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Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19

associated lung disease. Artificial intelligence (AI) has the potential to aid in rapid evaluation

of CT scans for differentiation of COVID-19 findings from other clinical entities. Here we

show that a series of deep learning algorithms, trained in a diverse multinational cohort of

1280 patients to localize parietal pleura/lung parenchyma followed by classification of

COVID-19 pneumonia, can achieve up to 90.8% accuracy, with 84% sensitivity and 93%

specificity, as evaluated in an independent test set (not included in training and validation) of

1337 patients. Normal controls included chest CTs from oncology, emergency, and

pneumonia-related indications. The false positive rate in 140 patients with laboratory con-

firmed other (non COVID-19) pneumonias was 10%. AI-based algorithms can readily identify

CT scans with COVID-19 associated pneumonia, as well as distinguish non-COVID related

pneumonias with high specificity in diverse patient populations.
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C
oronavirus Disease 2019 (COVID-19) has become a global
pandemic with an exponential growth rate and an
incompletely understood transmission process. The virus

is harbored most commonly with little or no symptoms, but can
also lead to a rapidly progressive and often fatal pneumonia in
2–8% of those infected1–3. The exact mortality, prevalence, and
transmission dynamics remain somewhat ill-defined in part due
to the unique challenges presented by SARS-CoV-2 infection,
such as peak infectiousness at or just preceding symptom onset
and a poorly understood multi-organ pathophysiology with
dominant features and lethality in the lungs4. The rapid rate of
spread has strained healthcare systems worldwide due to
shortages in key protective equipment and qualified providers5,
partially driven by variable access to point-of-care testing meth-
odologies, including reverse transcription polymerase chain
reaction (RT-PCR). As rapid RT-PCR testing becomes more
available, challenges remain, including high false negative rates,
delays in processing, variabilities in test techniques, and sensi-
tivity sometimes reported as low as 60–70%6,7.

Computed tomography (CT) is a test that provides a window
into pathophysiology that could shed light on several stages of
disease detection and evolution7–9. While challenges continue
with rapid diagnosis of COVID-19, frontline radiologists report a
pattern of infection that is somewhat characteristic with typical
features including ground glass opacities in the lung periphery,
rounded opacities, enlarged intra-infiltrate vessels, and later more
consolidations that are a sign of progressing critical illness. While
CT and RT-PCR are most often concordant9, CT can also detect
early COVID-19 in patients with a negative RT-PCR test9, in
patients without symptoms, or before symptoms develop or after
symptoms resolve10,11. CT evaluation has been an integral part of
the initial evaluation of patients with suspected or confirmed
COVID-19 in multiple centers in Wuhan China and northern
Italy12–15. A recent international expert consensus report sup-
ports the use of chest CT for COVID-19 patients with worsening
respiratory status or in resource constrained environments for
medical triage of patients who present with moderate–severe

clinical features and a high pretest probability of COVID-1916.
However, these guidelines also recommend against using chest
CT in screening or diagnostic settings in part due to similar
radiographic presentation with other influenza-associated pneu-
monias. Techniques for distinguishing between these entities may
strengthen support toward use of CT in diagnostic settings.

Due to the rapid increase in number of new and suspected
COVID-19 cases, there may be a role for artificial intelligence
(AI) approaches for the detection or characterization of COVID-
19 on imaging. CT provides a clear and expeditious window into
this process, and deep learning of large multinational CT data
could provide automated and reproducible biomarkers for clas-
sification and quantification of COVID-19 disease. Prior single
center studies have demonstrated the feasibility of AI for the
detection of COVID-19 infection, or even differentiation from
community acquired pneumonia17,18. AI models are often
severely limited in utility due to homogeneity of data sources,
which in turn limits applicability to other populations, demo-
graphics, or geographies. This study aims to develop and evaluate
an AI algorithm for the detection of COVID-19 on chest CT
using data from a globally diverse, multi-institution dataset. Here
we show robust models can be achieve up to 90% accuracy in
independent test populations, maintaining high specificity in
non-COVID-19 related pneumonias, and demonstrating suffi-
cient generalizability to unseen patient populations/centers.

Results
Patient cohorts for training and testing. In total, 2724 scans
from 2617 patients were used in this study, including 1029 scans
of 922 patients with RT-CPR confirmed COVID-19 and lung
lesions related to COVID-19 pneumonia. This includes one scan
from one patient who was confirmed to have COVID-19 from the
SUNY cohort. Of these, 1387 scans from 1280 patients were
utilized for algorithm development, and 1337 patients were uti-
lized for algorithm testing and evaluation. The split of data in
training, validation, and test datasets can be seen in Table 1.

Table 1 Patient cohorts utilized in model development and testing. Demographic values are reported as absolute numbers for

patient sex and as median (range) for patient age.

Disease cohort Center Demographics Training Validation Testing

COVID-19 Hubei, China 363 Male, 353 female

Median 49 (18a–92)

369 Scans

354 Patients

122 Scans

113 Patients

207 Scans

207 Patients

Milan, Italy 220 Male, 90 female

Median 60 (18–96)

57 Scans

52 Patients

24 Scans

17 Patients

54 Scans

54 Patients

Tokyo, Japan 91 Male, 60 female

Median 60 (4–87)

100 Scans

45 Patients

31 Scans

15 Patients

49 Scans

49 Patients

Milan, Italy 10 Male, 5 female

Median 55 (31–85)

– – 15 Scans

15 Patients

Syracuse, NY, USA bSee footnote – – 1 Scan

1 Patient

Any clinical indication Syracuse, NY, USA 437 Male, 534 female

Median 65 (19–100)

356 Scans

356 Patients

93 Scans

93 Patients

500 Scans

500 Patients

Cancer diagnosis and/or staging LIDC23 N/A 149 Scans

149 Patients

50 Scans

50 Patients

271 Scans

271 Patients

NIH, USA 100 Male

Median 69 (30–89)

– – 100 Scans

100 Patients

Pneumonia Syracuse, NY, USA 73 Male, 42 female

Median 66 (13–101)

– – 140 Scans

140 Patients

NIH, USA 28 Male, 8 female

Median 21 (4–71)

28 Scans

28 Patients

8 Scans

8 Patients

–

Total 1059 Scans

984 Patients

328 Scans

296 Patients

1337 Scans

1337 Patients

aAge was not readily available for all Hubei, China patients.
bDemographics for COVID-19 diagnosis from SUNY is included in all-comer/any clinical indication grouping.
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Prevalence of COVID-19 patients in the testing set was 24.4%
(326/1337). During training, all CTs for a given patient under
conditions described above were included. For testing evaluation,
one scan series per patient was considered. In conditions where
patients underwent multiple CT scans, the initial positive CT with
RT-PCR confirmed disease were used. Two classification models
were developed for further evaluation (Fig. 1), one utilizing the
entire lung region with fixed input size (full 3D) and one utilizing
average score of multiple regions within each lung at fixed image
resolution (hybrid 3D). Training converged at highest validation
accuracy of 92.4% and 91.7% for hybrid 3D and full 3D classi-
fication models, respectively, for the task determining COVID-19
vs. other conditions. Overall performance is shown in Table 2.
The highest test set accuracy was observed with the 3D classifi-
cation model (90.8%), with resultant probability of COVID-19
disease demonstrating 0.949 AUC (Fig. 2).

Algorithm performance evaluation by disease entity. Model
classification accuracy was evaluated individually by disease
cohort (Supplementary Table 1). All models demonstrated mixed
performance in the second Italian Hospital (accuracy 53–60%),
which was excluded from training and validation in both
experimental conditions. Of 15 patients in this dataset, 10
patients demonstrated high disease burden and advanced, bilat-
eral consolidating pneumonia by expert radiologist evaluation.
Misclassification rates in control patients was lowest in patients
undergoing CT for oncologic staging and workup (ranging
3.8–5.5% in SUNY, LIDC, NIH datasets) compared with patients
with laboratory confirmed pneumonias (10%) and general
population of patients undergoing CT as part of clinical care,
ranging 2.7–27.3% for general evaluation to acute/trauma-related
care (Supplementary Table 2). False positive findings in the
cohort of patients with pneumonia further varied by etiology,
with 13.7% in bacterial (7/51), 16.7% in fungal (3/18), and 4.9% in
viral (3/61) infections.

In COVID-19 positive cases from the test set, specificity of AI-
based findings with COVID-19 lung disease were assessed by
visual evaluation and review of Grad-CAM mappings. Visualiza-
tion of region-based activation features from the 3D model are
shown for representative test set patients in Fig. 3. Review of these
Grad-CAM based maps demonstrate consistent activation in
peripheral regions of the lung with COVID-19 associated disease
across variable amounts of disease burden.

Original CT image
Entire 3D lung region

192 × 192 × 64

Multiple crops

192 × 192 × 32
6 crops/lung training

15 crops/lung inference

Lung segmentation Crop to lung region

dn121

dn121

Yes/no 

COVID-19

Yes/no 

COVID-19

mask image to lung regions

(a) Full 3D model

(b) Hybrid 3D model

Fig. 1 3D classification workflow. All CT images under lung segmentation for localization to chest cavity region. Following cropping to lung region, two

methods were considered for differentiation of COVID-19 from other clinical entities. a Full 3D Model resampled the cropped lung region of CT to a fixed

size (192 × 192 × 64 voxels) for input to algorithm. b Hybrid CT resampled the cropped lung region of CT to fixed resolution (1mm × 1mm× 5mm) and

sampled multiple 3D regions (192 × 192 × 32) for input to algorithm. At training, 6 regions/patient were used. At inference 15 regions/patient were used

and results were averaged to produce final probability of COVID-19.

Table 2 Performance of 3D and hybrid 3D classification models for two experimental conditions.

Design Model Validation accuracy Test summary stats

ACC SENS SPEC PPV NPV AUC

Original training schema 3D 0.917 0.908 0.840 0.930 0.794 0.948 0.949

Hybrid 3D 0.924 0.889 0.853 0.901 0.735 0.950 0.947

Independent testing

population

3D 0.939 0.896 0.845 0.916 0.793 0.939 0.941

Hybrid 3D 0.905 0.895 0.751 0.951 0.853 0.909 0.938

Original training design included 1337 patients in testing cohort (of which, n= 326 patients with COVID-19 positivity). Independent testing population design included 1397 patients in testing cohort

(entire patient cohort from Tokyo, Japan excluded from training/validation), with a total of n= 386 patients with COVID-19 positivity.

ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value, AUC area under the curve.
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Fig. 2 Model performance. Receiver operating characteristic (ROC) curve

for 3D and hybrid 3D classification models. Both experimental conditions

are shown, with highlighted area to zoom in at upper left area of the curve.

Solid lines represent original training design, dotted lines indicate

independent testing population design.
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Algorithm performance in unseen population domain conditions.
To assess the utility of these models for COVID-19 sensitivity at
independent institutions, the cohort of COVID-19 patients from
Tokyo, Japan were removed from training and validation datasets
and models were retrained utilizing identical algorithm configura-
tion and hyperparameters as the original models. Overall, validation
and testing accuracy were stable between models trained with and
without patients from the leave-out institution (Table 2), with a
modest decrease in AUC (Fig. 2). However, sensitivity in the hybrid
3D model decreased to 75%. Specifically, within patients from the
independent testing center, the 3D classification model correctly
identified 87/109 patients as having COVID-19 associated CT
findings while the hybrid 3D classification model correctly identified
74/109 patients. Evaluation of accuracy, specificity, and sensitivity as
a function of AI-based output from the 3D model demonstrated
consistent model behavior at all likelihood of COVID-19 related cut
points (Supplementary Fig. 1), showing model performance
decreased consistently by 5–10% compared with the entire testing
cohort of COVID-19 positive patients. In hybrid 3D model, lowering
the cutoff probably from 0.5 to 0.376 increased the sensitivity of the
model performance to that of the 3D model, though specificity
decreased from 95.1 to 92.8% (Supplementary Fig. 2).

Discussion
Preliminary studies indicate chest CT has a high sensitivity for
detection of COVID-19 lung pathology and several groups have
demonstrated the potential for AI-based diagnosis, reporting as
high as 95% detection accuracies17–20. Implementation of these
AI efforts at new institutions are hampered by the tendency for
AI to overfit to training populations, including technical bias
from institutional-specific scanners to clinical population bias due
to regional variation in the use and timing of CT. Therefore, this
study was specifically designed to maximize the potential for
generalizability. The hypothesis was that an algorithm trained
from a highly diverse multinational dataset will maintain suffi-
cient performance accuracy when applied to new centers, com-
pared with algorithms trained and testing in only one center. To

achieve this, COVID-19 CT scans were obtained from four
hospitals across China, Italy, and Japan, where there was a wide
variety in clinical timing and practice for CT acquisition. Such CT
indications included screening-based settings (i.e., fever clinics),
where patients underwent CT the same day as initial positive PCR
(China), but also included advanced disease, such as inpatient
hospitalization settings at physician’s discretion (Italy). Further-
more, the inclusion of patients undergoing routine clinical CT
scans for a variety of indications including acute care, trauma,
oncology, and various inpatient settings was designed to expose
the algorithm to diverse clinical presentations. Here we achieved
0.949 AUC in a testing population of 1337 patients resulting in
90.8% accuracy for classification of COVID-19 on chest CT.

The use of CT scans for the purpose of diagnosing COVID-19
pneumonia has been somewhat controversial16. In Hubei Pro-
vince, China, CT scans were used extensively and at presentation,
in an effort to quickly diagnose, isolate, and contain the spread of
the outbreak. Multiple studies have reported a high degree of
sensitivity for chest CT in the diagnosis of COVID-19
pneumonia7,9,13,14. However, multiple radiology and thoracic
professional associations in the US and the UK have recom-
mended against using chest CT for screening or for the routine
diagnosis of COVID-19, in part due to the potential for overlap
with other high prevalence entities such as influenza pneumonia.
In this study, the algorithm has a high specificity in such a setting
of 93%. Sub-analysis within varying clinical indications for CT
scanning demonstrated lower false positive rates in populations
undergoing imaging for oncologic diagnosis and follow-up
compared with acute and trauma care. Notably, this perfor-
mance was consistent in the subgroup of RT-PCR confirmed
influenza pneumonia, which included cases with H1N1. Thus,
given the challenges in confidently distinguishing between
COVID-19 associated pneumonia and other types of pneumonia,
there may be a role for AI in CT-based diagnosis, characteriza-
tion, or quantification of response. Performance was observed to
be highest in patient cohorts from centers utilizing CT earlier in
diagnostic pathway, while settings utilizing CT in cases with

a b c d e

f g h i j

Fig. 3 Grad-CAM* resultant saliency maps for five representative COVID-19 patients from testing set. All images are of correctly predicted positive by

3D model. Within the heatmap, areas of red indicate activation of the algorithm related with COVID-19 prediction. a, b Images and (f, g) associated maps

from Hubei, China cohort. c Image and (h) associated map from Tokyo, Japan cohort. d Image and (i) associated map from an advanced case in Milan, Italy

Center #1. Note activation in non-consolidating areas for prediction of COVID-19, indicating specific features independent of pneumonia-related

consolidation are learned. e Image and (j) associated map of an advanced case in Milan, Italy Center #2. Note: case (e) represents an unseen testing center

from training/validation centers. *footnote: Grad-CAM images are produced from preprocessed input data, including cropping to lung region and resizing

to fixed dimension, which may result in visible changes to anatomic aspect ratio.
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advanced pneumonia demonstrated poorer detection sensitivity.
Further work regarding the diagnostic utility of this algorithm in
the setting of early vs. advanced COVID-19 related pneumonia is
warranted.

We also sought to maximize the generalizability from a
technical standpoint. To reduce the effect of body habitus and
extra-thoracic pathology, a lung segmentation algorithm was
used to localize to chest cavity and ensure the classification
algorithm was focused on the lungs and excluded the presence
of factors outside the patient (such as isolation bags around the
patients in Hubei). All classification models were trained uti-
lizing an aggressive augmentation scheme to minimize over-
fitting. While slice-based or hybrid 3D models demonstrated
high validation accuracies, the simpler model utilizing single
3D volumes produced the most generalizable framework.
Experiments testing the algorithm generalizability demon-
strated 79.8% sensitivity could be achieved when the cohort of
patients from Japan were excluded from training and only used
in testing to evaluate model performance in an unseen domain.
While the model performance exhibited a moderate decrease in
sensitivity, it appeared to generalize well given the variabilities
in CT acquisition and in clinical considerations across multi-
nation cohorts. Prospective validation is certainly needed prior
to making definitive statements on the performance of this AI
system and potential improvements on slice-based and hybrid
models to yield more desirable results.

There are several limitations to this study. Model training
was limited to patients with positive RT-PCR testing and
COVID-19 related pneumonia on chest CT in order to differ-
entiate between COVID-19 related disease and other patholo-
gies. However, CT is often negative despite positive RT-PCR
test21. Given that viral infectiousness can often predate symp-
toms, CT plus RT-PCR is likely a more accurate and sensitive
strategy than either alone, although this is somewhat spec-
ulative11. Delayed RT-PCR or limitations in access or avail-
ability could also make CT testing more attractive for specific
subsets of patients or in a resource constrained environment,
such as persons under investigation for exposure history or
contact tracing, triage for resource utilization, prognosis, or to
assist with isolation compliance, although this is speculative.
Finally, our AI algorithm aims to classify chest CT scans as
positive vs. negative for COVID-19 pneumonia and in posi-
tively classified CT scans, it delivers a saliency map for visua-
lization of AI-associated predictions. While useful for general
visualization of AI output, this does not delineate COVID-19
burden, which may be more accurately depicted by segmenta-
tion algorithms.

The test success metrics are highly dependent upon pretest
background prevalence, and testing practices may vary according
to exposure rates and phase of pandemic22. The prevalence in our
constructed testing set was 24%, which may be representative of
some outbreak dynamics at the time of writing. We were limited
in truly evaluating the generalizability of this model to an inde-
pendent population, as our positive and negative cases were
derived from separate populations. It is also important to note the
prevalence and testing conditions of COVID-19 positive patients
varied by cohort. In Japan, the patients were a mixture of inci-
dental Diamond Princess cruise ship exposures or community
acquired COVID-19, with a diverse multinational population, but
all were all PCR positive with CT lesions. In Italy, CT scans
practice varied from acute care screening to mainly inpatients, or
at the discretion of the treating physician, commonly later in the
disease process. In Hubei Province, China, CT scans were rou-
tinely obtained on the same day as a positive RT-PCR in an acute
setting/fever clinics during the initial outbreak period. RT-PCR
was positive in all patients but was not a requisite for the

diagnosis of COVID-19 at that time, which could be made with
CT and exposure history during peak prevalence during the
outbreak.

In conclusion, an AI system derived from heterogeneous
multinational training data delivers acceptable performance
metrics for the classification of chest CT for COVID-19 infection.
While CT imaging may not necessarily be actively used in the
diagnosis and screening for COVID-19, this deep learning-based
AI approach may serve as a standardized and objective tool to
assist the assessment of imaging findings of COVID-19 and may
potentially be useful as a research tool, clinical trial response
metric, or perhaps as a complementary test tool in very specific
limited populations or for recurrent outbreaks settings.

Methods
COVID-19 study population. Patients with COVID-19 infection confirmed by
RT-PCR undergoing CT evaluation for diagnosis or evaluation of infection were
identified for study inclusion at four international centers: (1) 700 patients from
The Xiangyang NO.1 People’s Hospital Affiliated Hospital of Hubei University of
Medicine in Hubei Province, China, (2) 147 patients from the Self-Defense Forces
Central Hospital, Tokyo, Japan, (3) 130 patients from San Paolo Hospital, Milan,
Italy, and (4) 16 patients from Cà Granda Ospedale Maggiore Policlinico Milano,
Milan, Italy. Study inclusion criteria included positive findings for COVID-
pneumonia by expert radiologist interpretation and minimum technical require-
ments. Summary characteristics of each institutional cohort of patients meeting
study criteria are provided in Table 1. The timing of CT scan acquisition in relation
to onset of COVID-19 symptoms and/or diagnosis varied and was highly depen-
dent on regional/national standard of care. In Hubei Province, China, CT scans
were routinely obtained on the same day as a positive RT-PCR in an acute setting
where patients with symptoms reported for clinical assessment, as well as patients
with exposure and/or travel history to high prevalence regions. In Italy, the practice
and use of CT varied by hospital. Patients in the larger Milan cohort underwent CT
in more of a screening-like setting at acute presentation with symptoms or expo-
sure history at the point of care. The smaller Milan cohort of 15 patients were
largely obtained in an inpatient setting. The most diverse cohort was in Japan,
where patients had a mixture of incidental exposures or community acquired
COVID-19. In addition, the CT acquisition parameters varied by center and within
centers (Supplementary Table 3). CTs underwent a centralized evaluation by two
expert radiologists for confirmation of COVID-19 associated lung disease. Local
IRB and ethics and research board approvals for retrospective evaluation were
obtained at each site, along with 2 way data-sharing agreements with NIH. (1) First
Affiliated Hospital of Hubei University of Medicine local ethics approval
#20200702150947, (2) Self-Defense Forces Central Hospital IRB #01–014, and (3)
University of Milan (both cohorts from Italian hospitals) IRB #562–2020. Due to
the nature of the retrospective observational study, individual informed consent
was waived.

Control study population. A balanced control population was identified from two
institutions and one publicly available dataset. The control group weighed multiple
clinical indications for chest CT and confounding diagnoses, such as RT-PCR or
microbiology proven non-COVID-19 pneumonias from bacteria, fungi, and non-
COVID viruses, as well as cancer staging and diagnosis, emergency care, and other
clinical indications for chest CT imaging. These datasets are individually described,
by institution and indication, in Table 1. Briefly, 972 patients undergoing non-
contrast CT scans of the chest at the State University of New York (SUNY) Upstate
Medical Center between 9/15/2020 and 3/15/2020, of which 949 met minimum
technical considerations for inclusion. The distribution of indications for the CTs
in the control group can be seen in Supplementary Table 2. In addition, 143
patients undergoing CT evaluation of laboratory-confirmed pneumonias from
SUNY Upstate Medical Center were collected and characterized for use as a dif-
ferential diagnosis test set, with confirmation of infection by culture (for bacterial
pneumonia) or RT-PCR (for viral cases), of which 140 met minimum technical
considerations for inclusion. The distribution of RT-PCR and culture data are
included in Supplementary Table 4. Similarly, 36 patients at the National Institutes
of Health undergoing CT evaluation of known pneumonia were collected to
broaden the heterogeneity of the control group. A cohort of 102 patients with
unremarkable lung findings were identified from a population of men with prostate
cancer undergoing staging at the National Institutes of Health for inclusion as a
non-diseased normal cohort, of which 100 met minimum technical considerations
for inclusion. Local IRB and ethics approvals for retrospective evaluation and data
sharing were obtained at each site: (1) NIH pneumonia cohort IRB #12-CC-0075,
(2) NIH prostate cancer staging cohort IRB #18-C-0017, and (3) SUNY Upstate
Medical University IRB #1578307–1. Due to the nature of the retrospective
observational study, individual informed consent was waived. Finally, a total of 470
CTs were derived from the publicly available dataset LIDC (downloaded 3/25/
2020). This dataset is an open-source dataset consisting of CT scans of the thorax
from seven academic centers and includes lung nodules of various sizes23.
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Summary of dataset inclusion is provided in Table 1. The image characteristics of
these datasets can be seen in Supplementary Table 3.

Algorithm development. The design and workflow of the classification algorithm
is shown in Fig. 1. Briefly, a lung segmentation algorithm was developed to identify
and localize whole lung regions, which were then used as input for CT-based
prediction of COVID-19 disease. Multiple classification models and rationales
were implemented, including a hybrid model that performs 3D classification on
multiple crops (i.e., several slices) at fixed resolution within an image, and a full 3D
image classification implementation considering one complete volume at a
fixed size.

Lung segmentation model. The lung segmentation model was trained using the
AH-Net architecture24. In order to address the challenges from GGO/consolidation
patterns, the network trained with LIDC dataset consisting of 1018 images and 95
in-house CT volumes from a training set defined in Table 1, which had con-
siderable amounts of GGO/consolidation observations to ensure accurate seg-
mentation in cases with a large proportion of altered parenchyma (Supplementary
Fig. 3). The in-house data were manually annotated by two expert radiologists. All
images were resampled to a resolution of 0.8 mm × 0.8 mm × 5.0 mm and intensity
clipped to a HU range (−1000, 500). Acceptable use was determined after the
algorithm achieved mean 0.95 Dice similarity coefficient (range 0.85–0.99, std. dev
0.06) at validation.

Image classification model. Both the hybrid 3D and full 3D models used in this
study were based on a Densnet-121 architecture adapted to utilize 3D operations
(i.e., 3D convolutions) compared to original 2D implementation25. Images were
clipped to HU range (−1000, 500) and cropped to bounding box fitting to the
maximum dimensions of lung regions with an extended 5 voxel buffer. For the full
3D model, the entire lung region (without masking) was resampled to size 192 ×
192 × 64 for training and inference. For the hybrid model, images were resampled
to resolution 1 mm × 1mm× 5mm and sub-crops of 192 × 192 × 32 were sampled
from lung regions, applying mask to obtain lung-only tissue, at a frequency of 6
crops/patient for training and 15 crops/patient at inference. These implementations
are shown in Fig. 1.

Data augmentation was performed to avoid bias of center-specific
characteristics, and included image intensity and contrast adjustment, introduction
of random gaussian noise, flipping, and rotation. Within each mini batch, data
were sampled to ensure class balance between COVID and non-COVID groups.
Attention/activation maps to visualize regions within the image utilized for
prediction were generated using Grad-CAM method26. Algorithm development
was implemented in Tensorflow and code is publicly available as part of the
NVIDIA Clara Train SDK on NGC27.

Statistical analysis. Classification performance was evaluated by overall accuracy,
positive predictive value, negative predictive value, sensitivity, and specificity for
correctly distinguishing between COVID-19 vs. any other condition. Summary
statistics of false positive predictions (incorrectly labeling as COVID-19) were
reported separately for pneumonia cohorts and all-comer/any-indication cohorts.
Hold out test sets were identified for each model with attention to the ability to
translate models across demographics and disease stages.

Reproducibility of the training schema and generalizability of resultant models
were assessed by removing the cohort of COVID-19 patients from Tokyo, Japan
from training and validation datasets. Models were retrained utilizing identical
algorithm configuration and hyperparameters as the original models. Overall
performance, as well as accuracy specific to Japan cohort, were reported and used
for evaluation.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Due to the multinational nature of the datasets, restrictions on data sharing agreements

are governed by each institution’s policies. At the time of publication, local IRB and

ethics approvals were not obtained to allow public sharing of raw imaging data from

individual centers contributing to this paper. A portion of this study utilized data from

publicly available dataset LIDC (downloaded 3/25/2020; https://wiki.

cancerimagingarchive.net/display/Public/LIDC-IDRI) 23. Readers are invited to contact

the corresponding author for further information on data availability and data sharing

policies.

Code availability
All models presented in this work were developed using NVIDIA Clara Train platform.

As such, all NVIDIA-related frameworks and models specific to this publications are

available at no cost as part of the NVIDIA Clara Train SDK on NGC27 at https://ngc.

nvidia.com/catalog/containers/nvidia:clara:ai-covid-19. This includes both inference-

based pipelines for evaluation, as well as model weights for further training or fine tuning

in outside institutions.
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