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Artificial Intelligence for Long-Term Robot Autonomy: A Survey

Lars Kunze1, Nick Hawes1, Tom Duckett2, Marc Hanheide2, Tomáš Krajnı́k3

Abstract—Autonomous systems will play an essential role
in many applications across diverse domains including space,
marine, air, field, road, and service robotics. They will assist us
in our daily routines and perform dangerous, dirty and dull tasks.
However, enabling robotic systems to perform autonomously in
complex, real-world scenarios over extended time periods (i.e.
weeks, months, or years) poses many challenges. Some of these
have been investigated by sub-disciplines of Artificial Intelligence
(AI) including navigation & mapping, perception, knowledge
representation & reasoning, planning, interaction, and learning.
The different sub-disciplines have developed techniques that,
when re-integrated within an autonomous system, can enable
robots to operate effectively in complex, long-term scenarios. In
this paper, we survey and discuss AI techniques as ‘enablers’ for
long-term robot autonomy, current progress in integrating these
techniques within long-running robotic systems, and the future
challenges and opportunities for AI in long-term autonomy.

Index Terms—Autonomous Agents, AI-Based Methods, Long-
term Autonomy.

I. INTRODUCTION

ROBOT technology has improved tremendously over the

last decade. Consequently, autonomous robot systems

have been able to operate in increasingly complex environ-

ments and for increasingly long periods of time, i.e. weeks,

months, or years. When a fully modelled robot is deployed

in a completely known, static environment, the challenge

of long-term autonomy (LTA) reduces to one of robustness,

i.e. enabling the robot to remain operational for as long as

possible. Without these simplifying assumptions autonomous

robots face a number of interrelated challenges. We roughly

characterise these challenges on two dimensions. The first

refers to the application requirements, e.g., the robot plat-

form (hardware and software), environment and tasks to be

performed. The second dimension describes the long-term

nature of these elements, e.g., if and how they change over

time, whether their long-term nature can be fully characterised

in advance (structured vs. unstructured), and how observable

they are. For example, in many long-term applications, the
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environment will change over the lifetime of the system. These

changes could be short-term (e.g. things moving within the

robot’s field of view), medium-term (e.g. furniture moving

between visits to a room, parked cars changing positions on

roads), or long-term (e.g. seasonal changes, plant growth, wear

to surfaces). In addition, parts of the environment may not be

fully known before deployment or new objects may appear.

In AI terms this means dealing with an open world. It is

also possible that the end-user may change the tasks or how

the robot should accomplish them, or the robot itself may

need to adapt to new tools, techniques (e.g. AI algorithms)

or knowledge as they become available.

In this paper, we survey systems and approaches that address

the challenges of LTA using techniques from AI. We focus

on both AI techniques used by robot systems deployed for

extended periods in real-world environments (Sec. II), and

techniques that align well with future needs of LTA systems,

but which have not been convincingly demonstrated within

long-term scenarios (Sec. III). We further discuss future chal-

lenges and opportunities for AI in LTA (Sec. IV).

By focussing on the above challenges we purposely exclude

other applications where robots operate for long periods, but

in relatively static, known settings. Specifically this means

we do not cover current systems in manufacturing or intra-

logistics. In both cases the majority of deployed robot systems

have demonstrated significant longevity, but this is typically

achieved through the creation of environments which are

fully known and the dynamics are largely under control of

the autonomous systems. Whilst this does not eliminate the

need for AI techniques (e.g. long-term localisation [1] and

planning [2] for warehouse AGVs), it limits the LTA-specific

challenges (e.g. environmental dynamics, lack of structure,

open-endedness) seen in other domains.

Since autonomous systems research has a long history,

special issues and surveys already exist that relate to LTA.

For example, [3], [4] cover AI methods within integrated robot

systems. In perception, existing collections cover localisation

and mapping in dynamic environments [5], [6], calibration [7]

and visual place recognition [8]. However, this is the first

survey that focuses specifically on AI techniques for enabling

long-term robot autonomy.

II. DOMAINS

Long-term autonomous robots have been deployed in a

variety of domains including space, marine, air, field, road,

and service. Tab. I provides an overview of these domains and

selected systems characterised across common features. In this

survey, we adopt the notation of [4] and characterise domains

by application features: environment variability, task diversity,

semantics, dynamics, partial observability, cost & criticality,
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TABLE I
SURVEYED AI-ENABLED LONG-TERM AUTONOMY ROBOT SYSTEMS.
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Space L L L L H H L M
Years ◦ • − • ◦ − Opportunity [9], [10]

Years ◦ • − • ◦ − IPEX [11]

Marine M L L M H H L H
Days ◦ • ◦ • − ◦ AUVs [12], [13]

Months ◦ ◦ − ◦ − − Gliders [14]

Air M M M H H H M M Days ◦ • ◦ ◦ − − AtlantikFlyer [15]

Field H M L M H M M M
Days • • ◦ − ◦ ◦ VT&R2 [16]

Years • • ◦ − − ◦ BearNav [17], [18]

Road M L M H M H M L

Days ◦ • • ◦ − ◦ VaMP [19]

Days ◦ • ◦ ◦ − ◦ ARGO [20]

Months ◦ • ◦ ◦ − ◦ PANS [21]

Months ◦ • ◦ ◦ − ◦ VIAC [22]

Service H H H L H L H M

Days • ◦ ◦ • • ◦ Rhino [23]

Days • ◦ ◦ • • ◦ Minerva [24]

Days • ◦ ◦ ◦ • ◦ Willow Garage [25]

Months • • • • • • STRANDS [26]

Years • • • • • • CoBot [27]

Legend: L low, M medium, H high, − not integrated, ◦ partially integrated, • fully integrated

interaction & cooperation, and level of autonomy. As in [4],

all features are qualitatively assessed using three levels (low,

medium, high). Please see the aforementioned paper for a

detailed discussion of the features. In this work, we focus

on the assessment of deployed robot systems. To this end, we

assess them by the duration of their deployment (days, months,

years) and the level of integration of different AI areas (not,

partially, or fully integrated). The three qualitative levels of

integration distinguish between systems that do not employ AI

techniques from a particular area; that use them only partially,

but not for the purpose of LTA; and systems that use them for

LTA (fully integrated).

Space: Due to extreme communication delays and lim-

ited prior access, effective extra-terrestrial exploration requires

autonomous systems. NASA’s Opportunity rover has recently

passed its 5,000th day operating on the surface of Mars. Its

autonomous capabilities come from a mixed-initiative task

planner, and an autonomous navigation system. The planner

(MAPGEN, [9]) is used to automatically create a daily mission

schedule, which is then refined by terrestrial scientists. The

navigation system uses stereo cameras to build 3D models

for terrain traversability and path planning [10]. LTA has also

been a growing part of satellite operations, e.g. the Intelligent

Payload Experiment (IPEX) demonstrating over a year of

autonomous information gathering using planning and image

processing technology [11].

Marine: Due to the limits of communication through

water, and the difficulties in fully mapping deployment en-

vironments, there are parallels between the requirements for,

and benefits of, autonomy in marine and space robotics.

Autonomous wave gliders are routinely deployed for long

durations, with missions measured in thousands of kilometres

and hundreds of days (e.g. 7,400 km in 221 days [14]). Gliders

are relatively simple, low-powered robots. More powerful

systems have been deployed for days of autonomous operation,

e.g. for navigation under ice [12]. The benefits of AI planning

have been shown in field trials [13] and controlled settings

targeting LTA [28].

Air: The fundamental factor that makes long-term oper-

ation of aerial systems difficult is energy. The authors of [15]

argue that to achieve perpetual autonomous flight, the UAV

has to plan its path according to global and local weather

conditions, wind fields, and thermal updrafts. An alternative to

perpetual flight is the ability to interrupt the flight to recharge,

like the lake monitoring system in [29].

Field: Field robotics deals with unstructured and dynamic

environments in diverse domains such as forestry, agricul-

ture, mining, construction, etc. Bechar and Vigneault [30]

characterise such domains according to the level of structure

present in both the environment and the objects relevant to

the robot. The majority of current field robots utilise GPS-

based auto-steer systems that follow pre-determined paths
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with otherwise limited use of AI capabilities. An alternative

approach uses visual ‘teach and repeat’ to enable robust

navigation in field environments. In these approaches systems

are driven along a training route and then they repeat the

route autonomously [31]. Krajnik et al. [17] show that their

teach-and-repeat method is robust to seasonal appearance

changes. Paton et al. [16] showed that the integration of

multiple experience-based representations [39] results in a

system capable of long- term autonomous navigation despite

drastic changes to the environment appearance.

Road: The PANS platform [21] was one of the first

autonomous vehicles that drove a long distance (6,000 miles,

98.2% autonomous driving) on public roads over a period

of six months using a vision-based driving system. It used a

neural network to learn a mapping between road images and

appropriate vehicle turn radiuses from human demonstrations.

At the same time, the driverless car VaMP [19] drove more

than 1,000 miles (95% autonomous driving). The vision-based

driving system of the ARGO project [20] achieved a similar

result (1,200 miles, 94% autonomous driving). Through learn-

ing it was able to adapt to new road conditions (lane width

and lane position). More recently, several vehicles covered a

distance of 13,000 km from Italy to China using a leader-

follower approach in the VisLab Intercontinental Autonomous

Challenge (VIAC) (2010) [22].

Service: We characterise service robots as robots that

work for, or alongside, humans in environments that are not

specially adapted for their presence. Service robots must cope

with: dynamic environments (due to people moving, day-night

changes, etc.); open worlds (due to people); and changing task

requirements. Large-scale research initiatives have deployed

mobile robot systems capable of LTA in museums (the seminal

Rhino [23] and Minerva [24]), offices (Willow Garage [25],

CoBot [27] and STRANDS [26]), stores [32], and care en-

vironments (STRANDS [33] and Tangy [34]). All of these

robots were deployed for at least multiple weeks, and most

around naı̈ve users. Most of these systems were deployed at

intervals in the same environment (e.g. daily). The STRANDS

and Willow Garage systems also attempted continuous au-

tonomous operation, managing a maximum of 28 and 13 days

respectively of uninterrupted operation. These research sys-

tems have given rise to the current generation of autonomous

service robots operating in human-populated spaces. Examples

include Bossanova’s stock checking robots in Walmart stores,

Knightscope’s security robots, and Savioke’s robot hotel but-

lers.

Conclusion: With respect to AI areas, Navigation &

Mapping and Perception are the only areas that were present in

all surveyed systems. This is no surprise as they provide robots

with very fundamental capabilities. KR & Reasoning as well

as Planning were both supported by most systems. However,

we hypothesise that work on KR & Reasoning in space and

marine is limited due to the lack of semantics in these domains.

Furthermore, it is interesting to note that systems only partially

(if at all) support Interaction and Learning in most domains

(with an exception of the service domain). Although these

areas are well researched in general, they haven not been

extensively covered in long-term scenarios. Hence, we believe

that there are many open challenges and research opportunities

for both areas (and in their intersection) as we point out in

Sec. IV.

In all domains, LTA systems inherently present an integra-

tion challenge, particularly when different AI abilities need

to work together. Over the past years, there has been an

increasing trend toward the (re-)integration of AI techniques

within robotics. To cope with challenging environments and

tasks, robots typically integrate: localisation and navigation;

object and/or person perception; plus task planning and/or

scheduling. However, although the integration of AI tech-

niques at system-level is an essential part of all research

projects, there is no standard solution and little research on

how to combine modules from different areas of AI.

Robotic software development [35] and robotic middleware

projects such as the Robot Operating System (ROS) [36]

provide researchers with common methods to integrate their

software components and components of others in a structured

way. Some frameworks build on top of such middlewares and

integrate particular AI methods in the context of long-term

navigation planning and task scheduling (STRANDS [26]),

planning and execution (ROSPlan [37]), and knowledge-

enabled perception (RoboSherlock [38]). In general, these

frameworks make it easier to integrate and use different AI

methods. However, overall, there is still a lack of understand-

ing and research in the area of system-level integration. Hence,

we believe system-level integration of AI methods and their

evaluation will continue to be a major challenge in autonomous

systems research.

III. AI AREAS

In this section we discuss how different areas of AI can

enable autonomous robot systems to perform in real-world

environments over extended periods of time. This includes

navigation & mapping, perception, knowledge representation

& reasoning, planning, interaction, and learning.

A. NAVIGATION & MAPPING

Navigation is an essential ability for purposeful movement

by autonomous robots. One approach uses visual ‘teach and

repeat’ to enable robust navigation in field environments,

where the robot learns a map while being driven along a

training route and then repeats the route autonomously [31],

[17], [16], as discussed earlier in Sec. II. Recent work [39]

demonstrated over 140 km of autonomous driving with an

autonomy rate of 99.6%, including driving at night-time.

Over the past 30 years there has been huge interest in

autonomous learning of environment models by robots, espe-

cially the problem of simultaneous localisation and mapping

(SLAM) [6]. However, most approaches assume a static world

and do not consider long-term updating of robot maps to reflect

environment changes. Here we briefly characterise several

complementary strategies to enable long-term mapping and

localisation in changing environments, primarily using long-

term data sets for their experiments.
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Multiple representations: Long-running robots need to

consider environment mapping as a never-ending process, and

thus make decisions on what to remember and what to forget.

However, deleting information from a map is risky since an

observed change may only be temporary and the environment

may yet revert to a previously observed state. One approach

is thus to maintain multiple environment representations [8],

then to select the most relevant model at the current time for

localisation and planning. Early work [40] developed dynamic

maps that handle changes through use of robust statistics

and multiple local maps at different timescales, where the

map that best explains the current sensor data is used for

localisation. The short-term maps are updated online while

the longer-term maps are adapted offline based on long-term

experience. Stachniss & Burgard [41] cluster local grid maps

created at different times and learn distinct configurations of

these locations. A related approach for pose-graph SLAM [42]

maintains multiple view-based representations of mapped lo-

cations, while discarding obsolete views, thus limiting overall

map size. Similarly, Churchill & Newman [43] propose to

integrate similar observations at the same spatial locations into

‘experiences’ which are then associated with a given place. For

localisation, they select the experience that best matches the

visual input of the robot. An alternative approach is to keep

the data from all mapping sessions and integrate them offline

into a single, high fidelity representation [44].

Robustness to appearance change: A parallel strategy at-

tempts to select the representation which is most stable in time.

Valgren & Lilienthal [45] demonstrated the robustness of local

image features for localisation across seasons. SeqSLAM [46]

attempts to match sequences of images rather than individual

images, achieving robust place recognition across seasons. A

method for learning long-term stable features is described by

Dayoub et al. [47], where image features detected across map-

ping sessions are first stored in a short-term memory, which is

used to filter out spurious observations, before being admitted

to long-term memory. A further approach involves learning to

predict appearance changes across seasons [48], by learning

the expected translation between a vocabulary of superpixels

for different seasons and using this to generate predicted

images for localisation at run-time. Recent research showed

that season-specific images can also be predicted using gen-

erative adversarial networks [49], [50]. Lowry & Milford [51]

compare a similar appearance prediction technique with a

change removal method and conclude that change removal

is more robust and less data-intensive to train. Related work

on laser-based localisation [52] uses long-term experience to

learn error distributions for individual points in 3D point-cloud

maps, which are then used during localisation to suppress the

observations corresponding to map points with high errors.

Learning about dynamics: While the above approaches

are mainly concerned with learning the persistent elements of

the scene, another strategy attempts to model the dynamics.

Tipaldi et al. [53] use dynamic occupancy grids, which model

the occupancy of each cell as a two-state Markov process, and

showed that their approach improves localisation robustness in

a car park environment. Kucner et al. [54] learn conditional

probabilities of neighbouring cells in an occupancy grid to

model typical motion patterns in dynamic environments. Kra-

jnik et al. [55] proposed to represent rhythmic or periodic

processes in the environment using Fourier analysis, and

showed that the resulting spectral models obtained from long-

term experience enable prediction of future environment states,

improving localisation and navigation in human-populated

environments.

Notable applications of long-term mapping include visual

survey of natural environments by an autonomous surface

vessel surveyed a lake shore over a 14-month period [56],

and a 4D reconstruction approach to crop monitoring over

time [57]. The latter comprises a 3D SLAM pipeline, data

association to find correspondences between crop rows and

sessions, and optimisation of the full 4D reconstruction.

Finally, complementary work on topological and semantic

mapping may further enhance long-term robustness to change,

by abstracting away from the finer details of metric and

feature-based representations, although a detailed review is

beyond the scope of this paper. Current trends suggest that

future work on long-term navigation and mapping will include

more application-specific developments across all domains, as

long-running systems continue to be deployed in practice, and

development of richer environment representations including

especially more semantics and integration of more perceptual

and contextual cues.

B. PERCEPTION

In addition to perception algorithms for navigation and

mapping, autonomous robots need general perception routines

for object recognition and scene understanding. Indeed, early

approaches to mapping of dynamic environments were object-

centric. These methods identify moving objects and remove

them from the maps [58] or use them as moving landmarks

for self-localisation [59]. However, not all dynamic objects

actually move at the moment of mapping, meaning that their

identification requires long-term observations.

To address this challenge, Ambrus et al. [60] processed

several 3D point clouds of the same environment recorded over

several weeks to identify and separate movable objects, and

refine the static environment structure at the same time. Biswas

& Veloso [61] proposed an approach for long-term localisation

based on explicit reasoning about object categories including

mapped objects, unmapped static objects and unmapped dy-

namic objects. Bore et al. [62] detect and localise objects

in large environments, where objects can change locations

between observations by the robot, while assuming a closed

world to ensure computational tractability.

Other approaches enable open-ended learning of new ob-

ject categories during long-term operation, e.g. using spatial

context information to query possible category labels from

semantic knowledge on the web. Recent work includes an

embodied system for open-ended learning and manipulation of

new object categories, based on human-robot interaction [63],

and a lifelong learning framework in which a human user

can direct a robot to capture domain-relevant data for training

classifiers of household objects [64].

Future service robots would also benefit from tech-

niques to improve their perception of people over time,
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e.g. by integrating long-term experience in tracking-learning-

detection [65] and tracking-learning-classification [66] ap-

proaches, and learning the long-term activity patterns of peo-

ple [67]. This would in turn enable robots to adapt to and move

more harmoniously with the expected flow of humans. Long-

term applications involving interaction with specific people

also require algorithms for person re-identification at different

temporal scales (very short term, same day, different day).

For these cases, different assumptions can be made based on

the persistence of supporting cues (e.g., position at dinner

table, clothing, size/stature, hair colour, facial features). Re-

cent work integrates person re-identification with multi-target

multi-camera tracking [68], however, adaptation of person-

specific appearance models over long time-periods remains an

open challenge for autonomous robots. Direct parallels may

be drawn for other related challenges such as recognition of

human activities, where long-term experience can be leveraged

to improve performance over time [69]. In general, most

prior work on perception considers only the initial training

phase prior to deployment of the robot, but not the ongoing

adaptation of learned models during operation.

C. KNOWLEDGE REPRESENTATION & REASONING

Knowledge representation (KR) is concerned with repre-

senting the world (in particular domains with rich semantics,

see Tab. I), and is closely linked to many other AI areas

including perception, planning, and learning. The previous

sections already discussed important aspects of representations

in the context of navigation and perception.

In general, KR goes hand and hand with reasoning as both

decision making and inference are tightly coupled with the

way the knowledge is represented. Long-term, autonomous

robot systems that are deployed in a real-world environments

require KR and reasoning capabilities to represent various

aspects of the world and reason about them, in particular when

they change over time. Therefore, AI areas such as spatio-

temporal reasoning, non-monotonic reasoning, and belief re-

vision are of great importance in long-term scenarios.

Several works investigated models that infer locations of en-

tities in space and time. Mason et al. [70] proposed an object-

based semantic world model for long-term change detection

in dynamic environments, and [71] modelled the temporal

persistence of objects. Similarly, Krajnik et al. [72] proposed

frequency-based spatio-temporal models for reasoning about

the location of people. Such spatio-temporal information is

essential in long-term scenarios as it can inform AI planners

(cf. Sec. III-D) about non-stationary costs and/or rewards.

Santos et al. [73] presented a first lifelong information-driven

approach to spatio-temporal exploration that incrementally

completes and refines environment maps.

In LTA it is of great importance that robots can access

and learn from their own experience. OPEN-EASE [74] is a

KR infrastructure that makes experience data from robots and

human manipulation episodes semantically accessible. Users

can retrieve experiences and query what the robot perceived,

reasoned and did. Balint-Benczedi et al. [75] propose a more

specialised framework for storing and retrieving perceptual

memories for long-term manipulation tasks. Similarly, [76]

propose a long-term knowledge acquisition framework using

contextual information in a memory-inspired robot architec-

ture. The framework allows robots to memorise their percep-

tions and to recall them, e.g. in a manipulation task.

To cope with the challenges of open worlds, novelty and

anomaly detection is of great importance. To this end, [77]

proposed a framework for anomaly reasoning which includes

the recognition and interpretation of unfamiliar and familiar

objects appearing in unexpected contexts. This aspect of KR

and reasoning is strongly linked to work in adaptation and

learning (Sec. III-F) as it can trigger learning in LTA systems.

D. PLANNING

AI planning and scheduling technologies, which determine

the sequence of actions necessary to achieve a task, are often

used to adapt the robot’s behaviour online to account for

environment or task dynamics [4]. We have seen planning

systems deployed on almost all LTA systems. For example,

planning approaches were used to produce daily task lists and

the associated action sequences for the Opportunity rover [9],

and the STRANDS [26], CoBot [78] and Tangy [34] service

robots, allowing these robots to adapt their behaviour to

the needs of their users. AUVs used planning to deal with

changing environmental conditions and resources [13], while

logistics systems used planning to enable large numbers of

robots to cope with variety in customer orders [2].

Planning approaches vary in their ability to represent critical

elements of a system’s long-term experience. The aforemen-

tioned systems vary in terms of whether or not they model the

effects/dependencies of a robot’s actions on time or resources

(such as battery), or under uncertainty. They also vary in

how they handle oversubscription (choosing between multiple

goals, a key issue in integrating exploration). In general,

planning algorithms in LTA robots are embedded in a wider

integrated system which handles the parts omitted from the

planning model (e.g. replanning on failed on actions, or

reactively triggering charging on low battery, or managing

goal choices). More generally, an executive control system

which manages tasks, and responds to opportunities and

failures, is an essential part of a robot architecture for long-

term autonomy [28], [13], [26], [79], [23]. Such a system

prevents the robot getting stuck in behavioural loops, and

provides recovery mechanisms to address autonomy-hindering

failures. This behaviour can be seen in simple yet effective

form in the finite state controller of Willow Garage’s office

marathon system [79], through the planner-based executives of

Rhino [23] and Minerva [24], through to the T-Rex executive

used on fielded AUV teams [13].

The planned behaviour of the STRANDS [26] and

CoBot [78] robots was generated using models learnt dur-

ing execution: STRANDS robots created optimal task and

navigation plans from learnt MDP models of environmental

dynamics [80], [81]; CoBot robots learnt and planned with

models which predicted when humans would be available to

help complete a task [82]. These robots were therefore able

to adapt their task and navigation plans over the long term.
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As robots become more adept at navigation and manip-

ulation in less structured environments, we expect to see

planning playing an even more prominent role in logistics,

since a greater degree of variation will need to be managed

autonomously over the life of the robot. We also expect to

see overlap in learning and planning/optimisation processes in

autonomous transport systems [83], where system performance

will need to be managed over variation in demand and execu-

tion resources. Current trends also include the augmentation of

plans or policies created by mission or task planning systems

with richer execution knowledge [84]. This hybrid approach

allows mission planning to address long-term or large-scale

problems with abstract, computationally tractable models, but

at execution time behaviour is guided by richer models which

allow appropriate responses to dynamic events.

E. INTERACTION

Some of the most challenging application domains for long-

running robots involve interacting autonomously with a diverse

range of users, offering opportunities for the robots not only

to learn and adapt from this experience, but also facilitating

longitudinal studies to gain a better understanding of long-term

engagement of humans with autonomous robots. In general,

humans and other actors introduce a level of dynamics and

non-predictability into any application scenario, and hence

pose dedicated challenges for LTA systems, also indicated

in Tab. I, where environment variability is considered high

in domains with a high level of interaction and cooperation.

However, long-term Human-Robot Interaction (HRI) studies

with truly autonomous social robots are still a rarity today,

as many researchers resort to Wizard-of-Oz settings [85],

where subjects in studies are deceived into believing a robot is

acting autonomously while it is in fact remote-controlled by a

human operator. Among the most explored domains for long-

term autonomous systems with an emphasis on interaction are

museums [24], [86], care [33], domestic [87], retail [32], [88],

hospitality [89], and educational environments [90], [91], [92].

A recent survey [93] identified key domains for long-term

interactive robotic systems including ‘Health Care and Ther-

apy’, ‘Education’, ‘Work Environments and Public Spaces’,

and ‘At Home’, discussing a total of 45 different studies in

these fields. From their analysis, the key conclusion drawn

regarding autonomy is the lack of but also need for more

learning and adaptation. Indeed several systems mentioned

above (e.g. [88], [92]) develop personalised models to maintain

an interaction context. Such individualised user profiles are

one of the key abilities required to enable interaction in long-

running autonomous systems [94].

Hence, interaction in the context of long-term autonomy

must not only be seen as a challenge, but also as an oppor-

tunity, where representations can be learned or adapted in an

in-situ fashion to improve a system’s autonomous behaviour

from exploiting long-term interactions with users. [82] propose

a model enabling the robot to predict when humans are most

likely available to help a robot, while [33] follow similar ideas,

learning spatio-temporal usage patterns to maximise the utility

of the mobile robot.

F. LEARNING

Machine learning plays a role in many of the above areas,

and is clearly a key enabling technology for LTA. Beyond this

component role, a cluster of learning types are specifically

suited to LTA. In general we see techniques that allow a robot

to learn during operation (rather than during a design phase) as

crucial to success in LTA applications. Long-term deployment

in open/dynamic worlds means that any knowledge or experi-

ence the robot starts with is unlikely to be sufficient to cover

the behaviour required of it during operation. Thus learning

during operation is essential to delivering good performance.

We have seen this from the relatively low level of estimating

cost and probability models for planning [26], up to learning

new object [95] and activity models for service robotics

tasks [96]. Since it is hard to receive supervision signals

during long-term autonomous operation, the majority of the

online learning techniques employed by LTA systems are

unsupervised.

By definition, a robot is restricted to a fixed viewpoint in

space and time. This means that it is limited in the experiences,

and thus training data, it can generate to facilitate online learn-

ing. Therefore many LTA systems also include an exploration

component which drives the gathering of new experiences.

For example, CoBot robots were able to choose navigation

routes which provided updated observations for environmental

models [97], and the STRANDS robots balanced exploration

and exploitation to maximise interactions with humans during

an information provision task [33] and to build 3D maps for

object discovery [60], [73].

Given the richness and diversity of techniques in machine

learning, many approaches could influence the ability of LTA

systems to learn on the job in the future. Techniques which

allow robots to continually learn from experience such as

reinforcement learning, or focus on particular experiences (e.g.

failures, novelty) such as learning from demonstration should

allow online improvement of capabilities. Problems due to

limited training in a particular domain (or open worlds) can be

addressed by transfer learning, and supported by work from

the exploration and active learning communities. Ongoing

research is also investigating deep learning methods for long-

term autonomy, including recent work on prediction of human

trajectories from long-term observations [98].

IV. FUTURE CHALLENGES

This paper discussed the LTA-related challenges in different

areas of AI and the importance of system-level integration for

unlocking the potential of AI technologies. In addition, we

see the following major future challenges for LTA systems in

real-world environments:

Human-in-the-Loop Systems: How can LTA systems

leverage human knowledge in unforeseen situations within

long-term scenarios? As LTA systems have to deal with open

worlds, they will certainly require additional information when

facing situations that were not foreseen at design time. This

additional input might be given by end-users, maintainers,

and/or domain experts. It might also be provided through

direct control (i.e. teleoperation), natural interaction (e.g. via
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language or gestures) or labelled examples and/or data sets

(e.g. via crowd-sourcing). To this end, LTA systems require

mechanisms to integrate new, but potentially conflicting and/or

untrustworthy, information in their KR about the world. This

also requires that representations have some kind of semantic

abstraction that can be linked to human knowledge. The fan-

out [99], or number of robots a human can control simultane-

ously, will help drive the mixture of human supervisors and

robots in such a paradigm.

Knowledge Transfer between LTA Systems: What infor-

mation about the world should be exchanged by LTA systems,

and when? As more and more LTA robot systems get deployed,

they can exchange important information to help bootstrap

other systems and/or to improve their performance. As it is

not realistic that all logged information is exchanged, it is im-

portant to investigate what information should be exchanged,

and when. This also opens up privacy and security concerns.

In this context, we believe that cloud-enabled knowledge bases

[100] and other approaches in cloud robotics [101] will play

an important role.

Systems Integration: Building robotic systems capable of

long-term operations is inherently also a software engineering

challenge, as they require the close integration of different AI

techniques, a challenge also highlighted by [3]. While ROS has

established itself as a de-facto standard framework for building

integrated robotic systems, it provides only few instruments to

ensure reliable and robust system architectures. Here, model-

based approaches [102] might pave the way towards more

dependable and verifiable integrated systems in the future.

More Domain Specialisation: Alongside the development

of general principles of AI for long-term autonomy, there

will be many interdependencies and synergies from solving

the application-specific challenges in parallel. For example, in

precision agriculture the accuracy of relative positioning and

navigation, e.g. with respect to crop rows, is more important

than that of absolute navigation and position as provided by

RTK GPS. Therefore, any improvements in recognition of

crops would in turn improve the robustness and accuracy of

navigation in crop care and harvesting tasks.

Verification and Evaluation of LTA Systems: How can

the behaviour and the performance of LTA systems be verified

and evaluated when robot system (including its models), task

specification, and environment are constantly changing (at

different timescales)? This requires LTA systems to keep a

record of all their internal models that were used at a given

time. Furthermore, it requires novel ways to provide formal

guarantees under the assumption that parts of the environments

might change (with some probability) [103].

Conclusion: Further to these technological challenges,

we also see ethical, social, and legal issues when realising

LTA systems, though these are beyond the scope of this paper.

Overall, we believe strongly that AI methods can provide LTA

systems with many of the capabilities needed to overcome

these challenges. In turn, rather than merely extending the

lifetime of existing AI-enabled robots, AI approaches may

actually help to solve some of the really tough open problems

in robotics, e.g. perception-based mobile manipulation in real-

world settings, by leveraging long-term experience. However,

we recognise that, despite recent progress, there are still many

exciting open challenges.
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