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ABSTRACT Recently, the advancement in communications, intelligent transportation systems, and com-

putational systems has opened up new opportunities for intelligent traffic safety, comfort, and efficiency

solutions. Artificial intelligence (AI) has been widely used to optimize traditional data-driven approaches

in different areas of the scientific research. Vehicle-to-everything (V2X) system together with AI can

acquire the information from diverse sources, can expand the driver’s perception, and can predict to avoid

potential accidents, thus enhancing the comfort, safety, and efficiency of the driving. This paper presents a

comprehensive survey of the research works that have utilized AI to address various research challenges in

V2X systems.We have summarized the contribution of these research works and categorized them according

to the application domains. Finally, we present open problems and research challenges that need to be

addressed for realizing the full potential of AI to advance V2X systems.

INDEX TERMS Artificial intelligence, machine learning, VANETs, V2X, predictions, platoon, VEC.

I. INTRODUCTION

The latest developments in the AI techniques have opened

up new opportunities for the Intelligent Transportation Sys-

tems (ITS). The vehicular sensors are also becoming smarter

with time, resulting in an ability of the vehicles to better

assess the environment. This advancement has led to the

possibility of realizing autonomous driving that is based on

the idea of imitating human driving behavior while mitigating

human faults. A plethora of applications have been developed

starting from active and passive road safety to the optimizing

traffic, ranging from autonomous vehicles to the Internet of

vehicles [1].

The V2X paradigm is essentially based on sharing of

information in the form of Vehicle-to-Infrastructure (V2I),

Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P),

Vehicle-to-Self (V2S) and Vehicle-to-Road side units (V2R),

as shown in Figure 1. There are three main aspects of a

V2X communication system: traffic efficiency, road safety

and energy efficiency. One important use case of V2X is

the traffic flow information. Vehicular applications can use

this information to intelligently execute tasks such as traffic

congestion rectification, better utilization of Plug-in Electric

Vehicle (PEV) charge [2], minimizing fuel consumption and

improving location based services. The traffic flow dataset

can be acquired frommultiple sources such as Closed-Circuit

TeleVision (CCTV) cameras, induction loops, crowd souring

based information services and vehicles. Designing highly

accurate traffic flow prediction algorithms using conventional

traffic flow estimation techniques is a big challenge [3].

Moreover, due to very few traffic data and its accessibility,

the research and experimentation are also limited to those

datasets. There are relatively very few datasets available pub-

licly for the researchers to design and execute their traffic

flow prediction algorithms and to compare their results. AI

has been widely applied for designing prediction algorithms

in fields such as computer vision, data science, robotics,

medical, and natural language processing [4], [5]. AI is an

efficient data-driven approach that makes it more robust to

handle sparse and heterogeneous data. AI together with V2X

can enable unconventional applications such as real-time traf-

fic flow prediction and management, location-based appli-

cations, autonomous transport facilities, vehicular platoons,

data storage in vehicles, and congestion control in Vehicular

Ad-hoc NETworks (VANETs). However, the exploitation and
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FIGURE 1. An overview of V2X scenario.

adaptation of AI development tools to meet the challenges

pertaining to the vehicular networks is still a research area in

its infancy.

This article provides a comprehensive survey on this

emerging paradigm of AI for V2X, and lists open research

challenges that need more work to realize this powerful

platform. The rest of the paper is organized as follows.

In Section II we give an overview of the V2X commu-

nication technologies. We present the key foundation and

algorithms for AI, and then provide an overview into the

data-driven AI use cases and their potential towards V2X

paradigm in Section III. In Section IV, we discuss the tools

available for the design and deployment of AI algorithms.

In Section V, we present AI based applications in the V2X.

Finally, section VI presents open issues and research chal-

lenges in the context of integrating the AI and V2X platforms

for fully realizing possible benefits from the integration.

Section VII concludes the article with future directions.

II. V2X COMMUNICATION TECHNOLOGIES

There are two potential communication technologies that

enable V2X. The first one is known as Dedicated Short

Range Communication (DSRC) [6], which is based on

IEEE 802.11p [7] and was standardized in 2012. The sec-

ond is based on Long-Term Evolution (LTE) cellular

communications and known as cellular-V2X or in short

C-V2X [8], which was released by the 3rd Generation Part-

nership Project (3GPP) in 2016. Both DSRC and C-V2X

support V2V and V2I communications. However, C-V2X

also supports wide area communications called Vehicle-to-

Network (V2N), enabled by 5th Generation (5G) services.

The challenges and various solutions to connected vehicles

are discussed in detail in [9].

DSRC enables VANET. VANET does not require any

infrastructure for vehicles to communicate, which is a key to

ensure safety in the remote and little developed areas, espe-

cially for accident prevention in foggy highways. In DSRC,

vehicles transmit messages known as Common Awareness

Messages (CAM) and Basic Safety Messages (BSMs) with

a latency of less than 100 ms. DSRC is a slight modifica-

tion of IEEE 802.11 protocol, and it can be easily used to

deploy VANETs. Although VANET devices can access the

network quickly, but the Medium Access Control (MAC)

protocol of DSRC is based on Carrier-Sense Multiple Access

with Collision Avoidance (CSMA/CA), that may cause some

unbounded latency and reliability [10].

On the other hand LTE is highly reliable, and have higher

bandwidth, and requires modifications before its deployment

in the V2X system [11]. According to the latest 3GPP tech-

nical specifications of LTE V2X, the physical link of LTE

(Sidelink) is introduced, which is different from the tradi-

tional LTE uplink and downlink network traffic. In Sidelink

the LTE V2X can work in two modes: 1) LTE-V-Cell mode,

where eNodeB (eNB) will be used, and 2) LTE-V-Direct

mode, where Sidelink will be used as a physical link [12].

In the LTE-V-Direct mode, a self-organized Time Division

Multiple Access (TDMA) is used as a MAC protocol, where

the time resource is divided in slots. The communication

nodes at first need to listen to the channel for a period of

time to acquire the frame information, while accessing the
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channel, and then randomly select an idle slot to access the

channel. However, the collisions cannot be avoided com-

pletely due to simultaneous channel selection.

In LTE-V-Direct, devices will communicate in half-duplex

mode, therefore, collisions cannot be detected immediately.

These collisions will continue if the devices continue using

the same slot. Thus, in a self-organized TDMA the devices

will change the slot several times after sending packets [13].

The Frame Information Loss Rate (FILR) in LTE-V-Direct,

is a probability that, the two vehicles within the radio range

will fail to acquire the frame information of each other.

The Inter-Reception Gap (IRG) is the interruption between

successful data transmission. Both FILR and IRG are impor-

tant factors that indicate the reliability of the LTE-V-Direct

system. A Markov chain based Media Access Process Model

of LTE-V-Direct Communication is introduced in [10], where

the models for FILR and IRG are derived and verified.

In C-V2X, when the wireless link is not necessary from

the cellular base station, an alternative mode called PC5 [14]

interface can be used. PC5 is a direct communication channel

between two vehicles in the absence of base station coverage.

In addition to the PC5 based V2V communication, C-V2X

also allows a logical interface called Uu [15] between the

vehicle and the base station. The cellular communication

capabilities have been added to millions of cars and this

number is growing. The European Telecommunications Stan-

dards Institute (ETSI) ITS specification has described various

use cases for the integration of communication capabilities

in the vehicles. Many of these use cases have already been

implemented using the existing cellular network connections.

Examples include safety hazard warning, traffic ahead warn-

ing, road work warnings, collision avoidance, speed advisory,

and parking assistance. Therefore, Release 14 of the LTE

standard supports V2X services according to the parameters

defined by the ETSI ITS, United States (US) Society of

Automotive Engineers (SAE), and other similar organizations

across the world.

III. ARTIFICIAL INTELLIGENCE AND V2X

V2X is an extension of vehicular networks, which aims to

promote safety and efficiency of transportation systems by

sharing information among vehicles, pedestrians and infras-

tructures. Recently, V2X platform has received tremendous

amount of interest from academia, industry and Government

bodies alike. Recent advancements in computation technol-

ogy and hardware have led to AI being an integral part in

almost every engineering related research area. Autonomous

driving is one such application where AI plays a crucial

role in enabling basic features of human driving. V2X can

play a vital role in enhancing both safety and efficiency in

autonomous vehicles.

The research related to AI is described as the study of

intelligent agents [16]. The field of AI research was started

from 1956 at Dartmouth college [17]. AI has been widely

applied by modern machines for applications such as com-

peting at the highest level in strategic games (e.g. Go, Chess),

understanding human speech, autonomous vehicles, and

intelligent network routing in content delivery networks etc.

Figure 2 gives an overview of the terms and techniques within

the AI research area. Some of the most widely used AI

techniques are: Heuristic Techniques, Robotics, Swarm Intel-

ligence, Expert Systems, Turning Test, Logical AI, Planning,

Schedule and Optimization, Natural Language Processing,

Game Theoretic Learning, Evolutionary Algorithms, Infer-

ence, Fuzzy Logic, andMachine Learning etc.Wewill briefly

discuss these techniques in the next subsections.

A. SWARM INTELLIGENCE

Swarm intelligence can be described as a collective behavior

of self-organized and decentralized systems. The term Swarm

Intelligence (SI) was first introduced by Beni and Wang [18]

for the cellular robotic systems. In the context of V2X

paradigm, the swarm intelligence is shown by a population

of vehicular agents that interact locally with one another and

their environment. The vehicles follow simple rules without

any centralized control system. The behavior of ant colonies,

flocks of birds, schools of fish, animal herding, microbial

intelligence, and bacterial growth all are based on swarm

intelligence. In an experiment performed by Deneubourg

in 1990, a group of ants was given two paths (short/long)

that connect their nest to the food location. It was discovered

from their results that ant colonies had a high probability to

collectively select the shortest path. More detail on Swarm

Intelligence for wireless communication can be found in [19].

The most widely accepted use cases of Swarm Intelligence

are 1) Particle Swarm Optimization (PSO), 2) Ant Colony

Optimization (ACO) and 3) Swarmcasting.

1) PARTICLE SWARM OPTIMIZATION

PSO is regarded as a global optimization algorithm. It can

be used to solve a problem whose solution can be described

as a point or a surface in an n-dimensional space. Seeded

with an initial velocity, various potential solutions are plotted

in this solution space. The particles move around this space

with certain fitness criteria, and with the passage of time,

particles accelerate towards those locations that have better

fitness values. In the upcoming Section IV, we discuss the

works that have utilized PSO for the VANET applications in

more detail.

2) ANT COLONY OPTIMIZATION

ACOwas first proposed by Dorigo [20]. ACOfinds near opti-

mal solutions to different problems which can be described as

graph optimization problems. Just as stated earlier, the ants

in ACO try to find the shortest path. A famous application

in wireless communication routing is known as AntNet [21].

In this routing, near optimal routes are selectedwithout global

information.

3) SWARMCASTING

Swarmcasting exploits the concept of distributed content

downloading to provide high resolution video, audio and

VOLUME 7, 2019 10825



W. Tong et al.: AI for V2X: A Survey

FIGURE 2. AI and its branches.

Peer-to-Peer (P2P) data streams, which contributes in reduc-

ing the required bandwidth. It applies the Swarm Intelligence

to break down large data into small parts, so that the system

can download these parts from different machines simultane-

ously, which enables a user to start watching the video before

downloading is complete. This use case has great potential

for enabling and enhancing content delivery and file sharing

solutions for the V2X paradigm.

B. MACHINE LEARNING (ML)

ML covers a big part of AI. ML techniques can be described

into three types: Unsupervised learning, Supervised learning,

and Reinforcement learning. There are some other kinds of

ML schemes such as Transfer learning and Online learning,

which can be subcategorized in the form of these basic three

ML schemes. ML basically consists of two important stages:

training and testing. Based on the realistic data, a model

is trained in the training phase. Then in the testing phase

predictions are made based on the trained model.

1) UNSUPERVISED ML SCHEME

In the unsupervised ML, training is based on unlabeled data.

This scheme tries to find an efficient representation of the

unlabeled data. For example, the features of a data can be

captured by some hidden variables, that can be represented

by the Bayesian learning techniques. Clustering is a form

of unsupervised learning that groups samples with similar

features. The input features of each data point can be its

absolute description or a relative similarity level with other

data points.

In the wireless networks paradigm, the cluster formation

for the hierarchical protocols is of great importance in terms

of energy-management, where each member just needs to

communicate with the cluster head before communicating

with the members of other clusters. Some traditional cluster-

ing algorithms are k-means, spectrum clustering, and hierar-

chical clustering. Dimension reduction is another subclass of

unsupervised ML scheme. The main idea behind dimension

reduction is to down-sample the data from a higher dimension
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to a lower dimensionwithout any significant data loss. Apply-

ing machine learning for most applications require dimension

reduction due to a number of reasons.

Curse of data dimensionality is the first reason. In cluster-

ing, classification and optimization, the overall model com-

plexity increases dramatically with the increase in feature

dimensions. The second reason is the hurdle in the learning

process. In most of the cases the features of the data samples

are correlated in some aspects, but if the feature value is

affected by noise or interference then the respective outcome

of the correlation will be corrupted and the learning process

will be affected. Such kind of dimension reduction in the

vehicular social networks is the formation which leads to a

vehicular cluster. The cluster head collects and transmits the

information to the eNodeB to reduce the communication cost.

The curse of dimensionality can be reduced by the dimen-

sion reduction methods. Dimension reduction methods are

grouped in two categories: 1) linear projection methods such

as: Principal Component Analysis (PCA) and Singular Value

Decomposition (SVD), and 2) nonlinear projection methods

such as: manifold learning, local linear embedding (LLE) and

isometering mapping.

2) SUPERVISED ML SCHEME

The supervised learning learns from a set of labeled data.

Supervised learning can be divided into two categories:

1) Regression, and 2) Classification. If the training data only

includes discrete values then it is a classification problem and

the output of the trained model is a classification which is

also discrete. On the other hand if the training data contain

continuous values, then it is the regression problem and the

output of the trained model will be a prediction. Two widely

used examples of supervised ML are Decision Trees and

Random Forest.

The output of regression algorithms is a continuous value

that may represent prediction of the house price, stock

exchange, banking customer transactions, State Of Charge

(SOC) of an electric vehicle battery, level of traffic congestion

at various intersections, and jamming prediction. In vehicular

social networks, regression can be used to predict parameters

such as network throughput. Two classic regression algo-

rithms are: 1) Gaussian Process for Regression (GPR) and

2) Support Vector Regression (SVR). In vehicular networks

the classification algorithms can be used for intrusion or mal-

function detection. Moreover, classification algorithms are

also beneficial in the traffic safety applications such as: Aug-

mented Reality Head Up Display (AR-HUD), active driver

information systems, obstacle detection, and predicting com-

plex traffic types.

3) REINFORCEMENT LEARNING (RL)

Reinforcement Learning actively learns from the actions of

the learning agent from the corresponding reward. It means

in order to maximize the reward, inexplicit mapping the

situations according to the actions by trial and error.

The Markov Decision Process (MDP) is an example of

reinforcement learning. Q function model-free learning pro-

cess is a classic example to solve MDP optimization prob-

lem that does not require information about the learning

environment.

Actions and their rewards generate policies of the choice of

a proper action. In a given state the Q function estimates the

mean of the sum reward. The best Q function is the maximum

expected sum reward that can be achieved by following any of

the policies. Reinforcement leaning is a perfect candidate for

addressing various research challenges in vehicular networks.

For example, cooperative optimization of fuel consumption

for a given geographical region, handling the spatial and

temporal variations of the V2V communications, optimum

path prediction of electric vehicles, and reduction in traffic

congestions.

C. DEEP LEARNING (DL)

Deep learning is closely related to the above three categories

of ML. It is a deeper network of neurons in multiple layers.

It aims to extract knowledge from the data representations,

that can be generated from the previously discussed three

categories of ML. The network consists of input layer, hidden

layers and an output layer. Each neuron has a non linear

transformation function, such as ReLU, tanh, sigmoid, and

leaky-ReLU. The scaling of input data is very crucial as

this can severely affect the prediction or classification of a

network. As the number of hidden layers increases, the abil-

ity of the network to learn also increases. However, after

a certain point, any increase in the hidden layers gives no

improvement in the performance. The training of a deeper

network is also challenging because it requires extensive

computational resources, and the gradients of the networks

may explode or vanish. The deployment of these resource

hungry deeper networks has raised the importance of edge

computing technology. Vehicles on the move can get benefit

from mobile edge computing servers. Figure 3 illustrates the

idea of neurons, input layer, hidden layers and output layer

in a Deep neural network. It is also known as Multi-Layered

Perceptron (MLP).

D. EXPERT SYSTEMS

Expert systems emulate the human ability to make decisions.

The Expert systems solve complex problems by reasoning

which is extracted from human knowledge. This reason-

ing is represented by IF-THEN rules, instead of procedural

coding [22]. An Expert system is divided into two parts:

Knowledge base and Inference engine. 1) Knowledge base:

The knowledge base is composed of rules extracted from

human knowledge. Inference engine: 2) The inference engine

applies the extracted rules from knowledge base to known

facts to deduce new facts. They can also include explana-

tion and debugging abilities. There are further two modes

of an inference engine such as forward chaining and back-

ward chaining. More detail on Expert systems can be found

in [23].
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FIGURE 3. A typical Deep neural network.

E. PLANNING, SCHEDULING, AND OPTIMIZATION

This branch of AI deals with the realization of strate-

gies or action sequences, for the execution by intelligent

agents. The planning is also related to decision theory,

and unlike traditional control and classification problems,

the complex solutions must be discovered in an optimized

manner from the n-dimensional space. Planning can be per-

formed offline in a known environment with available mod-

els, and the solutions can be evaluated prior to the execution.

In a highly dynamic and partially known environment of

V2X paradigm, the strategy needs to be revised online. The

models and related policies must be adapted accordingly. The

languages used to describe the scheduling are known as action

languages. There are different algorithms of planning, such

as Classical planning, Temporal planning, Probabilistic plan-

ning, Preference-based planning, and Conditional planning.

More details about Planning, Scheduling, and optimization

can be found in [24].

IV. SOFTWARE TOOLS AVAILABLE FOR AI

Recently, a number of development tools have been made

available online by the AI research community. These tools

are a collection of computer programs, with the related AI

functionality, and sharing a similar user interface and the

ability to easily exchange data with each other. They can

be categorized into two libraries, i.e. 1) open source and

2) proprietary based tools. We will briefly discuss these two

categories.

A. OPEN SOURCE TOOLS FOR AI

There are quite a few open source tools that can be used for

AI based V2X applications. One of the most popular tools is

TensorFlow [25] developed by Google. It is a software library

for data-flow programming for a range of AI tasks. It has been

extensively used for deep learning networks, in autonomous

vehicular systems. Tensorflow can run on multiple CPUs

and (Graphical Processing Units) GPUs. It is available on

various OS and mobile computing platforms such as iOS and

Andriod. Apache Spark [26] is a distributed general-purpose

framework for cluster-computing. It provides an interface for

programming entire clusters. Spark core provides, distributed

task dispatching, scheduling, and basic I/O functionalities,

exposed using an application programming interface such

as Java, Python, Scala, and R. Vehicular edge computing is

getting huge usage of the Spark cloud computing. It is due to

the fact that Spark can be used in traditional data centers and

cloud.

Scikit-learn [27] is a free ML based library for Python.

It features various classification, regression and clustering

algorithms, that makes it a perfect candidate for ML applica-

tions in V2X scenarios. The included algorithms are Support

Vector Machine (SVM), random forest, gradient boosting, k-

means, and Density-Based Spatial Clustering of Applications

with Noise (DBSCAN). A recent Python and NS3 based

framework known as PySNS3 [28] can readily import Scikit-

learn tools for V2X simulations. The Scikit or also known

as SciPy Toolkit is written in Python with some algorithms

written in faster Cython.

PyTorch [29], is another open source library for Python

used for applications such as natural language processing.

It was developed primarily by Facebook AI research group

and Uber’s ‘‘Pyros’’ software team. It provides high level

features such as, Tensor computation with strong GPU accel-

eration, Deep Neural Networks (DNN) built on a tape-based

autodiff system. Tensors are multidimensional arrays, that

can be computed on Graphics Processing Units (GPUs) sup-

ported by Nvidia’s Compute Unified Device Architecture

(CUDA) toolkit. PyTorch is a powerful candidate for vehicu-

lar cyber social computing, as it uses a technique called auto-

matic differentiation. This technique records what operations

have been performed, and then it replays it backwards for

gradient computing. This technique is also powerful while

building neural networks in order to save time on one epoch

by calculating differentiation of the parameters at the forward

pass itself. This time saving approach is perfect for the highly

time critical V2X scenarios.

Big vehicular data traces can also be efficiently analyzed

using another powerful tool known as H2O [30]. It allows

users to fit thousands of potential models as part of dis-

covering data patterns. It can be run using R and Python.

It is used for exploring and analyzing huge datasets held

in the cloud computing systems such as Apache Hadoop

Distributed File System. Big vehicular traffic datasets are

too large to be analyzed using traditional software like R.

Therefore, H2O provides data structures and methods that are

suitable for this kind of V2X generated data. H2O contains

statistical algorithms such as K-means clustering, generalized

linear models, distributed random forests, gradient boosting

machines, naive Bayes, and PCA, etc. H2O uses iterative

methods that provide quick answers using all the vehicu-

lar client’s data. A vehicular client running short of time

can interrupt the computations and can use an approximate
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solution. Other DL frameworks are: Keras, Theano, Torch,

Caffee, Deeplearning4j, OpenNN, PaddlePaddle, DataMelt,

Dlib, BigDL, Seq2SeqSharp and OpenNN.

B. PROPRIETARY SOFTWARE TOOLS FOR AI

One of the most popular software tools in this category is

known as Amazon Web Services (AWS) [31]. It is a sub-

sidiary of Amazon.com that provides on-demand cloud com-

puting platforms for the AI research community based on

paid subscription. This allows the subscribers to have a virtual

cluster of computers, available all the time via internet. Every

AWS system also visualizes its own console inputs/outputs.

It allowsAWS subscribers to connect to its AWS system using

any modern browser. This paid and time efficient facility is

suitable for the faster development of ML applications for

V2X paradigm.

Google prediction [32], is a set of application programming

interfaces (APIs), that allows communication with Google

Services and their integration to other vehicular services.

Especially for the V2X applications the embedded Google

map on a website and the traffic information retrieval can be

done using Google Earth API. The API supports various lan-

guages, such as, Java, .NET, Objective-C, PHP, and Python.

Autonomous vehicles are already getting huge benefit from

the dynamic loading or auto-loading feature which is sup-

ported by Google to enhance performance of the applications

using the loaded APIs [33].

Microsoft Azure [34] is another cloud computing web ser-

vice for AI, created by Microsoft. It can be used for building,

training, testing, and deployment of V2X AI applications.

It provides Software-As-A-Service (SAAS), Platform-As-

A-Service (PAAS) and Infrastructure-As-A-Service (IAAS).

It also supports multiple programming languages, and

Microsoft specific softwares and systems. The Microsoft

Azure ML service is a part of Cortana intelligence Suite

that enables natural human machine interaction. Microsoft

connected vehicular platform, is already helping auto-makers

to transform cars, where the Microsoft’s cloud is performing

heavy lifting by ingesting bigger volumes of data from con-

nected vehicles. This allows auto-makers to utilize their data

in powerful ways.

IBM Data Science eXperience (DSX) [35], is another

potential candidate platform for the V2X paradigm. In this

platform an ML developer can create project with a group of

collaborators who have access to different analytics models

and various programming languages. DSX also cooperates

with some open source tools such as RStudio, Spark and

Python in an integrated environment. DSX also provides

access to datasets that are available through Watson Data

Platform in the cloud. It has a large community and embedded

resources such as datasets on the latest developments from the

data science community.

V. AI IN V2X APPLICATIONS

AI can be used in the traditional vehicular communications

based applications to overcome their challenges effectively.

The sensors, data computation and storage abilities of vehi-

cles can be utilized for datamining and predictions to enhance

ITS solutions. We review the studies on the following appli-

cations/use cases:

• Safety, comfort and efficiency

• Network congestion control

• Demand and supply oriented applications

• Navigation of autonomous vehicles

• Security in VANETs

• Vehicular edge computing

• Content delivery and offloading

• Vehicle platoons

A. SAFETY AND COMFORT

1) SAFETY AND COMFORT

Information such as driving safety status, road safety index,

and road visibility conditions, are of great importance,

in terms of passengers safety and route planning. Traditional

research on driving safety analysis still needs better accuracy

in terms of driving safety assessment. The advancement in

computing technology and the edge computing paradigm has

made possible the real-time safety analysis on the move. The

work in [36], identifies two main challenges in this context:

1) driving safety analysis, and 2) road safety analysis. They

proposed a new deep learning framework known as DeepRSI,

to conduct real-time predictions of the road safety. These

predictions are made based on data obtained from vehicle

GPS trajectories and the mobile sensing data collected by

the VANETs. The results show that DL has outperformed

the traditional methods by intelligent utilization of mobile

sensing data.

Another work [37], applied deep learning to improve

vehicle safety and comfort by performing human factors

assessment and displaying the surrounding information to the

drivers. Providing the surrounding information to the drivers

is among one of the various solutions to prevent road-side

accidents. Their work shows that AR-HUD can be beneficial

as a new form of a dialog between the driver and vehicle.

This dialog keeps the driver’s attention on the road while

also providing the surrounding information. A real-time DL

based solution is proposed in this work for object detection,

identification and recognition of road obstacles in complex

traffic situations. They deployed a single convolutional neural

network that predicts the region of interest and class probabil-

ities from the single image frame. This information processed

by one vehicle can be passed to the vehicle behind through

V2X to improve the overall safety factor. Hundreds of people

died in the chain of accidents caused by poor visibility e.g.,

due to fog, or bad weather. The V2X paradigm can play a

crucial role in mitigating such accidents as well.

Figure 4 gives an illustration of AI oriented V2X applica-

tions. A steering assistance system known as Steer-By-Wire

(SBW), is one of the most promising approaches that can

improve vehicle safety and comfort. SBW system has been

considered as the next generation steering system equipped
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TABLE 1. Safety and comfort.

FIGURE 4. An illustration of AI oriented V2X applications.

on the vehicles for the overall safety improvement. Recently,

in [38], a fuzzy steering assistance control for path following

vehicles is introduced, that considered characteristics of a

human driver.

Another safety critical task is overtaking, that requires

better driving skills. In a complex scenario when multiple

participants are involved in the overtaking process, it is very

important to understand, coordinate and predict the future

actions of other vehicles. Therefore, the prediction of safe

future states is an import factor in theV2Xparadigm.A recent

research [39], has addressed this situation for the connected

and automated vehicles, and proposed an overtaking expert

system, based on a linear model predictive control approach

for multiple vehicles. Their approach dynamically adapts

the trajectory for the maneuver in the case of unexpected

situations.

An intelligent vehicle should be able to anticipate its sur-

rounding environment in the near future and thus plan ahead

accordingly. This ability is essential for Collision Avoid-

ance (CA). For example, if a vehicle knows the projected

trajectories of its surrounding vehicles, then it can easily

make timely decisions to warn or avoid a potential accident.

A research work [40] based on Gaussian process regression

model has focused on the long term (particularly more than

one second) trajectory prediction of the nearby vehicles, in a

dynamically changing and uncertain V2X scenario. The most

important and critical systems of a vehicle such as, Anti-lock

Braking System (ABS), Electronic Stability Program (ESP),

and Traction Control System (TCS), rely on the low-level

data from various vehicular sensors. The research work

in [41], introduced an extension to the Basic Safety Mes-

sage (BSM) set in DSRC to prevent potential future collisions

among vehicles. This work used Expert System controller

which intelligently utilized the low-level sensor data of the

neighboring vehicles to collaboratively avoid collisions with

the vehicles that were experiencing instabilities. The work

demonstrated the sustainability of the proposed system for

three scenarios such as, 1) aggressive neighboring vehicles,

2) loss of control among neighboring vehicles, and 3) lane

changing among multiple vehicles. A summary of related

work on the traffic safety and comfort is shown in Table 1.

2) COOPERATIVE PARKING

During the rush hours a large number of vehicles struggle to

find car parking spots in the same location, which can lead to

traffic congestion. Without vehicular cooperation, the vehi-

cles might compete with one another for the similar areas,

even if there are other alternative spots available. In [42],

a decentralized coordination approach was introduced to

search the car parking spots, which is applicable to large

car park areas. This approach takes into account the walking

distance and parking search time in a V2V scenario. A vehicle

is assumed to have communication capabilities to extend its

observation area by receiving messages from other vehicles,

and can make rational decisions based on messages received.

Every vehicle updates its knowledge-base and selects the tar-

get slot based on strategical cooperation with the neighboring
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vehicles. The vehicular decision-making takes into account

the walking distance to the parking spot, e.g., a building

entrance, and the car park searching time.

3) SPEED ADVISORY

The Green Light Optimal Speed Advisory (GLOSA) is a sys-

tem which allows vehicles to communicate with traffic lights.

GLOSA informs drivers about the speed they should drive as

they approach junctions to avoid the red lights. The adoption

of V2X will therefore, prevent the drivers from rapid driving

in order to catch the traffic lights. This will also improve the

air quality by reducing the overall harsh accelerating or brak-

ing vehicles near the signals. This V2X technology is cur-

rently under trails on a Jaguar F-PACE, as part of a £20 M

collaborative project [43]. Katsaros et al. [44] proposed anAI

based GLOSA application and introduced metrics such as,

average fuel consumption, and average stop time behind the

traffic light. In [45], a new Genetic Algorithm (GA) oriented

approach based on multi-segment GLOSA was introduced.

In this approach several TLs in a sequence are considered

for the route of vehicles. It is assumed that vehicles have

the access to the phase schedules of all TLs that they will

encounter.

4) SPATIO-TEMPORAL NETWORK TRAFFIC ESTIMATION IN

VANETs

The network traffic estimation in time and space has recently,

attracted the VANET research community, due to its greater

influence in the ITS. The reliability and security of VANET

is important to guarantee the successful deployment of

VANET’s applications. The complex environment of VANET

has made the network anomaly detection more challenging

due to mobility, buildings, and short-lived links. Recently,

Laisen et al. [46] demonstrated the importance of convolu-

tional neural networks, by using the fully connected archi-

tecture as the output layer and extracting the spatio-temporal

features of the traffic matrix. Their preliminary experiments

have shown that ML based method is effective as compared

to the traditional anomaly detection methods.

5) TRAFFIC LIGHTS CONTROL IN VEHICULAR NETWORKS

Traditionally, the dynamic traffic light control has been

deployed using Fuzzy logic and linear programming due to

limitations of computational resources and simulation tools.

In [47], a scheme was proposed where the learning state

is based on position and speed of vehicles, the action uses

4 phases and the reward is a change in cumulative delay using

Convolutional Neural Network (CNN). In another work [48],

the state is represented by the Queue length and the action

uses 2 phases, the reward is a difference between flows in

two traffic directions, using Stacked Auto-Encoders (SAE).

In [49], the state is chosen as the position of vehi-

cles, the action is composed of 2 phases and the action

includes wait time, stop, switch and delay, using Double

Q-Network (DQN) Prioritized experience replay. The work

in [50], has used the position and speed as states, the action

is composed of 4 phases and the reward is a change in

cumulative staying time, using convolutional neural network

experience replay. As compared to the discussed research

work [50], an improved value based reinforcement learning

algorithm to traffic lights control scheme is proposed in [51].

In this work the traffic intersection scenario contains multiple

phases, which represents a high-dimension action space. The

work also guarantees that the traffic signal time smoothly

changes between two neighboring actions.

Another work [52], has introduced a deep RL agent that

takes advantage of the real-time GPS data and learns how

to control the traffic lights at an isolated traffic intersec-

tion. They have combined the Recurrent Neural Network

(RNN) with Deep Recurrent Q-Network (DRQN), and com-

pared its performance with the standard Deep Q-Network

for a partially observed isolated traffic intersection. This

work also shows that the recurrent Q-learning method pro-

vides better result compared to the standard Q-Learning

method, by achieving lower average vehicle waiting time.

Table 2 summarizes the research works where the AI is used

in the intelligent traffic light control along with vehicular

communications.

6) PREDICTION OF ROAD TRAFFIC FLOW

The information about time efficient traffic flow is important

prior to the deployment of various ITS applications. These

applications can efficiently use this information for the tasks

such as, traffic congestion rectification, better utilization of

PEV charge, minimizing fuel consumption and improving

location based services. The traffic flow data can be acquired

from multiple sources, such as traffic cameras, crowd sour-

ing based information services, vehicles etc. This data can

be accessed in real-time or in offline e.g., hourly, weekly,

monthly or yearly. This data can be very useful for the pre-

dictions of various ITS applications by using AI techniques.

The traffic prediction methods are divided into classes,

1) parametric methods, and 2) non parametric methods. One

of the most commonly used parametric methods is known as

AutoRegressive Integrated Moving Average (ARIMA) [53].

ARIMA assumes that traffic prediction is in a stationary

process. However, due to high computational requirements

of ARIMA and its subclasses, they are not suitable for the

predicting large-scale traffic. Non parametric methods have

gained popularity due to stochastic and non linear nature

of traffic. Such research works include [54] that used Ran-

dom Forest (RF), [55] that used Support Vector Regression

(SVR), [56] that used OnLine SVR (OL-SVR), [57] that

used Bayesian network, [58] that Artificial Neural Networks

(ANN) and [59] that used deep belief network.

Obtaining high accuracy of traffic flow predictions

is a big challenge for conventional traffic flow estima-

tion techniques. Some research on traffic flow prediction

shows excellent performance improvement over conventional

approaches. The work in [60] is based on Poisson Regres-

sion Trees (PRT) which is a probabilistic graphical model.

It has been used for two correlated tasks: 1) prediction of
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TABLE 2. Efficiency (Intelligent traffic light control).

LTE communication connectivity, and 2) the prediction of

vehicular traffic. PRT is similar to decision trees and it is

used for modeling the count data. In PRT each inner node

represents splitting criteria. The prediction performance is

enhanced by using the congestion information, vehicular

traffic information and the performance of communication

system. In [61], a novel stacked auto encoder based traffic

flow prediction method is introduced. The auto encoders are

used as building blocks to represent features of traffic flow

that are used for the Deep Learning and predictions with

improved accuracy.

Most of the previously discussed research focused on the

prediction of traffic flow for the highways, where the traffic

flow is relatively smooth. However, in the urban city sce-

nario the traffic lights would have greater influence on the

traffic flow due to speed variations of vehicles. Ma et al. [62]

predicted traffic speed using Long Short Term Memory Net-

work (LSTM), considering the two points to perform their

experiments. The traffic flow prediction is a challenging task

without incorporating the crowd-sourced information, due to

the complex nature of interaction between the crowd and the

vehicles. The most recent research work [63] performed real-

world experiments on the Baidu traffic data set. This work

proposed an encoder decoder sequence learning framework,

which integrates three important factors: 1) road intersection

information, 2) offline geographical and social attributes, and

3) online queries from the crowd. The demonstrated results

have shown the effectiveness of the framework.

B. NETWORK CONGESTION CONTROL

The traffic and network congestion is common at the cross

sections in the urban environment. An unsupervised learning

algorithm [64], which is based on k-means clustering, uses a

central controlled approach to manage the congestion. This

work is focused on vehicles stopping at the red light at the

intersections. The Road Side Infrastructure (RSI) measures

and controls the wireless channel congestion at the inter-

sections. The transmission data is clustered into different

groups by using k-means clustering approach based on the

features. These features include size of message, duration

of message, V2I distance, message types and directions of

message sending vehicles. The independent communication

parameters such as transmission rate, transmission power,

congestion window size, and Arbitration Inter-Frame Spac-

ing (AIFS), are provided to each cluster. The channel must

be made available before transmission to avoid the colli-

sion of packets. A recent work [65] has proposed a swarm

intelligence based distributed congestion control scheme in

VANET. This scheme maintains the level of channel usage

under the network malfunctioning limit, while keeping the

Quality of Service (QoS) of VANET high. The results demon-

strate that this scheme improves network throughput, channel

usage, and stability of communication compared to other

competing congestion control schemes such as Swarm Dis-

tributed Intelligent Fair Rate Adaptation (DIFRA) [66].

In V2X scenarios, the highly dynamic communications,

complex correlation among various transmissionmodes com-

peting for the limited spectrum resources, time varying data

rates, and vehicle-mobility, make it challenging to optimally

allocate the available spectrum. Cognitive Radio (CR), which

is a context-aware intelligent radio, can improve spectrum

efficiency by detecting and reutilizing of the under-utilized

spectrum [67]. The existing DSRC spectrum may not be

sufficient to fulfill the stringent delay constraints required for

V2X [68].

A recent work on cognitive vehicular communication [69],

has proposed a Q-learning approach to design an optimal

data transmission scheduling system that minimize the trans-

mission costs while fully utilizing different communication

modes and resources. Furthermore, they have shown that

the Deep Q-learning based approach outperforms V2I-only

mode and transmission with cognitive radio mode, in terms

of average transmission loss. Table 3 gives a summary of the

research work related to the congestion control in VANETs.

C. DEMAND AND SUPPLY ORIENTED APPLICATIONS

The V2X paradigm has also proved itself beneficial for

the taxi drivers and passengers. Most of the existing works

only concentrate on maximizing the taxi driver’s profit while

giving less importance to passenger prospectives. However,

the work in [70], constructs a recommendation system by

considering benefits for both sides. They have used improved

DBSCAN to first investigate the taxi demand-supply level in

real-time, and then studied the tradeoff between the benefits
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TABLE 3. Congestion control in VANETs.

of the two parties for different hotspots. They demonstrated

that the taxi GPS data set analysis is very useful for making

decisions related to the recommendation of the qualified

candidates to the drivers and vice versa.

The term Vehicle-to-Grid (V2G) is a network that enables

bidirectional communications and energy flow between the

electric vehicles (EVs) and the power grid. V2G network can

provide smart energy sharing among EV users [71]. Smart

pricing can lead to optimal demand response for EVs where

EV user can adjust their charging based on their State-Of-

Charge (SOC) and pricing information. However there is a

problem that the demand from and surplus available with EVs

changes dynamically over time. Therefore this problem of

both bidirectional V2G and unidirectional V2G is commonly

formulated as programming problem.

Unlike linear, quadratic and dynamic programing, the work

in [72] has introduced a PSO based optimization to address

this problem. This technique considers the EV energy

scheduling as a stationary problem. However, in reality the

demand as well as mobility pattern of each EV can be differ-

ent per day. EV energy scheduling is a dynamic process and

the prior knowledge is often unavailable. Xie et al. [73] have

proposed a fair energy scheduling scheme by using Adaptive

Dynamic Programing (ADP), which learns from the outside

environment and performs estimation of long term future

system cost. ADP consists of three networks: action, model,

and critic network. All these networks can be implemented

by neural network training.

D. NAVIGATION OF AUTONOMOUS VEHICLES

V2V in autonomous vehicles can be envisioned as a

machine-to-machine paradigm. In this paradigm the QoS

aware architectures are of great importance. QoS architec-

ture, standards and its importance in a machine-to-machine

network is reported in [74]. In general the host automated

vehicle [75] drives along the predefined pathwhile encounter-

ing an expressway toll gate. If there is only one surrounding

vehicle present, then the host vehicle can control its speed to

avoid the collision by predicting the near-collision point in its

path. Using V2V, the host vehicle gets the speed and heading

direction of the surrounding vehicle and then calculates the

time which is required by the surrounding vehicles to reach

the near-collision point.

If the number of surrounding vehicles is greater than two

then this collision point calculation becomes much more

complicated. Since the host vehicle can (or cannot) pass both

near-collision points by acceleration. In these situations the

host vehicle needs more advanced approaches to deal with

these kind of situations. In [75], a decision tree based ML is

applied for controlling the speed of the host vehicle in such a

complex situation with the help of V2V. There are five levels

of automation that are strictly concerned with the safety of

the automated vehicles, as defined by the National Highway

Traffic Safety Administration (NHTSA) [76].

• Level 0: Driver has complete control of all functions of

the vehicle.

• Level 1: Only one function is automated.

• Level 2: More than one function is automated simulta-

neously e.g., acceleration and steering control, but the

driver remains constantly attentive.

• Level 3: Sufficiently automated conditions under which

driver can safely engage in other activities.

• Level 4: The vehicle can drive by itself without any

human driver.

Autonomous Intersection Management (AIM) is another

important aspect of ITS. AIM is going through revolutionary

changes which are brought by the V2X paradigm to the

automated vehicles. In [77], a cooperative motion planning

method is introduced for a group of connected and automated

vehicles, which may cross a lane-free intersection without

using explicit traffic signaling. It is known as Near Optimal

Online motion Planning (NOOP). This kind of motion plan-

ning scenario for multiple vehicles was formulated as a cen-

tralized optimal control problem. However, such a problem

is numerically intractable due to high dimensionality of the

collision-avoidance constraints plus nonlinearity of the vehi-

cle kinematics. Therefore, a two stage planning, scheduling

and optimization strategy is applied to solve this problem.

In the first stage the vehicles are requested to reach a stan-

dard formation before entering the traffic intersection. The

vehicles cross the intersection in the second stage. In this two-

stage approach the difficulties in the optimal control problem

is significantly reduced. Hence the real-time performance

achieved for the AIM. Table 4 presents summary of research

works related to the navigation of autonomous vehicles.

Themain advantage of deep RL is its model-free character-

istics, which removes the burden of complex policy making.

The real world scenario for autonomous vehicles consists of

some complex sequential decision making processes. How-

ever, such processes have inherent distinct behaviors, and the

simple forward deep RL algorithm can not learn a good pol-

icy. Therefore, in [78], a hierarchical neural network policy
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TABLE 4. Navigation of autonomous vehicles.

gradient method, known as Deep Hierarchical Reinforcement

Learning (DHRL), is devised to train the network with Semi

Markov Decision Process (SMDP). They have shown better

decision results over flat deep RL approach.

Although recent developments for autonomous driving

have been significant, vehicles need to have advanced deci-

sion making abilities for dynamic scenarios that need real-

time assessment of the environment where uncertainty is an

inherent component. A good decision making vehicle must

be in a generic form to cover a huge variety of scenarios, and

it should be able to interact with the neighboring obstacles

(mobile or stationary). Chen et al. [79] have introduced a

Maximum Interaction Defensive Policy (MIDP), which finds

the best action to interact with the stochastic moving objects

in a safety first paradigm.

This policy should be optimized for the most likely future

scenarios that result from an interactive, probabilistic motion

model for the neighboring vehicles. The possible future mea-

surements about the neighboring vehicles allow the ego vehi-

cle to incorporate the estimated changes in the accuracy of

future predictions, in the optimized policy. Thus a compact

representation results in a low-dimensional state-space, and

the problem can be solved online for varying vehicle counts

and road conditions. Such an online solution was introduced

in [80]. The convergence of the algorithm was evaluated with

a search heuristic. The results demonstrated that this plan-

ning, scheduling and optimization approach performs nearly

as good as with full prior-information regarding the intentions

of other vehicles and also outperforms reactive approaches.

E. SECURITY IN VANET

Security in VANET mostly concerns with the routing protec-

tion against potential threats such as jamming attacks. The

traditional frequency-hopping based anti jamming techniques

are less beneficial in the complexmobility and large scale net-

work environments of VANETs. Xiao et al. [81] have used

UnmannedAerial Vehicles (UAVs) to relay the OBUmessage

and improve communication in VANETs against smart jam-

mers. These smart jammers observe the vehicle’s On Board

Unit (OBU) and UAV link status, and try to make the UAVs

to only use a specific relay strategy and then they initiate

the attack. Typically the UAV relays the OBU message to

another Road Side Unit (RSU) with better radio transmis-

sion conditions if the current RSU is jammed or interfered.

This situation leads to an anti jamming game between UAV

and the smart jammer. They have used reinforcement learning

to make a hot-booting policy hill climbing-based UAV relay

strategy to help the VANET to resist jamming in the dynamic

gaming by considering the VANET and Jamming model as a

black box.

The two common and most difficult to detect VANET

routing attacks are, 1) black hole, and 2) wormhole. In a

black hole attack, a malicious vehicle can destroy all the

packets that it receives for subsequent transmission. In the

wormhole attack, a malicious vehicle receives data packets

and replays them to another malicious vehicle by using a

high speed link, which ultimately affects the discovery of

valid routes. A Swarm Intelligence algorithm for VANET

protection against such kind of routing attacks is introduced

in [82]. In [83]–[88], the use of Swarm Intelligence algo-

rithms in dynamic VANETs is introduced for better routing.

These include Ant-Colony-Based routing, geographic algo-

rithm based on Cat Swarm optimization for VANET, Parti-

cle Swarm Optimization algorithms, Bee-Inspired Approach,

and Fuzzy Logic. A detailed survey on geographic routing

protocols in VANETs can be found in [89].

The research works [90]–[93] have employed ANN,

K-NN, Feed forward Neural Network (FFNN), and SVM to

devise schemes against various kinds of attacks in VANETs.

These attacks include Denial Of Service (DOS) attack, inter-

nal attacks in driverless cars, packet dropping attacks, Gray

hole, Rushing attacks, and Sybil attacks. Berlin et al. [94]

introduced a DL based technique for anomaly detection in

a single vehicle or a fleet of vehicles. This technique is suit-

able for attacks with stolen credentials in a privacy-friendly

approach. Studies in [95]–[99] have utilized Fuzzy logic,

ANN, Unsupervised learning and game theory, respectively

to devise an Intrusion Detection System (IDS) for VANET.

Zhang et al. [88] have introduced a security aware routing

protocol against black holes, and flooding attacks, using

Fuzzy logic and ACO. Tables 5 presents a brief summary of

the research works where AI is utilized in different forms to

the domain of security in VANETs.

F. VEHICULAR EDGE COMPUTING

The ETSI, defines mobile edge computing as: an IT service

environment and cloud computing capabilities at the edge

of the mobile network, within the Radio Access Network
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and in close proximity to mobile subscribers. The computa-

tional capabilities in vehicular environments can be enhanced

using Edge computing [100]. Different applications that may

exist in a vehicle can be divided to three classes: 1) critical

applications, 2) high priority applications, and 3) low priority

applications. Critical applications include the vehicle control

system, system monitoring, and accident prevention. The

high priority applications are related to vehicle navigation,

information services and optional safety applications. Low

priority applications are related to multimedia and passen-

ger entertainment. Automobile manufactures are now pro-

viding computational capacity in their on board units. The

low priority applications and high priority applications can

be deployed using Vehicular Edge Computing (VEC) such

as speech recognition, video processing, cloud-based video

games and multimedia.

Besides critical applications, other applications may not

run all the time in the vehicles and the resources of connected

vehicles can be utilized to benefit the service provider and

the user [101]. A recent work [102], has targeted the local

cloud or VEC resources based on the properties such as

sharable resources, movement pattern, energy, and incentives

to the service providers and to the users for sharing their

idle resources. Feng et al. [102] proposed an autonomous

framework that can provide computation services in dynamic

V2X environments. Information collected from neighboring

vehicles is utilized to devise a scheduling algorithm based on

ant colony optimization. Extensive simulations have demon-

strated the effectiveness of vehicular edge computing.

In [103], a vehicular neighboring group based edge com-

puting architecture was introduced. This architecture sepa-

rates the whole network into three planes, 1) social plane,

2) data plane, and 3) control plane. It also extends pro-

grammability for the 5G network and data transmission.

By utilizing planning, scheduling and optimization, this

architecture simplifies network management, improves uti-

lization of resources and provides a sustainable network.

In [104], the authors have described a scenario of Deep

Learning handled with VEC. They have used Intel Movidius

Neural Computing Stick (MNCS) along with Raspberry Pi

3 Model B to analyze the objects in the real-time images and

videos for vehicular environments [105].

The connected vehicle paradigm have fueled a plethora of

innovations including networking, caching, and computing.

An RL based framework [106] is introduced, which can

enable dynamic orchestration of networking, caching and

computing resources to improve the performance of next

generation vehicular networks. Table 6 presents a summary
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of the works where AI is deployed for VEC, in terms of the

proposed solutions, platform used, algorithms, and datasets.

G. CONTENT DELIVERY AND OFFLOADING

The rapid growth of mobile data traffic has already started

provoking changes in the architecture of the overall wireless

network. It is expected that future 5G system will support

1000 times larger mobile data volume and 10 to 100 times

increased number of connected devices [107]. Vehicular con-

tent delivery is an important and challenging task in the

V2X paradigm. Data offloading through WiFi may not be

able to guarantee the required level of performance due to

limited range of WiFi and highly varying mobility of vehi-

cles. A relatively small amount of data can be delivered to

a vehicle for every hotspot on the move, and the offload-

ing performance can improve if the the data service can

tolerate delays, because the fast moving vehicle will drive

through more hotspots. The term Game-theoretic Learning

naturally combines Game theory and ML and has been dis-

cussed in [108]–[110]. Game-theoretic Learning has recently

received considerable attention from the V2X research com-

munity, and they have addressed it in the downloading and

resource allocation.

Asadi et al. [111] have addressed opportunistic traffic

offloading where cellular traffic of the users inside the

vehicles, is offloaded through carrier WiFi networks. This

work jointly considers the users satisfaction, the cellular

network operator’s revenue, and the offloading performance,

and devises a mechanism called Congestion Game-based

Offloading (CGO). With CGO mechanism, a vehicle user

finds its utility and makes adaptive offloading decisions by

considering strategies of other vehicles. The results have

shown that CGO can achieve better performance in terms

of average vehicular user utility, fairness, and lower average

service delay. Another work [112] proposed a distributed iter-

ative learning algorithm to explore pure strategy Nash Equi-

librium (NE) point also ensuring fairness. In [113], a cloud-

based MEC framework was introduced to reduce latency and

transmission cost for computation offloading for the Internet

of vehicles. Various computation transfer approaches were

introduced with V2V and V2I modes and game-theoretic

learning.

Parked vehicles are also incorporated by some works to

deliver content in VANETs. These vehicles can form social

communities to exchange information through V2V or V2I.

In this context, the incentive-based scheme should be

addressedwith the optimal pricing strategy. In [114], a pricing

based framework was proposed in the form of a Stackelberg

game. Then a gradient based iteration algorithm was pro-

posed to obtain the Stackelberg equilibrium. The work [115]

has addressed the limitations of the existing wireless wide

area networks that are coupled with delay tolerant property

of some non-real-time applications such as email or file

download and which are dependent on the RSUs to provide

internet access to the users in vehicles. They proposed a joint

multi-flow scheduling and cooperative downloading protocol

with a goal to maximize the amount of data packets.

The mobility of vehicles is random and the connections

are continuously changing in a VANET environment. How-

ever, the information such as road status and traffic cameras

information is region-specific and can be used for local infor-

mation of traffic and estimation. This information is useful

for load-balancing. In VANETs data is stored locally among

vehicles, RSUs, and the cloud. Wu et al. [116] developed an

algorithm to store data in vehicles without any infrastructure

based support. The region-specific data always remains in

that region due to unicast transmission. In this work the initial

relay hop selection is based on fuzzy logic and it is further

improved through RL. Then the data carrier node selection is

again based on fuzzy logic based short term evaluation. The

short term evaluations guarantee the long-term rewards with

the help of Q-Learning. Then the application of RL is further

applied to obtain the efficient routing strategy for the transfer

of data from the source node to the data carrier node.

H. PLATOON OF VEHICLES

The platooning is considered as one of the most impor-

tant applications using V2X. Vehicle platoons bring multiple

advantages. These advantages include: 1) reduction in air

drag, 2) increase in fuel efficiency, 3) reduction in traffic

congestion, 4) and reduction in average travel time. Along

with these advantages, the blocking of the vision of the

drivers that follows the leading vehicle is a big issue in

vehicle platoons. Although the Advanced Driver-Assistance

Systems (ADAS) and V2V can help prevent vehicle colli-

sions, vision blocking can cause anxiety in the following

drivers due to the blocked view [117]. Some research works

have addressed this problem. In [118], an application that

detects vehicles, pedestrians, and obstacles, using the video

streaming through V2V communication was implemented to
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benefit Light Detection And Ranging (LIDAR), in platoon-

ing. Also, in a few works like [119] and [120], surveillance

applications were implemented based on video streaming

through V2X communications. This kind of video streaming

among vehicles of a platoon can increase driving safety and

comfort by providing visual information to the drivers via

front and rear-view cameras.

Despite these developments, video streaming in vehicle

platoons bring in new and unprecedented challenges, e.g.,

bandwidth limitations for the leader vehicle, which may

broadcast using the MAC layer transmission in the IEEE

802.11. The member vehicles will play this stream in front of

the drivers, but the performance of the one-hop broadcasting

can be affected by the varying gap between the vehicles,

the surrounding environment, and channel utilization. AI is

a promising approach planning, scheduling and optimization

to address these problems of video streaming performance

degradation in the IEEE 802.11p [117].

The accuracy of the low-level vehicular sensors is very

important from the perspective of platoon stability. The on

board accelerometers may not maintain the orientation in the

long term deployment, and their calibration is difficult [121],

[122]. Moreover, the accelerometers, inherent drifts in their

outputs due to variation in factors such as, mechanical stress,

temperature and humidity. Although works such as [123]

and [124] have proposed solutions to tackle these inaccuracy

problems by estimating them based on the reliable informa-

tion but a good margin for improvement still exists. In this

context, the recent work such as [125] has investigated pla-

toon control in connected vehicles while focusing on the

effect of randomMAC protocol and unmeasurable accumula-

tions. Their proposed work assumed that the accelerator mea-

surements are inaccurate, and used an observer to estimate

the acceleration, which is based on the position and velocity

information of the vehicle and its preceding vehicle obtained

through DSRC. The stochastic nature of the MAC protocol

of each vehicle is modeled by the Markov chain, and a set of

backward recursive Riccati difference equations are solved

to obtain sufficient condition which guarantees stable error

tracking of the acceleration values.

Clusters in VANET are formed by association of vehicular

nodes which is an important aspect of vehicular platoons.

Generally, a rule set defines the selection of the head of this

group or cluster, known as Cluster Head (CH). The CH acts

as a wireless access point for the whole group. The functions

of a CH are application specific. Any clustering algorithm

must satisfy end-to-end communication performance require-

ments in the VANET while being able to capture sudden

changes in the mobility, network, and cluster topology [126].

Common procedures to initiate clustering among the vehicles

are: 1) Neighbor discovery, 2) CH selection, 3) Affiliation,

4) Announcement, and 5) Maintenance of the cluster. More

detail on clustering in VANET can be found in the survey

paper [127].

However, to the best of our knowledge only few works

have utilized AI for clustering in VANET, e.g., [128]. In this

FIGURE 5. Percentage of AI techniques used in V2X applications.

FIGURE 6. Progress of AI applied to V2X applications.

work, a learning algorithm is used to select the CH based

on the relative velocities of vehicles. At the traffic inter-

section, agents are deployed which determine the behavior

and velocity of vehicles entering and exiting the intersec-

tion. A learning factor is introduced that is increased for the

rewards with positive results that is selection of Cluster Head

with longest life span and higher PDR. Similarly, the learning

factor is penalized or decreased for negative results such as

poor performance of the CH. This mechanism progressively

finds the best CH selection strategy. Another work [129] is

based on Fuzzy logic, which also used the relative velocities

between the vehicles as the CH selection criteria. The algo-

rithm determines the driver intentions in order to find out the

long term variations in assessing the eligibility for being the

CH.

VI. CHALLENGES AND DISCUSSION

The complex and dynamic challenges of V2X paradigm

have been addressed using different techniques of AI.

Figure 5 shows various AI techniques used in the V2X

research presented in this survey. It can be easily seen
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FIGURE 7. Overall representation of AI applied to V2X applications.

that Deep learning and Swarm Intelligence are two popu-

lar and widely used techniques. Traditionally, Fuzzy logic

was considered the most popular AI technique for scientific

research. Figure 6 shows the yearly (2009 to 2018) trend of

AI applied to V2X in terms of percentage. The computation

resources, storage resources, and the advancements in AI

algorithms have established a firm path of AI based research

for V2X enabled by the 5G paradigm. It should be noted

that Figure 5 and Figure 6 are based on the research articles

referenced in this survey paper.

Yet, there are issues that require attention in this con-

text. Let us start with traffic flow prediction which is still

a challenging task in terms of modeling and optimization.

AI predicts and reproduces the macroscopic traffic flow

from the previous records. However, some AI approaches

and simulations are time consuming. For example, heuristic

optimization algorithms such as GA are often deployed to

accelerate the process but the convergence speed of those

algorithms is still a big question. One of the major difficulties

that RL is facing for the control of traffic signal timing is the

complexity of the signal timing design that increases expo-

nentially with the number of traffic flow state/control actions.

Figure 5 represents the research contribution in terms of the

specific techniques of AI employed in the V2X paradigm,

and Figure 7 shows the overall representation of AI applied

to V2X applications in this survey.

In VANETs, the practical implementation of ML based

congestion control techniques require RSUs that should be

equipped with GPUs. These RSUs would have to perform

larger calculations and operations for ML algorithms. The

deployment of Edge computation facilities is also a require-

ment for AI driven V2X applications. Decision of the agent’s

fairness policy is a big question in the domain of Reinforce-

ment Learning. How much fairness should be considered

appropriate? For example a fair TLC system would ensure

that all vehicles are given same priority while traversing the

intersection. However, this fairness will cause a conflict with

the optimization of certain traffic metrics. These optimization

metrics can be the minimum delay or maximum throughput.

A future challenge is to obtain a balance between fairness and

optimization, that can be achieved by the appropriate reward

function and utilizing other AI techniques.

The TLC systems, whose reward functions assign penalty

for each halted vehicle, can cause rapid switching of traffic

lights. This rapid variation results in the form of vehicles

that are always accelerating and decelerating. Although this

problem has been addressed by employing DQN that uses a

reward function that balances multiple objectives, including

the penalization of rapid decelerations (Emergency brakes).

However, DQN agents may not be able to work due to the

loss of information while conversion from continuous traffic

scenario to sparse position matrix. This may be attributed

to failure of the convolution filters of the DQN agent to

trigger for the vehicles whose information is missing in the

matrix.

A. OPEN ISSUES

Consumers trust building is also very important in AI-driven

vehicular safety. An average human mind would not under-

stand how multi-layer neural network is making decisions

based on the things that they do not know. AI algorithms

should be developed and taught by ensuring that their solu-

tions would not cause other problems especially beyond

the areas for which they are considered. Finally, the user
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TABLE 7. The following abbreviations are used in this manuscript.

acceptance of the AI deployment in V2X must be tested,

based on comfort, safety, and interaction with other partici-

pants in the real conditions.

Another major area of concern is the privacy enhancement

while monitoring the fleet of vehicles. Although anoma-

lies and attacks in VANETs should be detected by the ML

algorithms, expert knowledge and appropriate rules should

be defined which can increase the accuracy of detection.

Offloading with MEC service has greater potential to aid

autonomous driving in terms of real-time safety oriented

tasks, sensory data analysis, identification of appropriate nav-

igation paths, and the prediction of congested intersections

etc.

Finally, as stated by the 5th Generation Automotive Asso-

ciation (5GAA) [130], price of developing DSRC based sys-

tem is much expensive than C-V2X driven solutions for V2X.

Currently, neither of these systems has been described as an

authorized V2X communication system. It may be likely that

future vehicles would be equippedwithV2X devices that may

have implementation of both of them. AI can also provide an
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intelligent way in understanding and decoding data transfer

using these two systems for V2X.

VII. CONCLUSION

This article presents a comparative survey on the related

AI algorithms applied to theVehicle-to-Everything paradigm.

We have presented various AI techniques. AI-driven

algorithms for V2X applications have shown improved per-

formance over traditional algorithms. In general, all opti-

mization problems face uncertainty in the intensions of the

surrounding participants. Different branches of AI can help

each other to bring out an optimum solution that would

not cause or generate problems in the domain they are not

intended for. The AI algorithms in most cases require higher

computational resources. These resources may not require

to be inside the vehicle. Thanks to V2X, MEC and VEC

technology, the computation burden of AI can be offloaded to

the edge computation servers in the nearby road side infras-

tructure. The future V2X applications will get great benefits

from the emerging field of edge computing. Table 7 presents

list of abbreviations which are used in this manuscript.

APPENDIX

See Table 7.
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