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ABSTRACT

Objectives: This study evaluated the usefulness of 

arti�cial intelligence (AI) algorithms as tools in improving 

the accuracy of histologic classi�cation of breast tissue.

Methods: Overall, 100 microscopic photographs (test A) 

and 152 regions of interest in whole-slide images (test B) of 

breast tissue were classi�ed into 4 classes: normal, benign, 

carcinoma in situ (CIS), and invasive carcinoma. The 

accuracy of 4 pathologists and 3 pathology residents were 

evaluated without and with the assistance of algorithms.

Results: In test A, algorithm A had accuracy of 0.87, 

with the lowest accuracy in the benign class (0.72). The 

observers had average accuracy of 0.80, and most clinically 

relevant discordances occurred in distinguishing benign 

from CIS (7.1% of classi�cations). With the assistance 

of algorithm A, the observers signi�cantly increased 

their average accuracy to 0.88. In test B, algorithm B 

had accuracy of 0.49, with the lowest accuracy in the 

CIS class (0.06). The observers had average accuracy of 

0.86, and most clinically relevant discordances occurred in 

distinguishing benign from CIS (6.3% of classi�cations). 

With the assistance of algorithm B, the observers 

maintained their average accuracy.

Conclusions: AI tools can increase the classi�cation 

accuracy of pathologists in the setting of breast lesions.

Digital pathology (DP) has been implemented in 

several pathology departments around the world.1-6 

One of  the main advantages of  using whole-slide im-

ages (WSI) is the potential for implementing computer-

aided diagnosis (CAD) tools that may improve the 

evaluation of  tissue morphology, both quantitatively 

and qualitatively, adding robustness to image diag-

nosis.7 The subjectivity in the appreciation of  the his-

tologic features of  breast pathology sometimes leads 

to lower than desired interobserver concordance rates, 

with borderline cases usually as the reasons for dis-

agreements.8-10 The misclassification of  breast diseases 

may result in under- or overtreatment with important 

consequences to patients’ health.

CAD tools can potentially provide a complementary 

and objective assessment of histologic features, improving 

both sensitivity and specificity of the pathologic diag-

nosis without increasing the workload of pathologists. In 

recent years, an explosion of studies have been published 

Key Points

• Artificial intelligence algorithms can support evaluation as computer-
aided diagnosis tools in the histologic classification of breast tissue

• The algorithm used in microscopic photographs achieved higher 
classification accuracy (0.87) than the average of pathologists (0.83)

• With the assistance of the algorithm, pathologists significantly increased 
their average accuracy to 0.90.
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reporting high accuracy levels of automatic classification 

of histology images by machine learning algorithms in sev-

eral disease models.11-18 In fact, the use of artificial intel-

ligence in DP is seen as the third revolution of pathology, 

following the introduction of immunohistochemistry 

(IHC) and molecular pathology.19

Our group recently organized an image analysis chal-

lenge (Breast Cancer Histology [BACH]) as part of the 

15th International Conference on Image Analysis and 

Recognition (ICIAR 2018)  that aimed at the automatic 

classification of breast tissue histology using H&E-stained 

microscopy photographs and WSIs.20 Remarkably, the 

best performing methods achieved performances similar 

to those of human experts.

The purpose of  the current work is to compare the 

classification accuracy of  the best algorithms of  the 

BACH challenge with the accuracy of  a larger group 

of  human observers (including pathologists and pa-

thology residents). In addition, we also aimed to as-

sess whether the output from the algorithms could be 

used by the observers to improve their classification 

accuracy.

Materials and Methods

Characteristics of the Tested Images and Algorithms

The test data set of the BACH challenge was com-

posed of 2 independent parts (A and B).20 Test A consisted 

on 100 H&E-stained breast tissue microscopic photo-

graphs (from 38 patients) classified into 4 classes: normal, 

benign, carcinoma in situ (CIS), and invasive carcinoma 

(IC). Test B consisted of 152 regions of interest (ROI) in 

10 H&E-stained WSIs of breast tissue (from 8 patients) 

classified into the same 4 classes described above. The 

cases included formalin-fixed, paraffin-embedded needle 

core biopsies and surgical excision specimens diagnosed 

between 2013 and 2017 originating from 2 histology la-

boratories (Ipatimup Diagnostics and Centro Hospitalar 

Universitário Cova da Beira). The ground truth (GT) was 

established by 2 pathologists (A.P.  and C.E.) with glass 

slides and cases, with disagreements resolved through 

common microscopy sessions. IHC analysis was per-

formed in all IC and CIS and some benign lesions (ductal 

hyperplasia, intraductal papilloma, sclerosing lesions, 

and fat necrosis). At the end of the study, no observer dis-

agreed with the GT classifications. Each photograph and 

ROI included only 1 of the 4 classes, except for normal 

tissue that could be present with any other class. The 

characterization of the 4 classes in both tests is summar-

ized in ❚Table 1❚.

Photographs from test A were acquired with a Leica 

DM 2000 LED microscope and a Leica ICC50 HD camera 

with a ×20 objective and 0.4 numerical aperture originating 

RGB images in a TIFF format without compression, a size 

of 2,048  ×  1,536 pixels (0.56  mm2), and a pixel scale of 

0.42  µm/pixel, without color normalization. WSIs from 

test B were acquired with a Leica SCN400 scanner with a 

×20 objective (pixel scale of 0.47 µm/pixel). The irregularly 

shaped (freehand) ROIs had different sizes, varying from 

0.04 to 171.19 mm2 and a median of 0.49 mm2.

The algorithms used for assessing the images of 

tests A and B were the ones that achieved the best per-

formance on the BACH challenge’s independent test 

set. Namely, for test A, we selected the method with 

the highest overall accuracy (measured as the ratio 

between the correct answers and the total number of 

photographs) and better accuracy on distinguishing be-

tween normal and nonnormal samples (algorithm A). 

Likewise, for test B, we selected the method with the 

highest classification performance (algorithm B).20,21 

Both algorithms rely on deep learning and were devel-

oped by the same participant using the training images 

of  the BACH challenge. Algorithm A  is based on a 

convolutional neural network that classifies patches of 

299 × 299 pixels resized from patches of  1,495 × 1,495 

pixels collected from the original image. For each case, 

overlapping patches are collected at a fixed distance 

interval, and the final label is produced by averaging 

❚Table 1❚ 
Characterization of Tests A and B

Classes Test A Test B

Normal, No. (%) 25 (25) 31 (20.4)

Benign, No. (%) 25 (25) 65 (42.8)

 Fibrocystic change 1 31

 Inflammation 0 15

 Columnar cell change 4 8

 Microcalcification 0 5

 Fibroadenoma 2 2

 Ductal hyperplasia 1 3

 Apocrine metaplasia 3 0

 Fat necrosis 3 0

 Atrophy 2 0

 Intraductal papilloma 4 0

 Sclerosing lesion 2 1

 Adenosis 2 0

 Secretory changes 1 0

Carcinoma in situ, No. (%) 25 (25) 33 (21.7)

 Ductal 24 7

 Lobular 1 26

Invasive carcinoma, No. (%) 25 (25) 23 (15.1)

 Ductal 23 11

 Lobular 1 2

 Tubular 1 0

 Mucinous 0 10

Total 100 152
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the patch-wise predictions. Algorithm B uses the same 

convolutional neural network to predict patch-wise 

classifications on the WSIs. Instead of  averaging all pre-

dictions as in algorithm A, each pixel of  the image is 

labeled as the average of  the overlapping patch-wise pre-

dictions, creating a pixel-wise abnormality classification 

map (for additional details, see supplemental data;  all 

supplemental data can be found at American Journal of 

Clinical Pathology online). For this study, a classifica-

tion of  the ROI was obtained if  more than 95% of  the 

classification map pixels shared the same label; if  not, 

the 2 most frequent pixel classifications were used as the 

favorite and alternative classifications, respectively.

Evaluation Criteria of the Observers’ Accuracy

The accuracy of 4 pathologists (P1 to P4) and 3 pa-

thology residents (R1 to R3) were evaluated in different 

phases. P1 to P3 are generalist pathologists with 6, 6, and 

42  years of practice, respectively. P4 is a subspecialist 

breast pathologist with 4  years of practice. In phase 1, 

the observers classified photographs from test A  and 

ROIs overlaid in the entire WSI from test B into 4 classes, 

without exceptions. In cases of doubt between classes, ob-

servers could choose their favorite classification and pro-

vide the respective alternative.

In phase 2, the observers had the opportunity to re-

classify the photographs and ROIs, knowing their initial 

classification and the one performed by the algorithms, 

without being aware of its accuracy or their own. Some 

rules of engagement were established (summarized in 

❚Table  2❚ and Supplemental Figure S1): if  the observer 

classification matched the algorithm classification, it 

could not be changed; in this case, if  there was an alter-

native classification (by the observer, the algorithm, or 

both), there was the possibility to keep or discard the 

alternative classification. If  the participant classifica-

tion did not match the algorithm classification, with or 

without the presence of an alternative classification, the 

observers could reclassify the photograph or ROI.

In test A, before phase 3, both confusion matrices 

of  the observers and the algorithm were revealed, 

showing their global accuracy and the types of  errors 

between different categories, without specifying the cor-

rect answer of  each photograph. Then, observers per-

formed the same task as in phase 2. Test B did not have 

a phase 3. The observers had no time constraint applied 

during the classification, and no washout period existed 

between the evaluation of  different phases. All photo-

graphs and ROIs were classified before the next phase 

started. Each phase was performed in less than a week, 

and all phases were performed in less than a month. 

Photographs were reviewed with Windows Photo Viewer 

(Microsoft) and WSIs with Aperio ImageScope v12.3.2 

(Leica Biosystems). The classification was recorded 

manually in a prefilled Excel sheet (Microsoft). None of 

the observers were involved in the establishment of  the 

GT or received training by the pathologists responsible 

by the GT. Moreover, IHC information was not avail-

able for the classification of  images in both tests in all 

phases, which was based on morphology alone. In addi-

tion, P4 did not participate in test B.

Ethics approval and informed consent were not re-

quired for this study, given the anonymized images of the 

samples.

Statistical Analysis

Statistical analyses were performed using SPSS ver-

sion 25.0 for Windows (IBM). The Pearson χ 2 test (or 

the Fisher exact test, if  appropriate) was used for com-

parison of qualitative variables, and the Mann–Whitney 

U test (MW), the Wilcoxon (WC) test, and the Kruskal-

Wallis test were used for quantitative variables. The level 

of  significance was set at P < .05. Accuracy was defined 

as the ratio between the correct answers and the total 

number of photographs or ROIs. Concordance rates were 

evaluated with quadratic weighted κ statistics to penalize 

discordances with higher clinical impact. The Landis and 

Koch classification was used to interpret the values: no 

agreement to slight agreement (<0.20), fair agreement 

(0.21-0.40), moderate agreement (0.41-0.60), substantial 

agreement (0.61-0.80), and excellent agreement (>0.81).22

❚Table 2❚ 
Summary of Tasks Developed in Different Tests and Phases

Tests and 

Phases Tasks

Test A 100 H&E photographs

Test B 152 ROIs in 10 H&E WSIs

Phase 1a Classification of tests A and B with 4 classes: 

normal, benign, carcinoma in situ and inva-

sive carcinoma

Phase 2b Same as in phase 1, knowing the classifica-

tion of the algorithms

Phase 3 (test 

A only)

Same as in phase 2, knowing the accuracy 

of the algorithm and the observers and the 

types of errors between different classes

ROI, region of interest; WSI, whole-slide image.
aIn cases of doubt between classes, observers should choose their favorite classifi-

cation and provide the respective alternative. 
bIf  the observer classification matched the algorithm classification, it could not 

be changed; if  there was an alternative classification, there was the possibility of 

keeping or discarding the alternative classification. If  the observer classification 

did not match the algorithm classification, observers could reclassify the photo-

graph or ROI.
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❚Table 3❚ 
Diagnostic Accuracy in Test A and B

Phase Test A Test B

Algorithm A 1 0.87 NA

Algorithm B 1 NA 0.49

Pathologists (average) 1 0.83 0.83

2 0.87 0.82

3 0.90 NA

Residents (average) 1 0.77 0.89

2 0.82 0.88

3 0.87 NA

All observers (average) 1 0.80a 0.86

2 0.85a,b 0.85

3 0.88b NA

NA, not applicable.
aWilcoxon, P < .001
bWilcoxon, P = .001.

Results

Test A

Accuracy of Algorithm A

Algorithm A  had an  accuracy of  0.87 (❚Table  3❚, 
Supplemental Table S1, and ❚Figure 1A❚) and a concord-

ance rate with the GT of  0.88 (Supplemental Figures 

S2A and S2B). The benign class had lower accuracy 

(0.72; 18/25) in comparison with the remaining classes 

(0.96 [24/25], 0.88 [22/25], and 0.92 [23/25] for normal, 

CIS, and IC, respectively; Fisher exact test, P  =  .02). 

Most discordances with GT occurred in distinguishing 

normal from benign (4%) and benign from IC (4%) 

(Supplemental Table S2). Fat necrosis was the benign 

lesion confused with IC ❚Image 1A❚ and ❚Image 1B❚. The 

accuracy of  the algorithm was 0.71 (10/14) in photo-

graphs correctly classified by less than 50% of  the 

observers, increasing to 0.92 (60/65) in photographs 

correctly classified by more than 75% of  the observers 

(χ 2, P = .03) ❚Figure 1C❚.

Accuracy of the Observers

Phase 1.—The observers had an average accuracy of 0.80; 

only 1 pathologist had accuracy higher (P2, 0.94) than 

that obtained by the algorithm A (Table 3, Supplemental 

Table S1, and Figure  1A). The mean concordance rate 

between the observer’s classification and the GT was 0.86 

(range, 0.80-0.93), with 2 pathologists having concordance 

rates higher than algorithm A (P1 and P2: 0.93). In this 

phase, the mean interobserver concordance rate was 0.83 

(range, 0.75-0.90) (Supplemental Figure S2A). IC was the 

class with higher accuracy (average, 0.95) in comparison 

to the other classes (average of 0.73, 0.78 and 0.76 for 

normal, benign and CIS, respectively; MW, P  <  .001). 

Most discordances with GT occurred in distinguishing 

normal from benign (7.4%) and benign from CIS (7.1%) 

(❚Image 1C❚ and ❚Image 1D❚ and Supplemental Table S2).

The observers proposed an alternative classification 

in 14% of the photographs, with pathologists proposing 

more alternative classifications than residents (18.3% and 

8.3%, respectively; MW, P  =  .002) (Supplemental Table 

S3). The most frequent alternative classifications were 

those between CIS and IC (4.7%), benign and IC (4.7%), 

and benign and CIS (4.3%).

Phases 2 and 3.—In phase 2, the observers increased their 

average accuracy from 0.80 to 0.85 (WC, P < .001), with 3 

pathologists obtaining accuracies equal to or higher than 

algorithm A (Table 3, Supplemental Table S1, and Figure 1A). 

In phase 3, the observers had an additional increase in their 

average accuracy from 0.85 to 0.88 (WC, P  =  .001), with 

3 pathologists and 2 residents with accuracies higher than 

algorithm A. In this last phase, the mean concordance rate 

between the observer´s classification and the GT increased 

from 0.86 to 0.91 (range, 0.85-0.99), with only 2 observers 

having concordance rates lower than algorithm A.  In 

addition, the mean interobserver concordance rate increased 

from 0.83 to 0.90 (range, 0.83-0.95) (Supplemental Figure 

S2B). The accuracy increased in all classes (average of 

0.86, 0.82, 0.89, and 0.97 for normal, benign, CIS, and IC, 

respectively). Most discordances with GT decreased and 

occurred in distinguishing normal from benign (5.4% and 

4.7%) and benign from CIS (5.7% and 3.4%) in phases 2 and 

3, respectively (Supplemental Table S2).

A similar proportion of alternative classifications 

was proposed by the observers in phase 2 compared 

with phase 1 (13.1% vs 14%, respectively; WC, P = .96), 

increasing in phase 3 in comparison with phase 2 (16.6% 

vs 13.1%, respectively; WC, P  =  .002) (Supplemental 

Table S3). The most frequent alternative classifications 

were those between benign and CIS (5.7%), benign and 

IC (4.6%), and normal and benign (4.1%).

The favorite classification was modified, on av-

erage, in 6.3% of  the photographs in phase 2, increasing 

to 10.9% in phase 3 (WC, P < .001), with only 2 obser-

vers with less than 5% modifications in both phases 

(P3 and R1) (Supplemental Table S4). In addition, 

pathologists and residents had similar frequencies of 

modifications on their favorite classification (6.8% and 

5.7% [MW, P = .24] for phase 2 and 9.5% and 12.7% 

[MW, P  =  .36] for phase 3). The alternative classifi-

cation of  the photographs was modified, on average, 

in 15.7% in phase 2, increasing to 19.3% in phase 3 

(WC, P < .001) (Supplemental Table S4). In addition, 

pathologists had more frequent modifications than 

residents on their alternative classification (21.8% and 

7.7% [MW, P < .001] for phase 2 and 23.8% and 13.3% 
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[MW, P = .003] for phase 3). The alternative classifica-

tion had more frequent modifications than the favorite 

classification in both phases (15.7% and 6.3% in phase 

2, and 19.3% and 10.9% in phase 3; WC, P < .001 for 

both phases).

Test B

Accuracy of Algorithm B

Algorithm B had accuracy of 0.49 (Table  3, 

Supplemental Table S5, and ❚Figure 1B❚) and a concord-

ance rate with the GT of 0.37 (Supplemental Figures 

A

C

E

B

D

F

❚Figure 1❚ Classification accuracy of test A (A) and test B (B) in all phases. C, Accuracy of algorithm A in photographs cor-

rectly classified by <50% (10/14), 50%-75% (17/21) and >75% of the observers (60/65). D, Accuracy of algorithm B in ROIs 

correctly classified by <50% (5/9), 50%-75% (13/26), and >75% of the observers (57/117). E, Accuracy of algorithm B in ROIs 

<0.15 mm2 (14/38), 0.15-0.49 mm2 (16/38), 0.49-1.92 mm2 (24/38), and >1.92 mm2 (21/38). F, Average accuracy of the obser-

vers in ROIs <0.15, 0.15-0.49, 0.49-1.92, and >1.92 mm2. The cutoffs used correspond to the 25th, 50th, and 75th percentiles 

of the size of the ROIs. O, average of all observers; P, average of pathologists; P1-P4, pathologists 1-4; R, average of resi-

dents; R1-R3, residents 1-3; ROI, region of interest; WSI, whole-slide image.
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S2C and S2D). CIS was the class with lower accuracy 

(0.06; 2/33) in comparison to the remaining classes (0.84 

[26/31], 0.58 [38/65], and 0.39 [9/23] for normal, benign, 

and IC, respectively; χ 2, P  <  .001). Most discordances 

with GT occurred in distinguishing normal from be-

nign (15.1%), benign from IC (14.5%), and benign from 

CIS (11.8%) (Supplemental Table S6). Inflammation 

was the benign lesion confused with IC ❚Image  1E❚ and 

❚Image 1F❚. The accuracy of the algorithm was similar in 

ROIs correctly classified by more than 75% of the obser-

vers (0.49; 57/117) compared with ROIs correctly classi-

fied by less than 50% of the observers (0.56; 5/9; Fisher 

exact test, P = .74) ❚Figure 1D❚. Moreover, the accuracy of 

the algorithm was lower in ROIs smaller than 0.49 mm2 

(0.39; 30/76) in comparison to larger ROIs (0.59; 45/76; 

χ 2, P = .02) ❚Figure 1E❚.
Algorithm B proposed an alternative classifica-

tion in 53.9% of the ROIs. The most frequent alter-

native classifications were those between normal and 

benign (37.5%), and between benign and IC (7.9%)  

(Supplemental Table S7).

Accuracy of the Observers

Phase  1.—The observers had average accuracy of 0.86, 

with all observers with accuracies higher than those 

obtained by the algorithm B (Table  3, Supplemental 

❚Image 1❚ Benign (fat necrosis) (H&E, ×200), correctly classified in phase 1 by 6 of 7 observers (A) and 3 of 7 observers (B), 

and as IC by algorithm A. C, DCIS (H&E, ×200), classified in phase 1 as benign by 4 of 7 observers, as DCIS by 3 of 7 obser-

vers, and as DCIS by algorithm A. D, DCIS (H&E, ×200), classified in phase 1 as DCIS by 4 of 7 observers, as benign by 3 of 

7 observers, and as DCIS by algorithm A. 
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Table S5, and Figure  1B). The mean concordance rate 

between the observer´s classification and the GT was 0.91 

(range, 0.84-0.95), with all observers having concordance 

rates higher than algorithm B.  In this phase, the mean 

interobserver concordance rate was 0.87 (range, 0.79-

0.96) (Supplemental Figure S2C). IC was the class with 

higher accuracy (average, 0.99) in comparison to the other 

classes (average of 0.84, 0.85, and 0.81 for normal, benign, 

and CIS, respectively; MW, P < .001). Most discordances 

with GT occurred in distinguishing normal from benign 

(7.4%) and benign from CIS (6.3%) (Image  1F and 

Supplemental Table S6). The average accuracy of the 

observers increased from 0.79 in ROIs smaller than 

0.15 mm2 to 0.93 in ROIs larger than 1.92 mm2 (Kruskal-

Wallis, P = .001) ❚Figure 1F❚.
The observers proposed an alternative classification 

in 5% of the ROIs, with pathologists and residents pro-

posing similar alternative classifications (4.4% and 5.7%, 

respectively; MW, P = .34) (Supplemental Table S7). The 

most frequent alternative classifications were those be-

tween benign and CIS (2.3%).

Phase 2.—The observers had similar accuracy (average of 

0.85) in comparison to phase 1 (WC, P =  .96) (Table 3 

and Supplemental Table S5, and Figure 1B). The mean 

concordance rate between the observer´s classification 

and the GT maintained at 0.91 (range, 0.84-0.98), and 

the mean interobserver concordance rate was 0.87 

(range, 0.79-0.94) (Supplemental Figure S2D). All classes 

maintained their accuracy (average of 0.86, 0.85, 0.76, 

and 0.99 for normal, benign, CIS, and IC, respectively). 

Most discordances with GT occurred in distinguishing 

normal from benign (7.7%) and benign from CIS (6.5%) 

(Supplemental Table S6). The favorite classification 

was modified, on average, in 4.6% of the ROIs, with 

pathologists and residents showing similar frequencies of 

modifications (3.7% and 5.5%, respectively; MW, P = .18) 

(Supplemental Table S8).

The observers increased the alternative classifica-

tion from 5% to 15.6% of the ROIs (phase 1 vs 2; WC, 

P < .001), with residents proposing more alternative clas-

sifications than pathologists (22.2% and 9.0%, respec-

tively; MW, P < .001) (Supplemental Table S7). The most 

frequent alternative classifications were those between 

benign and CIS (8.8%). The alternative classification of 

the ROIs was modified, on average, in 13.7%, with patho-

logists showing a lower frequency of modifications than 

residents (8.7% and 18.8%, respectively; MW, P <  .001) 

(Supplemental Table S8). The alternative classification 

had more frequent modifications than the favorite clas-

sification (13.7% and 4.6%, respectively; WC, P < .001).

Discussion

Image fidelity in the computer display has been a 

major concern regarding digital diagnosis, an issue pre-

viously addressed by digital radiologists.23,24 Systematic 

reviews have been performed to evaluate the concord-

ance of pathologic diagnoses by WSIs in comparison to 

❚Image 1❚ (cont) E, Benign (inflammation) (H&E, ×100), correctly classified in phase 1 by 6 of 6 observers and as IC by algo-

rithm B. F, DCIS (H&E, ×100), correctly classified in phase 1 by 4 of 6 observers and as benign by algorithm B. DCIS, ductal 

carcinoma in situ; IC, invasive carcinoma.
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traditional light microscope (LM), revealing mean diag-

nostic concordance higher than 90%. This result dem-

onstrates that DP can be used for primary diagnosis, 

provided that current best practice recommendations are 

followed.25,26 In this work, the images used in both tests 

had resolutions near 0.5 µm/pixel, comparable to an LM, 

and excellent mean interobserver concordance rates were 

achieved in both tests.27 We recognize that microscopic 

photographs are not the method for pathology diagnosis, 

as shown by the higher classification accuracies after the 

observation of ROIs in WSIs. Nevertheless, the similar 

accuracy achieved by the pathologists in both tests reveals 

that the photographs contain enough information to sim-

ulate clinical practice. In future studies, we would like to 

measure the role of AI algorithm outputs in the classifi-

cation of WSIs without the use of ROIs.

The accuracy of algorithm A  (photographs) was 

higher than the average accuracy of the observers, in-

cluding the average accuracy of the pathologists, with ex-

cellent agreement with the GT. This result indicates that it 

is possible to develop an algorithm with the ability to per-

form a complex task, such as medical image interpreta-

tion or diagnosis, at an expert level. However, it had lower 

accuracy in classifying the photographs that observers 

classified correctly less frequently, indicating its limita-

tion in assisting pathologists in classifying difficult cases. 

In the future, the accuracy for diagnosis of difficult cases 

may eventually be increased if  the training sets of these 

types of algorithms are enriched in such cases. In real life, 

extraordinary cases without established GT will almost 

always need the intervention of an expert pathologist. 

This reinforces the idea that CAD tools will not replace 

pathologists in the future but probably will originate a 

trend of superspecialization to solve those difficult cases.

In contrast, the accuracy of algorithm B (WSIs) was 

lower than that of all observers for all classes, with only 

fair agreement with the GT. In addition, the algorithm 

had a large performance drop for ROIs smaller than 

0.49 mm2, given that it was trained to predict patches of 

approximately 0.50 mm2 with consideration of the clas-

sification of the neighboring patch. When predicting a 

patch smaller than the training size, the nonrelevant clas-

sification of neighboring patches will have a greater effect 

on the classification of the patch, lowering the perfor-

mance of the algorithm. A possible approach to improve 

the sensitivity of the algorithm would be to change the 

decision rule for the overlapping patches (eg, from av-

erage to local maximum) to increase the importance of 

these small regions in the final WSI labeling. Smaller le-

sions will probably continue to be a challenge for both 

pathologists and image analysis algorithms. The use of 

ROIs allowed direct comparison of the accuracy of the 

observers and the algorithm in precise regions, even small 

ones, given that the observers were forced to classify all 

ROIs, without exception.

Both algorithms had problems in the classification 

of benign lesions, usually showing difficulties in distin-

guishing benign from CIS (a known pitfall in LM diag-

nosis) and benign from IC, demonstrated by the recurrent 

misclassification of fat necrosis and inflammation as 

IC. Benign lesions have higher morphologic variability, 

making discriminant features more difficult to learn 

and lowering accuracy. These algorithms are probably 

learning that inflammation associated with some ICs is a 

typical characteristic of  IC; this learning could give rise 

to a false-positive diagnosis, suggesting that these tools 

must be human supervised. We also recognize that a lim-

itation of this study was the use of  only 4 classes when 

performing the classification task. These classes do not 

cover all categories of  breast lesions or the low number 

of patients who do not represent the wide morphologic 

pattern variation observed in real practice. However, we 

wanted to establish a proof of  concept that artificial in-

telligence could be useful in DP diagnosis using the most 

common classes in breast pathology.

In our study, the observers had average accuracy 

higher in WSIs than in the photographs for all classes. 

This fact could be explained by the larger size of the ROIs, 

with more morphologic features to reach the correct clas-

sification, and the presence of adjacent context outside 

the ROIs in the WSIs. As expected, IC was the class more 

often correctly classified by the observers in both tests, 

which reflects the training and ability in detecting this rel-

evant clinical lesion. The absence of a washout period be-

tween the evaluation of different phases had the objective 

of removing the intraobserver variability in the following 

phases and measuring only the impact of the algorithms 

in the change of the classification by the observers. The 

rules of engagement, which prevented changes when the 

classification of the observers matched the classification 

of the algorithms, had the purpose of simulating the fu-

ture situation of the pathologist having access to the 

output of the algorithm and confirm or exclude their own 

classifications. Although the impact of revisiting the cases 

without AI assistance was not measured in this work, we 

estimate it to be low, given that the observers in test B did 

not improved their accuracy in phase 2.

The assistance provided by algorithm A significantly 

increased the average accuracy of the observers (in all 

classes) and the mean interobserver concordance rate, 

suggesting that CAD tools may be used to increase classi-

fication accuracy and homogeneity in pathology, even in 

important differential diagnostic problems, such as those 

between benign and CIS.
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In this work, we show that the recognition of CIS by 

the observers was suboptimal in both tests, even when 

shown directly to the observers in either microscopic 

photographs or ROIs in WSIs. The identification of CIS 

has been shown to be underdiagnosed, despite being clin-

ically relevant and identifying patients who usually need 

surgical treatment and close follow-up due to increase risk 

of developing IC.8-10 Importantly, the CIS classification 

accuracy was substantially increased with the support of 

algorithm A, showing that CAD tools can close the gap 

of false-negative results and ultimately contribute to in-

creased patient health.

In test B, the excellent mean concordance rate be-

tween observers and the GT was maintained throughout 

the phases, meaning that an algorithm with a lower accu-

racy than that of the observers did not jeopardize their 

accuracy. In this case, the algorithm was not providing a 

credible alternative classification but rather keeping the 

observers faithful to their initial classification. However, 

in the last phase of test B, more alternative classifications 

were proposed, specially by residents with less experience 

than the pathologist, letting algorithm B work as a con-

fusion generator. These results suggest that only CAD 

tools with the high accuracy should be implemented for 

clinical use.

Awareness of the accuracy and types of errors of al-

gorithm A in phase 3 allowed measurement of its effect 

in the observers. This awareness translated into a higher 

proportion of changes in the classification of the photo-

graphs and in more alternative classifications, particularly 

from pathologists who took more advantage from the al-

gorithm, even surpassing the accuracy of the algorithm. 

This effect points to the concept that better classification 

accuracy is achieved when both algorithm and observers 

work together rather than alone, producing a synergic ef-

fect. Phase 3 in test B was not performed because the ob-

servers would never consider an algorithm output with 

lower accuracy than their own.

We are aware that the use of IHC, as part of the daily 

practice in pathology, could have a positive impact on the 

observer´s accuracy. IHC was not available to the obser-

vers, representing a limitation of this work. Nevertheless, 

one of the goals was to test whether CAD tools could im-

prove the observer´s accuracy on H&E.

Interestingly, in test A, there were two observers 

making less than 5% modifications of the favorite clas-

sification in both phases. These “nonbelievers” were the 

ones with concordance rates with GT lower than algo-

rithm A in the last phase, indicating that CAD tools may 

have different impacts on different types of observers. 

Moreover, pathologists more often changed the alterna-

tive classification with algorithm A than with algorithm 

B, and residents more often changed the alternative clas-

sification with algorithm B than with algorithm A, sug-

gesting that the higher experience of pathologists may 

have a role in determining how far they let the use of a 

CAD tool influence their final classification.

Conclusions

To our knowledge, this study represents the first 

time that machine learning algorithms in DP have been 

used to measure their impact in the classification ac-

curacy of  pathologists and pathology residents. We 

demonstrate that such CAD tools can increase the clas-

sification accuracy in the setting of  breast lesions, pro-

viding the basis for its future clinical implementation 

with supervision.
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