshell, the resource elasticity of a communications

system can be defined as the ability to gracefully adapt to load

and other system changes in an automatic manner such that at

each point in time the available resources match the demand

as closely and efficiently as possible. Furthermore, temporal

and spatial traffic fluctuations in networks require efficient

network resource scaling: the network shall adapt its operation,

by eventually re-distributing the available resources as needed,

up to the point of gracefully scaling the network performance

to deal with excessive peak demand, avoiding thus abrupt
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Fig. 1: The ETSI ENI Architecture and its interaction with the ETSI NFV MANO framework

decays. Although elasticity in networks has traditionally been

exploited in the context of communications resources (e.g.,

when the network gracefully downgrades the quality for

all users if communications resources such as spectrum are

insufficient), here we address the computational aspects of

resource elasticity since the virtualization and cloudification

of networks at the core network (CN) and partially at the

radio access network (RAN), mean that the management

and orchestration of its computational resources have now

become a key challenge of 5G systems. In fact, in contrast

with 4G systems, network slicing requires virtualized 5G

networks to be able to jointly optimize communication and

cloud resources.

We further consider elasticity in three different dimensions,

namely computational elasticity in the design and scaling

of VNFs, orchestration-driven elasticity achieved by flexible

placement of VNFs, and slice-aware elasticity via cross-

slice resource provisioning mechanisms. These dimensions

encompass the full operation of the network and together

they build our proposed elastic management and resource

orchestration. To that aim, we envision a very prominent role

for AI, as a tool to enhance the performance of elasticity

algorithms. AI, and in particular machine learning (ML), has

been proposed as a toolbox for different aspects of wireless

networks [4]. In the context of elasticity, some examples of

performance-boosting capabilities that could be provided by

AI techniques are the following: i) learning and profiling the

computational utilization patterns of VNFs, thus relating per-

formance and resource availability, ii) traffic prediction models

for proactive resource allocation and relocation, iii) optimized

VNF migration mechanisms for orchestration using multiple

resource utilization data (CPU, RAM, storage, bandwidth), and

iv) optimized elastic resource provisioning to network slices

based on data analytics.

Although by AI we refer to a wide range of techniques that

could be employed for network management and orchestration,

in this paper we focus on three use cases that leverage specific

ML algorithms, i.e., drawing from a subset of the whole AI

range of techniques, to exploit resource elasticity as follows:

• A computationally elastic scheduler applying deep learn-

ing to signal-to-noise ratio (SNR) prediction and the

reinforcement learning technique of contextual bandits for

making scheduling decisions.

• Slice-aware resource management based on traffic predic-

tion using deep artificial neural networks (i.e., supervised

learning).

• Efficient slice setup using the unsupervised learning tech-

nique of spectral clustering.

It is worth mentioning that even though these three spe-

cific examples of AI-based elasticity algorithms utilize ML

techniques, the authors believe that other AI techniques, not

necessarily constrained to the ML domain, could also be

applied.

The remainder of this paper is structured as follows. In

Section II, we provide a description of a prominent architecture

for the use of AI in the management and orchestration of future

networks proposed by ETSI. In Section III, we discuss the

application of AI in the context of resource elasticity and in

Section IV we elaborate on the above mentioned elasticity use

cases and the AI techniques they employ. Finally, we conclude

the paper in Section V.

II. AI-ENABLED 5G NETWORK ARCHITECTURE

In response to the industry demand for AI-driven intelligent

networks, ETSI has created the ENI work-group [5]. ENI’s

goal is to improve operator’s experience and add value to

the telco provided services, by assisting in decision making

to deliver operational expenditure (OPEX) reduction and to

enable 5G deployment with automation and intelligence. In

particular, ENI aims to define an architecture that uses AI

techniques and context-aware, metadata-driven policies, to ad-

just service configuration and control based on changes in user

needs, environmental conditions, and business goals, according

to the “observe-orient-decide-act” control loop model [5].

Network slicing for 5G can serve as a prime example to

demonstrate ENI’s architecture and the operator’s benefits it

provides, especially around VNF’s computational resources

efficiency, while preserving the user requested SLA.

The telco industry’s evolution towards standardization of

AI-assisted networks, requires various industry consensus, in-

cluding grammar and syntax for service policy and associated
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domain specific language (DSL), as well as data ingestion

format, to foster ability to interact with the broad variety

of tools used for management and monitoring. A normalized

format is required also to address the difficulty to harmonize

the state of the divergent infrastructure, due to use of silo

specific tools e.g., per compute, network, and storage and

due to the variety of “assisted systems”, each with different

capabilities and different exposed API and varying degrees of

ability to interact with the AI system, like ENI. It is therefore

essential for ENI to define architecture components such as

data ingestion and normalization, to provide a common base

for ENI’s inter-modular interaction as well as for transforming

the external assisted system (e.g., a 3GPP/5G implementation)

inputs to a format that is understood by ENI.

To date, ENI has defined a modularized system architec-

ture, as shown in Figure 1a. Having a modularized system

architecture, facilitates the flexibility and generalization in the

system design, as well as increase vendor neutrality. A brief

description of each module, according to [5], is given below.

• The Policy Management module provides decisions to

ensure that the operator’s goals and regulator’s policies

are met.

• The Context Awareness module describes the state and

environment in which a set of the assisted system entities

exists or has existed. For example, an operator may have

a business rule that prevents 5G from a specific type of

a network slice in a given location.

• The Situational Awareness module enables ENI to under-

stand how information, events, and recommended com-

mands that it may provide to the assisted system, may

impact its next state, actions, and ability to meet its

operational goals.

• The Cognition Management module operates at the higher

level and enables ENI as a whole to consult and meet its

end to end goals.

• The Knowledge Management is used to represent infor-

mation about ENI and the assisted system, differentiating

between known facts, axioms, and inferences.

The interaction and interoperability of ENI with an assisted

system is determined by the latter’s support of the ENI

Reference Points [5]. Specifically for the use of compute

resources elasticity and efficiency, as presented in this paper,

few elements, determined by relevant ENI Reference Points

are needed. As depicted in Figure 1b, the current NFVI

Information allows ENI to be aware of the computational

resources’ capabilities (e.g., type of CPU, memory, data plane

and accelerators) and availability (status and utilization level),

while in turn this enables ENI to influence and optimize

placement decisions made by the VIM, while ensuring that

3GPP policies, resources allocation and SLA are adhered too.

Moreover, by using this information, ENI can further optimize

resource utilization by i) enabling higher density for a given

set of workloads under associated SLA, ii) anticipating and

reacting to changing loads in different slices and assisting

the VIM in avoiding resource conflicts, and/or iii) timely

triggering of up/down scaling or in/out scaling of associated

resources.
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Fig. 2: Learning taxonomy axes for slice lifecycle manage-

ment.

III. APPLYING AI IN SOFTWARIZED MOBILE NETWORKS:

A TAXONOMY VIEW

Despite recent publications in the field [6], the full inte-

gration of AI in mobile network architecture is still in its

early stages, and the design of learning algorithms that provide

promising features such as network elasticity, as described in

Section 3, is yet a greenfield research topic. In this section,

we describe learning techniques for applying and exploiting

elasticity in the upcoming generations of mobile networks.

Specifically, we propose i) a taxonomy on the learning charac-

teristics required to provide elasticity, and ii) three specific AI-

based elasticity use cases, namely elastic RAN VNF design,

slice-aware elastic resource management, and efficient slice

setup.

We propose two different taxonomies for learning in the

context of elasticity based on i) the data used for learning,

and ii) the network slice lifecycle phase. Firstly, with respect

to the data, learning techniques for the elastic network slice

management can be categorized along two main directions,

independently of the actual algorithm in place:

• Inputs: learning techniques shall learn features from the

user demand to the network, the infrastructure utilization

and the slice policies. These inputs shall be conveniently

measurable (and labeled in case of supervised techniques)

in order to be applied in one of the outputs.

• Outputs: following the 3GPP definition [7], lifecycle

management is composed of four stages: preparation,

instantiation, run-time and decommissioning. Hence, de-

pending on the kind of algorithms, its target and the input

features, the learning algorithm shall be employed in one

of these phases.

The input direction can be further split along three di-

mensions, depending on the characteristics of the learned

input feature. In Figure 2 we show this three-dimensional

classification, highlighting its three main axes: the demand,

the infrastructure, and the requirements. Triangles in Figure 2
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represent the granularity on each of the axes, being the darker

the finer.

• Demand. Learning the user behavior is paramount for en-

forcing elasticity in the network. As previously discussed,

the multiplexing gains achieved by efficiently combining

different slices on the same infrastructure necessarily

requires learning of the user demand. That is, anticipatory

resource re-orchestration builds on the understanding of

the temporal and spatial demands of services. This input

data may have a coarse granularity (i.e., order of minutes)

as the current orchestration technologies and the increased

signaling overhead caused by numerous re-configurations

prevent a too fast resource reassignment. This operational

point is marked as D2 in Figure 2. Nevertheless, demand

may be learned at more granular levels (D1 in Figure 2)

when designing elastic RAN NFs. In this case, learning

metrics such as the user requests queuing reports at faster

time scale (i.e., sub-seconds) enables a better decision

making on the short-term future scheduling decisions

according to the available computation capacity.

• Infrastructure. Learning how the underlying infrastruc-

ture reacts or limits elastic management/orchestration

decisions is fundamental. For example, elastic resource

assignment algorithms need to learn about the com-

putational behavior of NFs when subject to a certain

load and to different requirements to provide a precise

VNF location (I1 in Figure 2). Analogously, the wireless

infrastructure (i.e., the channel) is probably the main

driver for the elastic behavior of RAN functions, as it

is the most important limiting factor.

• Requirements. A very important challenge for future

sliced 5G networks is the service creation time. ML can

greatly enhance the service setup by automatically trans-

lating consumer-facing service descriptions into resource-

facing service descriptions that can be processed by

the network management and orchestration functionality

in order to allocate the proper resources to the new

service. AI tools can thus replace human interventions,

which increase costs and are time consuming, to identify

the resource requirements of a new service from the

slice down to the VM/container levels; furthermore, this

approach can smartly take into account existing services

with similar requirements to favor resource multiplexing

across services and increase the system efficiency.

On the output dimension, the proposed taxonomy refers to

the network slice lifecycle phases, as various approaches can

be adopted and applied in all the phases of the lifecycle of a

slice instance [7]. For example, slice behavior analysis can be a

critical asset for elasticity provisioning in the slice preparation

phase, since statistics can be exploited to efficiently decide the

basic configurations and set the network environment.

In this paper, we provide insights and use cases on AI-based

elasticity mechanisms that are applied in the instantiation and

run-time phases, but the preparation and decommissioning

phases could similarly benefit from AI.

• Instantiation phase. The pool of parameters that feed

the learning process of AI-based elastic mechanisms in

this phase may be: i) requirements depicted in SLAs

and service demands, ii) past measurement and statistics

related to resource consumption profiles of VNFs, iii)

real time measurements from already instantiated slices,

and iv) the current state of computational and resource

consumption in the system. Based on these factors, the

AI mechanism decides the admission of new slices and

potentially the re-configuration of the running slices in the

network. Here, we focus on slice setup mechanisms based

on AI that guarantee flexible slice admission control and

deep network slice blueprint or template analysis. In

Section IV-C we propose a learning approach for network

slice admission control, which precisely takes place in the

instantiation phase.

• Run-time phase. For the AI-based elasticity mechanisms

that are applied in the slice run-time phase, all the param-

eters that are available in the instantiation phase can be

exploited. However, the learning capability is much more

challenging since traffic load measurements are available,

while the adaptation should be done in a faster scale,

including re-configurations at VNF or slice level. Here,

we focus on advanced sharing of computation resources

among VNFs of multiple slices to provide resource elas-

ticity, while the involved slices are in operation. Such an

approach is presented in Section IV-B. Furthermore, the

challenge of enabling VNF self-adaptation during run-

time phase is handled in Section IV-A.

Challenges

The above taxonomy is useful to understand where AI

can help in the management and orchestration of networks.

However, the selection of the right AI-based algorithm is not

necessarily a trivial task. Clearly, the features of the learned

parameters described in this taxonomy do have an impact on

the type of learning algorithm that is employed. For example,

highly dynamic parameters such as load may require algo-

rithms with fast and adaptive online learning capabilities; yet

other parameters such as the slice blueprint given the service

requirements are more static and offline training could suffice

for an artificially intelligent system to make the right decisions.

Hence, although the fast-evolving field of AI makes difficult an

a-priori selection of certain types of learning algorithms (e.g.,

deep neural networks, reinforcement learning, etc.) for specific

types of parameters, it becomes apparent that a correlation

between those does exist, and the design of the learning system

and algorithms must carefully take into consideration such

a correlation. In addition, labeled (and reliable) data sets to

implement supervised learning algorithms in many cases are

only (partially) available, since the 5G deployment is not

started yet. Furthermore, these AI algorithms may deliver but

a sliver of the more comprehensive and ambitious goals of

cognitive network management systems where architectural

support is also required. An analysis or such architecture

requirements is, however, out of the scope of this paper

but the interested reader is referred to [8], where extensive

architectural impact analysis has been performed.
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IV. USE CASES

Next, we describe three possible use cases for the applica-

tion of AI algorithms that target network elasticity by applying

cognitive techniques on different inputs and in different phases

of the lifecycle.

A. Computationally Elastic Scheduler

As discussed in Section I, computational elasticity deals

with the performance optimization of a NF given additional

constraints on the available computational capacity assigned

to such function by an orchestrator. While this approach

can be applied to any kind of NF, those that imply higher

computational loads can benefit more it. As consistently shown

in the literature, the most expensive NF in terms of compu-

tational demand are the ones related to the MAC, encoding

and decoding [9]. In a previous work [10], we proposed an

algorithm for uplink MAC scheduling that offers graceful

degradation in case of a sudden load variation that could not

be served with the available computational resources (i.e., a

flash crowd).

The algorithm in [10] showed indeed the potential of such

approach. However, it relies on strong assumptions on both the

channel conditions and the user demand. As already discussed

in Section III, such metrics shall be considered as part of

a learning process: in the following, we propose a possible

approach to an AI-based computational elasticity.

In nuce, achieving computational elasticity at MAC level

implies a joint optimization of Modulation and Coding Scheme

(MCS) selection for each user (as discussed in [11], different

MCS have different computational complexity depending on

the SNR margin), and the actual user scheduling. That is,

rather than selecting just who to schedule, the elastic MAC

controller shall also select the best MCS to be used given the

constraints on the available computational capacity.

Selecting the best scheduling decision at each time transmis-

sion interval (TTI) entails, thus, learning characteristics such

as the traffic demand and the channel conditions. However,

given the trend of centralizing access NFs, it is likely that an

elastic MAC scheduler will need to take scheduling decision

for thousands of devices at the same time. Therefore, the

scalability of the learning process is of paramount importance

for its practical implementation. A promising learning solution

for solving this problem is that of contextual bandits [12].

Contextual bandits employ the concept of policy selection,

as opposed to action selection in classical bandit problems.

A policy essentially maps context information (encoded as a

sample from a potentially rich feature space) into a scheduling

action. By learning the history of policy-context-reward tuples,

randomized greedy algorithms can be built to maximize the

total reward for any upcoming context, which in this case

includes the user data queues and the buffer state of the

computing processor.

A necessary input for contextual bandits is, as discussed

in Section III, the prediction of the infrastructure status for

a given time frame. In mobile networks, forecasting the

SNR quality of given user is, thus, fundamental to take the

scheduling decisions as described above. We thus explored the

feasibility of a SNR prediction algorithm (results are depicted

in Figure 3). The objective was to obtain a short scale (5 ms)

forecast of the SNR values, taking into account a window of

the past 40 ms samples. For this purpose we employ a layer of

Long Short Term Memory (LSTM) network, activated with a

Scaled Exponential Linear Unit (SELU) function and a Mean

Absolute Error (MAE) loss function (See Figure 3a). As shown

in Figure 3b, this network is capable of forecasting a real world

SNR trace collected in a lab environment, demonstrating the

effectiveness of a learning scheduling framework.

B. Slice-aware Resource Management

The design and setup of a network slice capable of accu-

rately satisfying the need of mobile services with very diverse

requirements is an important challenge for 5G networks. This

process can be optimized by enabling the 3GPP Network

Slice Management Function (NSMF) and Network Slice Sub-

net Management Functions (NSSMF) to use AI mechanisms

capable of automatically translating service requirements to

network requirements. To this aim, 3GPP recently introduced

the Management Data Analytics Service (MDAF) in the or-

chestration architecture [13].

The goal in slice-aware elastic resource management is to

develop algorithms, which consider the Quality of Service

(QoS) requirements, SLAs, and demands of network slices

operating on the same physical infrastructure to optimally

allocate/de-allocate a portion of available resources to each of

them. The two main design challenges are i) modeling of the

essential parameters, and ii) adapting the models to changes in

the run-time. This information is extremely useful for resource
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allocation and provisioning at every level of the network. In a

scenario where a limited number of RAN radio resources have

to be shared among multiple slices with significantly different

requirements, different RAN parameter set configurations are

needed. These may vary in spatial domain due to changing

radio conditions as users are moving, and in temporal domain

depending on the traffic load distribution over time.

The VNFs computational performance is highly dependent

on the implementation techniques as well as channel quality.

In [14], a profiling procedure has been proposed; it uses

AI-based regression (i.e., Lasso regression), to generate an

mathematical model. On the same research path, AI-based

solutions (Lasso, Support Vector Machine (SVM), or rein-

forcement learning) can learn (or adapt) the computational

performance of VNFs based on the reported input parameters

and the measured processing times for any new VNFs.

The channel quality between the antennas and the mobile

terminals is the foundation to estimate the total network

throughput and allocated the available radio resources to each

slice as well as the required computational resources. In

both cases, AI-based approaches can either provide or adapt

the channel models based on the monitoring reports to be

used in estimations and provisioning of slice-aware resource

management algorithms.

AI techniques could also be used for traffic prediction,

which can be a valuable input for many elastic resource

allocation algorithms. The resource management algorithms

either act in passive mode (i.e. observing the demand and react

to it) or always assume the maximum demand. The prediction

of slice demands can enhance inter-slice resource utilization.

Figure 4.a presents the deep Neural network architecture with

two dense layer with ReLU activation function and a sigmoid

activation function. It is used to predict the traffic demands

of two network slices with different behaviour and Figure 4.b

shows the predicted against the actual traffic. Virtual resource

management models, consequently, can now consider also

predicted slice demands to adapt the service provisioning; for

example, some services may have a repetitive pattern or may

only be active during certain times of the day or year.

The movement of traffic concentration around the network

could also be predicted, e.g., groups of users could be identi-

fied that move in a coordinated fashion through the network

and following a certain trajectory. Such input may be very

useful for adjusting the beam patterns of groups of cells

proactively. Dynamic beam pattern adjustment would shift the

load distribution between cells and ensure that all users are

best served at the same time. Knowing in advance the traffic

characteristics of each slice and its evolution over time and

space is essential to reaching the correct beam forming for

each cell and aligning across neighbors in order to create

stable coverage in a timely manner. This is clearly valuable for

latency sensitive services/slices or throughput-hungry ones.

C. Efficient Slice Setup

We envision an important role of AI algorithms during the

run-time phase of a network slice. However, unsupervised

learning algorithms are fundamental also in the instantiation

Fig. 4: Traffic demand prediction using deep neural network.

phase, where they shall analyze the generated requirements

and identify whether a slice already instantiated can efficiently

support the new service or an additional slice needs to be

deployed. This approach not only further reduces the service

creation time by avoiding the instantiation of a new slice for

each new service, but also enhances the system efficiency by

increasing the resources shared across elastic slices. To be

effective, this approach has to operate on slices that do not

need fully dedicated resources, e.g., they are elastic in the

sense that they have relaxed constraints in terms of resource

isolation. In contrast, slices characterized by stringent resource

isolation constraints are non-elastic and may not accept to

share their resources with concurrent slices and limit the

system flexibility.

A practical example is the case of different broadcasters

covering the same sport event: 3GPP’s NSMF may mutualize

the radio resources allocated to the different services to trans-

mit common contents, and use dedicated resources for slice-

specific content such as the speaker’s voice. More specifically,

most mobile services are typically characterized by a set of

dedicated NFs in charge of guaranteeing its specific require-

ments (e.g., multi-connectivity for high reliability) and a larger

set of shared NFs that deal with more generic requirements

(e.g., the handover function that guarantees coverage.

An AI-based mechanism can classify in an unsupervised

manner the instantiated slices with respect to the NFs shared

with the new request, and then assign the new slice request

to the deployed slice based on the number of shared NFs.

In this way, the additional resources needed to fulfill the

requirements of the new slice can be reduced and the slice

deployment process accelerated. This approach can also be

used as a congestion control mechanism to prevent resource

outages: when the system is close to saturate, the NSMF can

re-cluster the overall set of services in new network slice

instances to maximize the resource sharing. The latter could

be implemented by using a spectral clustering scheme [15],
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where the deployed slices are represented as nodes of a

connected graph and clusters are found by partitioning this

graph based on the nodes’ affinity (e.g., related to the number

of shared NFs). Figure 5 shows the variation of the slice
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Fig. 5: Elastic and non-elastic slice dropping probability as

a function of non-elastic slice arriving probability with and

without resource sharing.

request dropping probability as a function of the non-elastic

slice arrival probability. In this results, slices are classified

between elastic and non-elastic and we assume that non-

elastic slices lead to high revenues as they require dedicated

network resources. We evaluate the performance of three

different approaches. In the first one, resource sharing is not

implemented, which results in higher resource requirements

and larger slice dropping probability. In the second case, we

assume that resource sharing is enabled by assigning a new

slice request to the already instantiated slice maximizing the

number of common VNFs (i.e., max VNF). Finally, in the

third case, spectral clustering is implemented at each slice

request arrival/departure to maximize the resource sharing in

the system. Spectral clustering shows the best performance

since it continuously optimizes the shared resources at the

cost of higher complexity. The results in Figure 5 show that

both the mechanisms enabling resource sharing improve the

performance for both elastic and non-elastic slices; however,

the slice dropping probability reduction obtained when using

the simple max VNF approach is limited (around 11%); in

contrast, the spectral clustering approach leads to 50% of

reduction of the slice dropping probability, therefore enabling

a large improvement in terms of potential incomes for the

operator.

V. CONCLUSIONS

In this paper, we have introduced the novel idea of utilizing

AI techniques with the purpose of exploiting the resource elas-

ticity of a 5G network, hence improving resource efficiency

and the overall performance of its management and orchestra-

tion machinery. Using as basis the architectural work recently

developed by ETSI ENI and the concept of resource elasticity,

we propose a taxonomy for elastic slice lifecycle management

and three different use cases showing the applicability of AI

on different management and orchestration problems where

elasticity can be exploited. The paper constitutes the basis of

a recently approved use case at ETSI ENI.
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