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Abstract (unstructured) 

Artificial intelligence (AI) is increasingly employed in healthcare fields such as 

oncology, radiology, and dermatology. However, the use of AI in mental healthcare and 

neurobiological research has been modest. Given the high morbidity and mortality in 

people with psychiatric disorders, coupled with a worsening shortage of mental 

healthcare providers, there is an urgent need for AI to help identify high-risk individuals 

and provide interventions to prevent and treat mental illnesses. While published 

research on AI in neuropsychiatry is rather limited, there is a growing number of 

successful examples of AI’s use with electronic health records, brain imaging, sensor-

based monitoring systems, and social media platforms to predict, classify, or subgroup 

mental illnesses as well as problems like suicidality. This article is the product of a 

Study Group held at the American College of Neuropsychopharmacology conference in 

2019. It provides an overview of AI approaches in mental healthcare, seeking to help 

with clinical diagnosis, prognosis, and treatment, as well as clinical and technological 

challenges, focusing on multiple illustrative publications. While AI could help re-define 

mental illnesses more objectively, identify them at a prodromal stage, personalize 

treatments, and empower patients in their own care, it must address issues of bias, 

privacy, transparency, and other ethical concerns. These aspirations reflect human 

wisdom, which is more strongly associated than intelligence with individual and societal 

well-being. Thus, the future AI or Artificial Wisdom (AW) could provide technology that 

enables more compassionate and ethically sound care to diverse groups of people.  
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The global burden of mental illnesses accounts for 32% of years lived with 

disability, making mental illnesses the first in global burden of disease (1). Moreover, 

mental health challenges have increased in recent decades with a rise in suicides, 

substance use, and loneliness (2), worsened by the Covid-19 pandemic (3). Mental 

healthcare is compounded by a shortage of nearly 4.5 million mental healthcare 

providers, including well over 100,000 psychiatrists in the US (4). Artificial Intelligence 

(AI) presents a potential solution to address this shortage, and is increasingly employed 

in healthcare fields like oncology, radiology, and dermatology (5–7). The global AI in 

healthcare market is expected to grow from $5 billion in 2020 to $45 billion by 2026 (8). 

Also, there are increasing numbers of large-scale databases like Electronic Health 

Records (EHRs) in various countries (9).  

The use of AI in mental healthcare is, however, limited. The computational power 

harnessed by AI systems could be leveraged to reveal the complex pathophysiology of 

psychiatric disorders and thus better inform therapeutic applications (10). Mental 

healthcare relies on strong clinician-patient relationships that are often hindered by the 

limited interaction time allotted for clinical care. AI technologies offer a way to streamline 

tasks that do not require a “human touch” and thus provide complementary support that 

enables clinicians to focus on delivering more empathic care, thus "humanizing” medical 

practice (11). A recent survey of psychiatrists highlighted documenting/updating medical 

records and synthesizing information as two time-consuming tasks where AI could 

replace a human clinician (12). AI may further complement clinical intuition by 

enhancing diagnostic accuracy by supporting the clinical reasoning process (13) and 

advancing the mechanistic understanding of mental illnesses (14,15).  
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This article is the product of a Study Group held at the American College of 

Neuropsychopharmacology that included academic, clinical, and industry experts in 

mental health and AI in 2019. While there have been several excellent reviews of AI in 

psychiatric disorders, they have focused on specific conditions like autism (16) or 

bipolar disorder (17), or a specific goal such as genetic prediction (18). This article 

provides an overview of AI approaches in mental healthcare, to help with clinical 

diagnosis, prognosis, and treatment as well as clinical and technological challenges, 

and the future of AI (- i.e., Artificial Wisdom or AW), focusing on multiple illustrative 

examples.  

 

AI Approaches: Machine Learning and Natural Language Processing 

No FDA-approved or FDA-cleared AI applications currently exist in psychiatry 

(19). However, such applications have long been envisioned – e.g., the potential of 

expert systems and computerized therapy (20). Reasons for the delayed adoption of AI 

into routine psychiatric practice include the sensitive nature of data generated by mental 

health patient-clinician interactions (e.g., written clinical notes, conversations with 

patients) and multi-faceted diagnostic criteria in the DSM-5 (21,22). These types of data 

and clinical decision-making in psychiatry are far more complex than specific and 

objective tasks (e.g., tumor identification from an image) that are well-supported by 

current AI methods (23). AI technologies are also notoriously “data-hungry,” and the 

field of mental healthcare has been limited in its access to large, high-quality datasets.  

Machine Learning (ML): This is the most commonly used subset of AI in 

healthcare. It employs data-driven algorithms to learn from data, estimating or predicting 
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outcomes for new data and/or future events (13,24). ML differs from more traditional 

statistical approaches in several key ways: being more hypothesis-generating than 

hypothesis-driven; having minimal model assumptions rather than the strict 

assumptions required for statistical inference; and being focused more on predictions 

and pattern recognition than estimating parameters of interest (for details see (10,25)). 

Recommendations for using ML with mental health data are available. The International 

Society for Bipolar Disorders Big Data Task Force (17) has outlined the essential steps 

from acquiring patient data from multiple sources and biological levels to translating the 

knowledge to generate risk calculators. Similarly, Park, et al. (26) described clinical 

research strategies to systematically evaluate AI model performance in healthcare. Liu 

et al. (27) provided a guide on how to interpret ML-based publications and assess the 

appropriateness of the ML model for the size and type of input data.  

AI is well-suited to handle “big data,” granular, or digitized data (28). The 

potential of a subset of ML, deep learning (DL), in psychiatry is just beginning to be 

realized [see (29)]. DL has been used to support diagnostics, in particular for dementia, 

using the largest possible publicly available datasets (e.g., Alzheimer’s Disease 

Neuroimaging Initiative, or ADNI) (30). EHRs, digital phenotyping data from mobile 

phones, and social media platforms represent additional sources of high-dimensional 

data that could provide the necessary inputs to fully harness the power of DL for mental 

health applications. Medical data sharing has become increasingly more important, as 

models trained on high-dimensional data with small samples (e.g., more features than 

participants) lead to poor generalizability (31). 
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One potential solution to address small samples is transfer learning, which 

enables use of pretrained AI algorithms, designed for different purposes, as a starting 

point for analysis of new data (32). For example, Wang et al. (33) used a pre-existing 

algorithm (with fine tuning) called AlexNet that was originally trained on the large visual 

database ImageNet to classify alcoholism vs. non-alcoholism. Another example is that 

of Banerjee et al. (34) who used knowledge from a large speech-recognition database 

called TIMIT to detect post-traumatic stress disorder (PTSD). These approaches work 

because of similarities in the structure of the different datasets. Transfer learning is an 

economical and efficient solution, avoiding the development of a new model from 

scratch and requiring less training data. Given the relative dearth of large psychiatric 

datasets, transfer learning could prove useful for AI in mental healthcare. 

Natural Language Processing (NLP):  This includes techniques like speech 

recognition, sentiment, lexical, and semantic analysis, and optical character recognition 

to transfer text from unstructured to structured formats in order to enable subsequent 

analyses (35). NLP techniques are relevant for psychiatry because language and 

speech are the primary sources of information used to diagnose and treat mental 

disorders. Unstructured psychiatric evaluation records are readily available, 

inexpensive, and rich in information to help identify phenotypes and comorbidities 

(36,37). Relevant examples in mental health include applying NLP within the Clinical 

Record Interactive Search (CRIS) platform (38), and predicting the risk of suicide (39) 

and early psychiatric readmission (40), from hospital discharge notes within the EHR. 

NLP can also be applied more broadly to EHR or insurance claims data for automating 
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chart reviews, clustering patients into particular phenotypes, and predicting patient-

specific outcomes (41,42). 

 

Assistance with Clinical Diagnosis, Prognosis, and Treatment  

Clinical Diagnosis: Today’s AI systems can help with differential diagnostic 

challenges in several key ways. First, AI approaches can bolster the ability to 

differentiate between diagnoses with similar initial clinical presentations but divergent 

treatment approaches (43) – e.g., identifying bipolar versus unipolar depression based 

on brain imaging features (44), or differentiating between types of dementia using 

structural MRI scans (45). Secondly, data-driven AI methods can help identify novel 

disease subtypes based on heterogeneity of presentations, demographic features, and 

environmental factors (43). Examples include neurocognitive profiles in bipolar disorder 

(46), genetic profiles in schizophrenia (47), biomarker profiles in psychoses (48), and 

neuroimaging subtypes in depression (49). Thirdly, AI approaches can build models 

from unusual/novel data sources and reconcile data from multiple heterogeneous data-

streams, e.g., EHR, behavioral data from digital phenotyping and wearable sensors, 

speech, social media feeds, neurophysiology, imaging, and genetics (50), to coalesce 

explanatory and mechanistic models of mental illness across self-report to molecular 

assessments. Illustrations include Instagram photographs to predict risk of developing 

depression (51), speech data to predict psychosis onset in high-risk youth (52), and 

identifying individuals with PTSD (53). AI methodology can also incorporate both 

genetic and environmental risks (54), accounting for complex environment-gene 

interactions and psych-bio-social factors, particularly relevant in PTSD (55). 
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Furthermore, AI methodologies are well-suited for deciphering patterns from longitudinal 

data (56), critical for honing the accuracy of diagnoses based on evolving psychiatric 

symptoms. Lastly, AI methods may have a growing role in gathering sensitive and 

accurate data from patients. One study found that individuals were more forthcoming 

disclosing sensitive information with a computer system than with a person (57).  

Use of Non-Clinical Data: The digital health movement is closely aligned with AI 

methods using data outside of typical physician-patients interactions (58). Day-to-day 

and longitudinal monitoring of sensors (59) and social media can enable early detection 

of symptoms or relapse, and shed light on helpful versus harmful behaviors (60,61). 

Multimodal-sensing including smartphones, wearable devices, physiological sensors 

(e.g., heart rate, electrodermal activity), and ambient sensors (e.g., motion, 

temperature, light) enables collection of real-world, continuous data concerning 

symptoms, treatment response, and behaviors, thoughts, and emotions (62,63). 

Platforms designed to enable multimodal data collection, like mindLAMP (64), AWARE 

(65), and CrossCheck (66) aid in continuous remote monitoring and identification of 

subjective and objective indicators of psychotic relapse. ML techniques can derive 

meaningful or novel features from inherently noisy signals generated by sensors (62). 

Behaviors like social withdrawal may be detected using smartphones and Fitbit data 

(67).  

Social media platforms represent a new form of social communication, reflecting 

day-to-day functioning of many individuals (68), thus providing an unprecedented, 

unobtrusive “lens” into longitudinal behaviors and moods (69,70), especially for 

adolescents and young adults who are both the highest internet users and at the 
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greatest risk for the emergence of mental disorders (71,72). Examining the content, 

language, and consumption patterns of social media provide novel insights into 

relationships and communication, as well as create new opportunities for seeking help 

(73,74). Web-based influences impact people’s knowledge of, and attitudes toward, 

healthcare practices like vaccination, at population and individual levels (75). Mental 

illnesses may be observable in online contexts, and social media data have been 

leveraged to predict diagnoses and relapses (51,72,76,77), with accuracies comparable 

to clinician assessments and screening surveys (78).  

However, sensor data do not yet have clear usability in clinical mental health 

settings (79) due to lacking clinical validity and implementation challenges. Likewise, 

analyses of social media data need AI-based innovations, e.g., shared infrastructures 

for data collection and data donation. Furthermore, important privacy and ethical issues 

regarding social media data (80,81) as well as public distrust of data usage for sensitive 

purposes may hinder research and creation of large-scale data sets necessary for AI 

algorithms (82).  

Prognosis: AI methodologies applied to longitudinal data can bolster accurate 

prognoses for psychiatric patients (43). Studies have harnessed neuroimaging, EHR, 

genetic, and speech data to model trajectories of depression (83), suicide risk (84), 

future substance abuse (85), and functional outcomes (86). AI algorithms can also use 

data-driven approaches to build new clinical risk prediction models (87) without relying 

primarily on current theories of psychopathology. However, internal and external 

validation of an AI algorithm is essential for its clinical utility. Cross validation or split-

sample validation are important steps for preliminary internal validation; though these 
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steps do not ensure generalizability of the results. Temporal validation (newly recruited 

participants) and geographical validation (data from a different site) are more rigorous 

strategies to ensure clinical utility (see (87,88)). 

Treatment: AI technologies have great potential to support clinical treatments in 

psychiatry in several ways. First, AI can be used to predict treatment response, 

potentially bypassing ineffective medication trials, invasive and expensive brain 

stimulation therapies, or time-consuming psychotherapies (43). Studies have predicted 

response to antidepressant medications using clinical questionnaire items (89) and EEG 

signals (90), response to antipsychotics based on EEG (91), response to 

electroconvulsive therapy (ECT) based on brain structure (44), response to CBT for 

anxiety based on brain fMRI (92), and response to brain stimulation based on MRI (93). 

Such studies can identify the target populations for various treatments (94), though not 

all studies are positive (95,96). Secondly, AI approaches can help predict serious side 

effects of treatments (97). One study used EHR data to predict development of renal 

insufficiency among patients treated with lithium (98). Thirdly, AI approaches can aid in 

building new theoretical models of disease pathophysiology. One study reported 

progressive divergence of neuroimaging abnormalities in bipolar patients (from non-

psychiatric controls), supporting the hypothesis of bipolar disorder as a 

neuroprogressive disease (99). Similarly, characterizing the timing and course of brain 

changes during the conversion from psychosis prodrome to schizophrenia (100) can 

contribute to understanding risk and resilience factors during the prodromal phase. 

These approaches may also uncover novel opportunities for early intervention, through 

identifying the most heavily weighted risk factors for transitions to illnesses. Fourthly, 
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ML approaches can help identify gene expression patterns characteristic of different 

psychiatric disorders (101). One study described a model that could accurately predict 

which individuals would develop PTSD based on pre-deployment blood transcriptome 

data (102), highlighting immune-related gene dysregulation as a risk factor for, and not 

just a consequence of, PTSD.  Lastly, AI can aid directly in the discovery of new 

treatments (103). AI methods can aid in predicting the clinical action of drugs through 

simulation or data-driven approaches, thus discovering novel compounds with 

therapeutic potential (94) – e.g., pharmacodynamics of ketamine infusion through BOLD 

fMRI response to ketamine and other drugs (104).   

Clinical Challenges 

There are unique challenges to use of ML in psychiatry. Performance of 

supervised algorithms depends on the quality of the diagnostic labels used to train a 

model. Given the heterogeneity characteristic of mental illnesses, labels of disease 

states may not be specific enough to yield AI algorithms with high sensitivity and 

specificity. One possibility is to use ML algorithms to predict specific symptoms or 

functional consequences rather than diagnoses. Another opportunity lies in leveraging 

the strength of deep neural networks that can operate without human oversight to 

identify novel biomarkers for detecting specific diseases (29). However, a barrier to 

using ML algorithms is so-called “stealth science” which protects trade secrets though 

transparency and reproducible methods are necessary. Big data (e.g., EHR, clinical 

notes, sensor data, social media data) are inherently messy and require considerable 

transformation before they are usable (105). When the results of ML algorithms are 
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published, they must include information regarding the quality of the data used to train 

the model as well as any potential biases in it, which is rarely done at present.   

The major advantage of AI tools is their superior ability to handle large quantities 

of data quickly to guide clinical decision-making. However, there are still relatively few 

examples of adoption of ML into clinical psychiatry practice and little evidence of clinical 

or economic impact. Sendak et al. (105) have proposed four phases of translation 

necessary to bridge this gap: design and development of ML products that can support 

clinical decision-making and are actionable; evaluation and validation; diffusion and 

scaling across settings such that the tools are more widely applicable; and continued 

monitoring and maintenance to remain current with clinical practice needs. An exemplar 

is the ML product IDx-DR used to automatically diagnose diabetic retinopathy. 

Healthcare systems face key challenges in adopting AI systems (106,107). One 

case study at Yale University involved implementation of AI-based decision support for 

improving selection of antidepressant treatments (108–110). The cost-benefit 

assessment conducted by the healthcare system considered both clinical benefits for 

patients and financial benefits to the healthcare system. The upfront cost of building a 

specialized IT infrastructure, skepticism of its utility, and concern for unintended 

consequences were key hurdles. In addition, enabling a larger pool of primary care 

physicians to treat poorly reimbursed psychiatric disorders might increase the burden on 

these physicians and reduce their overall productivity, thus affecting the hospital’s 

revenues. Both clinicians and patients expressed concern about the eventual regular 

utilization of these clinical tools. Thus, for AI-based clinical tools to become fixtures of 
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hospital-based clinical practice, they must be incorporated into the culture of the 

healthcare setting. 

Another example of the promise and challenges of AI implementation in 

psychiatric population health is the REACH VET program at the US Veterans Affairs 

(111,112). The VA has leveraged its immense and harmonized EHR system to 

investigate a new ML-based program that identifies high suicide risk individuals. 

Qualitative research indicated that Veterans were less concerned about the predictive 

origin of the outreach than the tone and clinical skill of the clinician providing outreach. 

The ongoing Yale and VA projects are experiments in how large clinical datasets can 

potentially lead to predictive interventions and integrated into patient-centered care 

systems.   

 

Technological Challenges 

A major challenge for AI in mental health is that the underlying biological 

processes of psychiatric disorders are still poorly understood (113). Therefore, AI 

models have to be bootstrapped from observations, rather than be derived from first 

principles. However, a major problem for data-based derivations of models is the 

statistical bias-variance trade-off (114). A complex model may overfit – i.e., fit the 

observed data well (minimizing statistical bias) but is unstable and highly dependent on 

the specific data used to fit it (maximizing variance). Conversely, a simple model may 

underfit the observed data and miss relevant structures. Good ML approaches seek to 

optimize the statistical bias-variance trade-off by finding the “sweet spot” for prediction. 

Jo
urn

al 
Pre-

pro
of



15 

 

Predictive models evaluate how accurately a built model can forecast future outcomes 

and need well-defined metrics of individual-level model performance (115); explanatory 

disease models identify robust effects on understandable variables (116). Despite the 

clear trade-off between accuracy and explainability, explainable models are needed to 

ensure safety of the patients and establish trust in the AI models. Recent developments 

in AI include recurrent neural network (RNN) variant models that can control data inputs 

at various stages and self-evaluate which timepoints and data inputs are most predictive 

of the outcome, visualizing techniques, association rule mining (using biologically-based 

relationships between data elements), and functional validation of the results (117,119). 

In instances where the biological associations are not well-understood, e.g., in analyses 

of complex imaging and language data, the AI models may not be as clearly 

interpretable. However, future AI models must strive to improve transparency in order to 

establish their clinical utility. 

Regulatory oversight of AI technologies is essential for reducing another type of 

bias – evaluative bias, i.e., particularly for continually evolving AI models (118). 

Ungoverned AI might perpetuate such bias through furthering social inequities or 

demonstrating prejudices by arriving at different conclusions for individuals (e.g., based 

on race or gender) without any rational basis [see (120)]. Non-diverse unrepresentative 

training data or data that reflects human biases (e.g., due to systemic racism that leads 

to unequal treatment of racial minorities) can lead to evaluative bias in healthcare 

applications. Training ML models on human biases may lead to pernicious propagation 

of inequity. EHR data (generated by humans) can be less in-depth for some segments 

of the population than others, leading to erroneous conclusions (121). If a feature is rare 
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in a training set, then a model will be less prepared to detect similar occurrences. 

Undetected evaluative bias is obviously difficult to eliminate, however, there are tools to 

help detect and mitigate bias in AI models. For example, the Google What-If tool 

enables visualization of AI algorithm results and manual manipulation of datapoints to 

view effects of changing certain parameters. The IBM AI Fairness 360 is an open-

source tool available on Git Hub to test for algorithmic bias. Beyond rigorously 

assessing algorithms for bias, ML offers an opportunity to advance health equity 

through ensuring equality in patient outcomes, performance, and resource allocation 

(122). 

It is important to highlight a distinction between pragmatic and explanatory 

approaches (29,123). Pragmatic approaches using automated ML (124) aim to develop 

tools that can lead to robust and accurate predictions that are clinically useful; however, 

these optimization procedures are computationally expensive, and are limited by 

interpretability of how the various workflows’ features contribute to the predictions – the 

black box. The explanatory models seek to establish relationships between variables 

that provide meaningful insights into how the system works. We need ML tools that 

provide pragmatic guidance and are explainable. More in-depth understanding of how to 

develop AI systems like DL to capture the complexity of patients is needed.  

Federal and Private Funding Support  

Driving the field forward will need careful navigation and long-term support from 

government and industry, such as the National Institute of Mental Health (NIMH) which 

emphasizes support of explainable AI in mental health. The National Science 

Foundation (NSF) and other federal agencies are funding AI Research Institutes, 
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although they do not focus on mental health challenges. Spring Health, an AI-based 

company to match patients with mental health providers, was born from academic 

research at Yale University. In the private sector, AI companies have collaborated with 

mental health startups and universities – e.g., a collaboration between Microsoft and 

Silvercloud Health, a digital platform for mental healthcare. Microsoft’s AI for 

Accessibility program funds industry-academic partnerships to improve mental 

healthcare. In one such project, Northwestern University, University of Toronto, and 

Mental Health America are co-developing a text message-based psychotherapeutic 

intervention. Amazon is partnering with University of Pittsburgh and Carnegie Mellon 

University to build sensors for speech and facial expression data and identify changes 

associated with depression. Georgia Tech University and Befrienders India are co-

developing an AI-based system to match crisis-line callers with peer support specialists 

from similar sociodemographic, cultural, and lived experiences (coauthor MDC is a PI). 

Another academic-industry partnership example is the UC San Diego and IBM 

Research’s Center on AI for Healthy Living (Investigators include coauthors EEL, CAD, 

SAG, HCK, DVJ), which is conducting a longitudinal study of older adults residing within 

a continuing care senior housing community. The researchers assess the participants 

using wearable sensors, clinical, neuropsychological, and physical functioning 

measures, and microbiome-based biomarkers, with the ultimate goal of identifying the 

earliest predictors of cognitive and functional decline (10,36,125). 

 

Future of AI: Artificial Wisdom (AW) 
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AI is modeled after human intelligence and today’s AI can accomplish various 

concrete tasks far more quickly than a human, through replicating discrete human 

intelligence skills like processing speed, memory, quantitative reasoning, visuospatial 

ability, auditory processing, and comprehension-knowledge. AI will continue to improve 

and develop into super-intelligence. Yet, it does not have the ability to make 

compassionate, fair, and equitable decisions. AI cannot self-reflect or self-correct or 

consider diversity among people and perspectives, ethics, and morality. Reframing such 

future AI for what it really is – i.e., Artificial Wisdom (AW) – highlights the limitations of 

today’s AI and the need for wisdom it should offer in the future.  

Human wisdom is a multi-component personality trait that includes pro-social 

behaviors like empathy and compassion, emotional regulation, self-reflection (with self-

correction), acceptance of uncertainty and diversity of perspectives, social decision 

making, and perhaps spirituality (126). Wisdom, rather than intelligence, is associated 

with greater individual and societal well-being. In all likelihood, only humans can be truly 

wise, as uniquely human characteristics including consciousness, autonomy, and will 

are key to cultivating wisdom. The notion of creating AI that shares our societal values 

and could be considered to be wise is a relatively new area of exploration (127–129). 

The future AI will need to have some aspect of emotional intelligence (130), morality 

(131), and empathy (132). Paiva et al. (133) defined “empathic agents” as “agents that 

have the capacity to place themselves into the position of a user’s or another agent’s 

emotional situation and respond appropriately.” It is improbable that human wisdom 

could be fully programmed into a robot, but partial examples exist in the form of robotic 

social workers and physical therapists deployed in nursing homes (134,135), social 
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robots for loneliness, and those providing cognitive assistance to older adults (36). 

These tools illustrate the efforts to develop computers that can perform actions which 

employ wise principles and result in wise acts. 

Ethical and wise AI – i.e., AW, will help promote individual and societal well-being 

(136–138). As noted above, freedom from bias is essential for widespread practical use.  

Evolution of AW will require active collaboration between computer scientists, 

engineers, psychiatrists, psychologists, neuroscientists, and ethicists. 

Common concerns about AI today often focus on the “four horsemen of the AI 

apocalypse”: loss of jobs for humans, unethical decision-making, hostile robot-led 

takeovers, and uninterpretable “black box” decision-making (139). These are countered 

by the hope for developing behavior-based digital biomarkers; re-defining diagnoses; 

facilitating earlier detection of mental illnesses; continuous learning systems that can 

assess patients in context; tools to help patients and clinicians better understand an 

illness and themselves; personalized approaches to diagnosis and treatment; and built-

in computational models that make mental healthcare safer, more efficient, and 

personalized. This dichotomy between fears and aspirations can be reframed by 

considering ways to develop AW to support mental healthcare. The path to achieve 

sustainability, implementation, and clinician and patient acceptance will require 

transparency, trust, and wisdom. 
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