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Abstract
Background  The potential role and benefits of AI in surgery has yet to be determined. This study is a first step in developing 
an AI system for minimizing adverse events and improving patient’s safety. We developed an Artificial Intelligence (AI) 
algorithm and evaluated its performance in recognizing surgical phases of laparoscopic cholecystectomy (LC) videos span-
ning a range of complexities.
Methods  A set of 371 LC videos with various complexity levels and containing adverse events was collected from five 
hospitals. Two expert surgeons segmented each video into 10 phases including Calot’s triangle dissection and clipping and 
cutting. For each video, adverse events were also annotated when present (major bleeding; gallbladder perforation; major 
bile leakage; and incidental finding) and complexity level (on a scale of 1–5) was also recorded. The dataset was then split 
in an 80:20 ratio (294 and 77 videos), stratified by complexity, hospital, and adverse events to train and test the AI model, 
respectively. The AI-surgeon agreement was then compared to the agreement between surgeons.
Results  The mean accuracy of the AI model for surgical phase recognition was 89% [95% CI 87.1%, 90.6%], comparable 
to the mean inter-annotator agreement of 90% [95% CI 89.4%, 90.5%]. The model’s accuracy was inversely associated with 
procedure complexity, decreasing from 92% (complexity level 1) to 88% (complexity level 3) to 81% (complexity level 5).
Conclusion  The AI model successfully identified surgical phases in both simple and complex LC procedures. Further valida-
tion and system training is warranted to evaluate its potential applications such as to increase patient safety during surgery.

Keywords  Artificial Intelligence · Cholecystectomy · Computer Vision

Computer vision based artificial intelligence (AI) systems 
have been successfully used for various purposes, though 

their utility for analysis or to aid in safety [1, 2] during surgi-
cal procedures is still under early evaluation. These investi-
gations are important; for example during laparoscopic chol-
ecystectomy (LC), adverse events such as bile duct injury, 
bile leakage, bleeding, and bowel injury events are possible, 
at a rate of 1.5% [3–9].

An AI system which can recognize surgical phases, may be 
used for many important tasks like quality measures, adverse 
events recording and analysis, education, statistics, surgical 
performance evaluation and more. Currently, these tasks are 
performed manually in a time consuming fashion by expert sur-
geons. Use of the system during surgery would further enable 
real-time monitoring and assisted decision making, which may 
increase safety and improve patient outcomes. For example, a 
real-time assistive system could alert the surgeon to an incor-
rect plane of dissection, a wrong maneuver, or an upcoming 
complication. Such a system might also be used as a context-
aware decision support system by providing early warnings in 

and Other Interventional Techniques 

 *	 Petachia Reissman 
	 reissman@szmc.org.il

1	 Verily Life Sciences, Tel Aviv, Israel
2	 Google Health, Tel Aviv, Israel
3	 Google Research, Tel Aviv, Israel
4	 Department of Surgery, Rappaport Faculty of Medicine, 

Carmel Medical Center, Technion, Haifa, Israel
5	 Department of Surgery, Rabin Medical Center, The Sackler 

School of Medicine, Tel-Aviv University, Petah Tikva, Israel
6	 Department of Surgery, The Hebrew University School 

of Medicine, Sharee Zedek Medical Center, Jerusalem, Israel
7	 Digestive Disease Institute, Shaare-Zedek Medical Center, 

The Hebrew University School of Medicine, P.O. Box 3235, 
91031 Jerusalem, Israel

http://orcid.org/0000-0002-7748-6286
http://crossmark.crossref.org/dialog/?doi=10.1007/s00464-022-09405-5&domain=pdf


9216	 Surgical Endoscopy (2022) 36:9215–9223

1 3

case of misorientation or other unexpected events. As a specific 
example in LC, achieving the Critical View of Safety (CVS) is 
the recommended strategy for minimizing the risk of Bile Duct 
Injury (BDI) [10, 11]. A system that can detect and verify that 
CVS has been achieved is potentially quite valuable. The sys-
tem can also optimize operating room (OR) utilization and staff 
scheduling, and provide administrative assistance by analyzing 
the progress of an operation and more accurately predicting the 
time required for procedure completion.

Computer Vision (CV) algorithms have recently shown 
success in recognizing surgical phases in LC procedures 
without adverse events [12, 13], and have displayed prom-
ising results in the ability of Artificial Intelligence (AI) to 
verify CVS during LC [14]. While these works [12, 13] have 
focused primarily on LC procedures without complications 
and adverse events, our hypothesis was that CV could also 
recognize surgical phases in more complex LC procedures. 
We therefore developed an AI system to recognize the major 
phases of both straightforward and complicated LC proce-
dures with potentially higher morbidity rates.

Methods

Dataset

We constructed a dataset of 448 cholecystectomy videos, 
which includes 368 videos which were collected from four 
hospitals in Israel, and 80 videos from the publicly avail-
able Cholec80 dataset [12] collected from a hospital in 
France. The videos were recorded between November 1, 
2010 and October 1, 2020. Eligibility criteria were laparo-
scopic cholecystectomy for biliary colic or acute and chronic 
cholecystitis, as well as patients 18 years of age or older. 
After excluding videos that could not be annotated consist-
ently by surgeons (see the Annotation section), 371 videos 
remained and were used for this work. The dataset was split 
in an 80:20 ratio, respectively, for training and testing the 
AI model, with the splits stratified by surgical complexity, 
institution, and adverse events during surgery (see the Anno-
tation section below). The splitting was performed on a per-
case rather than a per-frame level. That is, frames from a 
video in the training set did not appear in the test set.

IRB approval was granted prior to commencing the study.

Annotation of surgical phases, adverse events, 
and level of surgical complexity

Surgical phases and adverse events annotation

All datasets (including the publicly available Cholec80) 
were annotated. The relevant phases and annotation 

process was determined via consensus of a group of three 
experienced senior surgeons (years of experience: 35, 
34, and 20), who were distinct from the surgeons who 
annotated the videos (described below). Each video was 
annotated according to the following phases: (1) trocar 
insertion, (2) preparation, (3) Calot triangle dissection, 
(4) clipping and cutting, (5) gallbladder dissection, (6) 
gallbladder packaging, (7) cleaning and hemostasis, and 
(8) gallbladder extraction. Additionally, two special phases 
were used in annotation. First, segments in which the cam-
era was not placed inside the body were annotated as “out 
of body”. Second, segments in which the camera was not 
focused on tools and no surgical action was being per-
formed were annotated as “idle”.

To analyze the ability of the AI model to recognize the 
major surgical phases in videos of abnormal or challeng-
ing LC procedures, a set of important adverse events were 
also identified by the expert surgeons. The experts agreed 
on the following list of adverse events, which were therefore 
annotated (where present): (1) major bleeding, (2) gallblad-
der perforation, (3) major bile leakage, and (4) incidental 
finding.

Surgical complexity annotation

In addition to annotating the phases and adverse events 
described above, annotations were also collected for the 
complexity level of each procedure. The complexity level 
was scored on a scale of 1–5 based on intraoperative param-
eters. The factors to determine the complexity level included 
state of the gallbladder (based on the Parkland Grading Scale 
for grading still images of Cholecystitis [15, 16]), presence 
of intra-abdominal adhesions, normality of anatomy, duct 
closure device utilized, performance of intraoperative chol-
angiography, partial or open cholecystectomy requirements 
and intraoperative adverse events. A detailed mapping 
between each procedure to its complexity level is described 
in Table 1 in the Supplement. The annotations of complex-
ity levels and complications were used for assessing the AI 
model’s ability to accurately recognize the surgical phases 
in complex LC procedures.

Critical view of safety annotation

The last annotation task was the annotation of the Critical 
View of Safety (CVS), if achieved, during the Calot triangle 
dissection phase. We followed the three criteria defined by 
SAGES to annotate achievement of CVS: (1) the hepato-
cystic triangle is cleared of fat and fibrous tissue; (2) the 
lower third of the gallbladder is separated from the liver to 
expose the cystic plate; and (3) exactly two structures are 
seen entering the gallbladder.
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Annotation quality

The annotations were performed by 13 surgeons with at 
least 4 years of experience (median: 7, range: 4–15) in gen-
eral surgery. Annotator training included understanding the 
definition of each phase and adverse event; learning how 
to indicate the start and end of each phase; and becoming 
familiar with the annotation software. To validate the quality 
of the annotations, each video was annotated by two annota-
tors, and the inter-rater agreement score between them was 
calculated. The inter-rater agreement score is defined as the 
number of frames annotated with the same phase label by 
the two annotators, divided by the total number of annotated 
frames in the video. Videos with an agreement score below 
80% (n = 77) were excluded to arrive at the final set of 371 
videos in the dataset (Table 1 and eTable 2 in the Supple-
ment). The videos excluded from the main analysis are ana-
lyzed in eFigure 1 in the Supplement.

Deep learning model architecture

Our model takes as input a video, and categorizes each 
frame in the video into 1 of the 10 phases described above. 
This is achieved using a two-stage setup (Fig. 1). The first 
stage extracts visual features from single frames of the 
video, without any temporal context, i.e., this stage of the 
model has no sense of what is happening before and after 
that frame. The second stage of the model aggregates tem-
poral information from neighboring frames, i.e., it is at this 
stage that the model is able to incorporate information from 
both before and after that frame, to understand what surgical 
phase the current frame shows.

First stage: feature extraction model

Deep convolutional neural networks [17, 18] have recently 
shown state-of-the-art results on image classification tasks 
[19, 20]. While classical classification models focus on 
extracting hand-crafted features (colors, corners, edges, 
etc.), and combining them as inputs to supervised machine 
learning models, deep neural networks learn the features 
by themselves from the raw data. The extracted features are 
thus optimized to improve classification performance. In this 
work, we apply a deep residual convolutional neural network 
architecture called Resnet50 [21], to extract features from 
LC frames. Given a single frame taken from a cholecystec-
tomy procedure as input, the goal of the Resnet50 model is 
to output its estimated likelihood of the frame being in each 
of the 10 phases. In other words, this model is trained to pre-
dict the cholecystectomy phases from single frames. When 
the training of the Resnet50 model is complete, the network 
weights are frozen (i.e., fixed for the remainder of the learn-
ing procedure), and the last prediction layer is removed. The 
resulting network is then able to output a single feature vec-
tor from each of the raw cholecystectomy frames.

Second stage: temporal aggregation model

While the Resnet50 model learns to identify the surgical 
phases based only on information from a single frame, our 
goal was to also incorporate the temporal patterns across 
LC videos. This is due to the fact that frames before and 
after a given frame are often helpful or even necessary to 
understand that frame. For example, the gallbladder dissec-
tion phase must precede other phases of the procedure. Thus, 
frames where the gallbladder appears, but which precede 
the gallbladder dissection phase, are unlikely to be part of 
the gallbladder packaging or gallbladder extraction phases.

For the temporal aggregation stage, we utilize a temporal 
convolution network [22, 23] which recently achieved state-
of-the-art results on temporal action segmentation tasks in 
general videos [24, 25] as well as on surgical phase detection 
in the Cholec80 dataset [26]. (We note in passing that tem-
poral information was also shown to be useful in analyzing 
suturing videos [27].) In our case we employ a variant of this 
network architecture, known as the Multi-Stage Temporal 
Convolution Network (MS-TCN) network [22] (Fig. 1). The 
MS-TCN network consists of multiple stages, where each 
stage is composed of so called “dilated temporal convolu-
tion blocks”. The purpose of these blocks is to efficiently 
aggregate information from the entirety of the procedure, 
allowing us to learn temporal dependencies over the whole 
cholecystectomy video. The network is multi-stage: each 
stage outputs an initial prediction that is refined by the next 
one. The input to the MS-TCN network is a sequence of 
feature vectors, one for each frame of video, as described 

Table 1   General characteristics of the collected dataset

*Not mutually exclusive

Variable Training Testing

No. of sites 5 5
No. of videos 294 77
No. frames (1 FPS) 586,453 107,819
Complexity level 1 (%) 58 (20%) 21 (27%)

2 (%) 125 (43%) 38 (49%)
3 (%) 43 (15%) 6 (8%)
4 (%) 50 (17%) 8 (10%)
5 (%) 18 (6%) 4 (5%)

Adverse events Gallbladder perforation* 
(%)

86 (29%) 15 (19%)

Major bile leakage* (%) 27 (9%) 1 (1%)
Incidental finding* (%) 19 (6%) 3 (4%)
Cholecystitis* (%) 55 (19%) 7 (9%)
Without complication 

(%)
146 (50%) 56 (73%)
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in the previous section; the output is a phase prediction for 
each frame in the input sequence.

Statistical analysis

We evaluated our model on the test set, using the accuracy 
metric. Accuracy quantifies the fraction of frames with cor-
rectly classified phases and is defined as the number cor-
rectly classified frames divided by the total number of evalu-
ated frames. On average, a small fraction (0.16%) of the 
frames in each video was not annotated due to difficulties 
in selecting precise start/end frames for annotation in a way 
that eliminates unannotated gaps. The accuracy was calcu-
lated on both the first stage (Resnet50) model alone and the 
second stage (MS-TCN) model. This frame-level accuracy 
per-video was then averaged over all videos to ensure each 
video was equally weighted. For error bars, we computed 
the 95% empirical confidence interval (CI) by bootstrapping 
across videos. To place the model’s accuracy in perspective, 
each video was annotated by a second surgeon (as mentioned 
in the Annotation section). The inter-surgeon agreement was 
then computed by evaluating the second surgeon’s accuracy 

per-video against the first, and similarly averaging across 
all videos.

Results

The first stage (Resnet50) model achieved overall classifi-
cation accuracy of 78% [95% CI 75.8%, 80.1%] on the test 
set. The second stage (MS-TCN) model, which incorporates 
temporal information across the whole video, obtained 
higher accuracy, reaching 89% [95% CI 87.1%, 90.6%] accu-
racy on the test set.

Figure 2 shows evaluation of the per-phase confusion 
matrix, reached by the full 2-stage model. The per-phase 
calculation was performed across all frames per-video, 
and then averaged over all videos in the test set. We noted 
that the model successfully detected the most critical 
phases—Calot triangle dissection, clipping and cutting, 
and gallbladder dissection phase—with accuracies of 92%, 
82%, and 96%, respectively. For the preparation phase, 
the model reached 80% accuracy; however, 12% of these 
preparation frames were incorrectly predicted as part of 

Fig. 1   Overview of our proposed neural network, MS-TCN—Multi-
Stage Temporal Convolution Network [22]. a The LC video is pro-
cessed at 1 frame per second (fps). b Each frame is fed into a deep 
convolutional neural network—Resnet50 [9]. The Resnet50 model 
is trained to classify each frame’s associated surgical phase indepen-
dently. Following training, the last prediction layer of the Resnet50 
is removed, and all the network parameters are frozen (not trainable 
subsequently). For each frame, the Resnet50 produces a feature vec-
tor which expresses the visual information content of the frame as a 
lower dimensional (compared to the original frame) numerical “fea-

ture vector”. c All feature vectors from the input LC video are com-
bined to form a sequence of feature vectors representing the entire LC 
video. This sequence is inserted to the MS-TCN model which con-
sists of temporal convolution layers with a dilation rate that increases 
across layers. The temporal convolution layers capture temporal con-
nections, and the increasing dilation setup enables the capturing of 
long term temporal dependencies. The final layer of the MS-TCN 
model outputs the surgical phase prediction for each frame in the 
video
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the Calot triangle dissection phase instead. We note that 
these erroneous predictions are distributed along the tran-
sition between the two phases.

As described in the Annotation section, the complexity 
level of each LC video in the dataset was annotated on a 
scale of 1–5. Figure 3A shows the mean accuracy of our 
MS-TCN model (orange bars), and the inter-rater score 
agreement (blue bars) on the test set videos relative to 
their complexity. As the complexity increases from 1 to 3, 
the model’s accuracy linearly decreases from 92% [95% 
CI 90.2%, 94.0%] to 88% [95% CI 81.8%, 92.3%]. At com-
plexity levels 4 and 5, the model accuracy was 81% [95% 
CI 78.9%, 83.1%].

The inter-rater agreement (between expert surgeons) 
ranged from 92% on LC procedures with a complexity 
level of 1 to 90% on LC procedures with a complexity 
level of 5. We learn from Fig. 3A that for simple LC pro-
cedures, the AI model has an ability equal to a surgeon in 
the recognition of surgical phases. However, on complex 
LC procedures, the surgeons are superior to the AI model: 

the annotator agreement score is 9% higher compared to 
the accuracy of the AI model.

We evaluated how adverse events during LC procedures 
affect the ability of the AI model to recognize the surgi-
cal phases. Figure 4 shows the overall accuracy of the MS-
TCN model on the test set, relative to adverse events in LC 
procedures. The model reached an accuracy of 87% [95% 
CI 82.5%, 90.7%] in videos with a gallbladder perforation 
event, 77% on a single video with a major bile leakage event, 
86% [95% CI 76.8%, 94.1%] on videos with an incidental 
finding, and 89% [95% CI 88.7%, 92.6%] on procedures with 
cholecystitis (blue bars). On videos without adverse events 
(green bar), the model reached a mean accuracy of 90% 
[95% CI 88.0%, 91.7%]. Thus as expected, in LC procedures 
with adverse events, the AI model attained a lower accuracy.

The last research question we wanted to address was how 
LC procedures from different hospitals affect the ability of 
an AI model to recognize surgical phases. As described in 
the Dataset section, our dataset was composed of procedures 
from five hospitals. As may be expected, some variation was 

Fig. 2   Normalized confusion 
matrix showing the accuracy 
achieved separately for each 
surgical phase. The critical 
phases in an LC procedure 
are in bold; 92% of the Calot 
triangle dissection phase frames 
were correctly classified and 
96% of the gallbladder dis-
section frames were correctly 
classified. (Please note that the 
rows of the confusion matrix 
do not precisely sum to 1 due to 
rounding.)
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noted in the instruments used as well as in surgical tech-
nique. This made the task of identifying the surgical phases 
more challenging.

Figure 3B shows the overall accuracy of the MS-TCN 
model, according to both the source hospital as well as the 
average complexity level. The model attained an accuracy 
of 86% [95% CI 83.1%, 88.7%] in videos from hospital #1, 
89% [95% CI 83.8%, 93.1%] on videos from hospital #2, 
91.5% [95% CI 88.3%, 94.3%] on videos from hospital #3, 
and 89% [95% CI 84.8%, 93%] on videos from hospital #4. 
On videos from the Cholec80 [1] dataset our model reached 
an accuracy of 91.4% [95% CI 88.4%, 93.7%].

To understand how effectively the AI model generalizes 
to various hospitals, we trained the AI model on four of the 
hospitals and tested it on the fifth. We repeated this experi-
ment five times, where each time a different hospital was 
set aside as the test set (with the remaining four used as the 
train set). eFigure 2 in the Supplement shows the average 
accuracy of the MS-TCN for each experiment. The model 
attained an accuracy of 79% [95% CI 72.4%, 84.9%] in vid-
eos from hospital #1, 84% [95% CI 81.3%, 87.3%] on videos 
from hospital #2, 89% [95% CI 86.0%, 90.6%] on videos 
from hospital #3, and 87% [95% CI 76.4%, 94.3%] on vid-
eos from hospital #4. Using the four hospitals to train the 
AI model, and testing it on the Cholec80 [1] dataset, the AI 
model reached an accuracy of 87% [95% CI 84.0%, 89.8%].

Discussion

In our study, we have presented an AI model to automate 
the task of phase recognition in LC. Our model success-
fully detected surgical phases with an overall accuracy of 
89%, comparable to the average agreement between surgeon 
annotators (90%), including successful detection even in pro-
cedures with adverse events like major bleeding, major bile 
leakage, major duct injury, and gallbladder perforation.

The detection of surgical phases is more critical for cer-
tain phases than it is for others. For example, successful 
identification of the Calot triangle dissection phase, confir-
mation of the critical view of safety (CVS), or the clipping 
and cutting phase, are of utmost importance for the patient’s 
safety, while misrecognition of the gallbladder extraction 
phase is less important and will have a much lower impact 
on patient safety. As shown, our system was able to reach a 
very high accuracy (92%) in the Calot Triangle Dissection 
phase that supports CVS.

We also found that higher complexity levels of LC pro-
cedures were associated with both lower accuracy on the 
part of the AI model, as well as lower inter-rater agree-
ment between surgeons. On less complex LC videos, the 
AI model achieved an overall accuracy of 92%, equal to the 
inter-surgeon agreement score. By contrast, in complex LC 
videos, the annotators reached an average agreement score of 

Fig. 3   Accuracy of the MS-TCN and the inter-rater agreement score 
stratified by LC complexity level. a For the simplest LC proce-
dures, the MS-TCN reaches 92% accuracy, similar to the agreement 
score between the annotators. As expected, as the complexity level 
increases, the accuracy of the MS-TCN model decreases. Neverthe-
less, for the most complex LC procedures (levels 4 and 5), the MS-

TCN model reaches 81% accuracy. b Results stratified by institution; 
each marker in the graph represents a different hospital source. The 
x-value of each marker is the average complexity level of LC proce-
dures for the given source hospital. The y-value of each marker is the 
average accuracy achieved by the AI model on LC procedures for the 
given source hospital
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90% compared to 81% by the AI. Importantly however, the 
accurate identification of the Calot triangle dissection phase 
was unaffected in complex videos (92%). Furthermore, the 
performance of the AI model remained high in the presence 
of adverse events, indicating an overall robustness to adverse 
events during LC procedures. As mentioned, we used LC 
videos from five hospitals, and as expected, some variation 
in the surgical technique and type of instruments used was 
noted. Interestingly, such variations did not interfere with 
the accuracy of the AI system in phase recognition reaching 
80–87% overall accuracy reflecting the system’s flexibility 
and reliability.

Non-realtime use of such an AI system to analyze LC 
videos may provide valuable data to evaluate and track 
trainees’ surgical skill level over time, and even enable 
future studies into correlations between specific events 
occurring during a procedure and outcomes such as suc-
cessful conclusion of the procedure. Similarly, the AI sys-
tem can enable finer-grained analysis of time taken for pro-
cedures, potentially providing insights that can augment 
systems which predict surgical duration and hence aid OR 
planning [28]. Further sophistication and modifications to 
enable real-time incorporation of such a system into the 

laparoscopic video camera system is possible, by using 
no future information, or limited future information (e.g., 
using a few frames of future information is unlikely to 
cause appreciable latency). Such real-time use may play 
a role in active monitoring to improve patient safety, by 
providing the surgeon with indications of the successful 
conclusion of the various surgical phases and alerting if 
there might be potential issues with the surgical view or 
dissection plane. For instance, if the system was not able 
to satisfactorily recognize the CVS, an alert could be gen-
erated to prompt re-evaluation of their perception of the 
anatomy, before proceeding to the clipping and cutting 
phase (which is irreversible). Although the overall com-
plication rate and bile duct injury in LC is very low [29], 
such a system may improve safety in teaching departments 
where junior staff are undergoing training. Likewise, simi-
lar systems could aid real-time decision making such as 
whether to proceed with laparoscopy, to change the surgi-
cal technique (i.e., retrograde dissection or subtotal chol-
ecystectomy), to convert to open surgery, to drain only, 
or to abort the procedure. Extensions of such a system to 
other more complex laparoscopic procedures, such as solid 
organs surgery, may also be useful.

Fig. 4   AI model accuracy 
stratified by presence of adverse 
events. Blue bars represent LC 
procedures where at least one 
adverse event occurred. The 
green bar represents regular LC 
procedures without occurrence 
of any adverse event. It can be 
seen that the AI model is robust 
to LC procedures with adverse 
events, reaching almost the 
same accuracy as in regular LC 
procedures. We note that only 
one procedure in the dataset 
contained a major bile leakage 
event
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AI has recently gained popularity in several medical 
fields like radiology, pathology, and gastroenterology 
[30–33]. However, unlike images of diagnostic radiology, 
the image quality of frames in surgical videos has a signifi-
cantly greater variability owing to movement during video 
capture, which renders AI analysis more challenging. In 
addition, anatomical structures and surgical planes are 
often hidden under fatty tissue and must be exposed before 
yielding a clear field of view for an AI system’s interpreta-
tion. Previous studies on AI for interpreting laparoscopic 
videos [12, 17, 34–36] have focused on identifying pro-
cedure phases and instruments. In a recent study using a 
large data set of 1243 LC videos [13], the authors showed 
that AI performance was significantly improved when 
the number of videos of the input dataset was increased 
from 50 to 745. Compared to prior work, our dataset made 
crucial use of videos representing real-world variability 
across anatomy, surgeon’s technique, operative tools, sur-
gical complexity, and intraoperative complications. In 
particular, our study included often-encountered complex 
procedures such as those requiring retrograde dissection, 
conversion to open procedure, and cholecystitis of vary-
ing severity.

This study has several limitations. The AI model was 
trained to recognize only the normal surgical phases (prep-
aration, Calot triangle dissection, etc.) in videos which 
included adverse events. However, during an adverse 
event, the scene might not be related to the current surgical 
phase, which may have impacted the AI model’s perfor-
mance in the presence of adverse events. Future work into 
adapting the AI model to additionally recognize adverse 
events may help improve performance. In a related vein, 
some adverse events were rare. For example, only one LC 
procedure contained a major bile leakage, so additional 
examples of rarer adverse events would be helpful for both 
training and evaluating the model to correctly identify 
such events. Another limitation relates to the non-real time 
nature of the system, which does not allow it to be used to 
provide safety indications during the procedure. As noted 
above, future work will focus on training the network in 
such a way as to accommodate real-time operation.

In conclusion, this study presents an AI system for 
accurate recognition of predefined surgical phases in both 
uncomplicated LC procedures and complex procedures. 
This study is a first step toward further development of 
an AI system for surgical skill assessment, efficient OR 
schedule planning, and importantly to assist the surgeon 
in avoiding technical errors, alert them to imminent com-
plications, and provide real-time information to be used 
for better decision making.
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