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ABSTRACT

Artificial intelligence has been advancing in fields including anesthesiology. 

This scoping review of the intersection of artificial intelligence and anesthesia 

research identified and summarized six themes of applications of artificial 

intelligence in anesthesiology: (1) depth of anesthesia monitoring, (2) control 

of anesthesia, (3) event and risk prediction, (4) ultrasound guidance, (5) pain 

management, and (6) operating room logistics. Based on papers identified 

in the review, several topics within artificial intelligence were described and 

summarized: (1) machine learning (including supervised, unsupervised, and 

reinforcement learning), (2) techniques in artificial intelligence (e.g., classical 

machine learning, neural networks and deep learning, Bayesian methods), 

and (3) major applied fields in artificial intelligence.

The implications of artificial intelligence for the practicing anesthesiologist are 

discussed as are its limitations and the role of clinicians in further develop-

ing artificial intelligence for use in clinical care. Artificial intelligence has the 

potential to impact the practice of anesthesiology in aspects ranging from 

perioperative support to critical care delivery to outpatient pain management.
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Artificial intelligence has been defined as the study of 
algorithms that give machines the ability to reason and 

perform functions such as problem-solving, object and word 
recognition, inference of world states, and decision-mak-
ing.1 Although artificial intelligence is often thought of as 
relating exclusively to computers or robots, its roots are 
found across multiple fields, including philosophy, psychol-
ogy, linguistics, and statistics. Thus, artificial intelligence can 
look back to visionaries across those fields, such as Charles 
Babbage, Alan Turing, Claude Shannon, Richard Bellman, 
and Marvin Minsky, who helped to provide the foundation 
for many of the modern elements of artificial intelligence.2 
Furthermore, major advances in computer science, such as 
hardware-based improvements in processing and storage, 
have enabled the base technologies required for the advent 
of artificial intelligence.

Artificial intelligence has been applied to various 
aspects of medicine, ranging from largely diagnostic 
applications in radiology3 and pathology4 to more ther-
apeutic and interventional applications in cardiology5 
and surgery.6 In April 2018, the U.S. Food and Drug 
Administration approved the first software system that 
uses artificial intelligence—a program that assists in the 
diagnosis of diabetic retinopathy through the analysis of 
images of the fundus.7 As the development and applica-
tion of artificial intelligence technologies in medicine 
continues to grow, it is important for clinicians in every 
field to understand what these technologies are and how 
they can be leveraged to deliver safer, more efficient, more 
cost-effective care.

Anesthesiology as a field is well positioned to potentially 
benefit from advances in artificial intelligence as it touches 
on multiple elements of clinical care, including perioperative 
and intensive care, pain management, and drug delivery and 
discovery. We conducted a scoping review of the literature at 
the intersection of artificial intelligence and anesthesia with 
the goal of identifying techniques from the field of artificial 
intelligence that are being used in anesthesia research and 
their applications to the clinical practice of anesthesiology.

Materials and Methods

The Medline, Embase, Web of Science, and IEEE Xplore 
databases were searched using combinations of the follow-
ing keywords: machine learning, artificial intelligence, neu-
ral networks, anesthesiology, and anesthesia. To be included, 
papers had to be focused on the design or application of 
artificial intelligence–based algorithms in the practice of 
anesthesia, including preoperative, intraoperative, postop-
erative, and surgical critical care as well as pain manage-
ment. All English-language papers from 1946 to September 
30, 2018 were eligible. Peer-reviewed, published literature, 
including narrative review papers, were eligible for inclu-
sion as were peer-reviewed conference proceeding papers. 
Editorials, letters to the editor, and abstracts were excluded 
as were any studies involving animals, fewer than 10 patients, 
or simulated data only. Papers that involved monitoring of 
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patient parameters broadly but were not specific to the 
practice of anesthesia (e.g., general ward-based monitoring 
and alarms, sleep study analysis) were excluded.

Four reviewers screened articles for inclusion or exclu-
sion using Covidence (Melbourne, Australia). Each article 
was screened by two independent reviewers. A third reviewer 
would mediate any disagreement between two screeners. 
Reference lists of included papers were hand-searched by 
one reviewer and included if the inclusion criteria were met.

Emphasis was placed on extracting themes relating to 
applications of artificial intelligence. Although specifics 
regarding the numerous algorithms that can be used in arti-
ficial intelligence studies and applications were outside the 
scope of this review, common techniques uncovered in the 
literature were reviewed as examples.

Results

A total of 2,171 titles were identified from the database 
search, and 1,368 abstracts were eligible for screening. Of 
these, 394 full-text studies were assessed for inclusion, and 
173 manuscripts were included in the final analysis (fig. 1).

Based on the 173 included full-text articles, we identified 
the following categories of studies: (1) depth of anesthesia 
monitoring, (2) control of anesthesia, (3) event and risk pre-
diction, (4) ultrasound guidance, (5) pain management, and  
(6) operating room logistics. Seven articles (n = 7) were broad 

review papers that covered multiple categories. Included 
articles and their categorization are listed in Supplemental 
Digital Content (http://links.lww.com/ALN/C51). From 
these categories, we identified the major topics of artificial 
intelligence that were captured in this search.

The predominant focus across most of these studies 
has been to investigate potential ways that artificial intelli-
gence can benefit the clinical practice of anesthesiology not 
through the replacement of the clinician but through aug-
mentation of the anesthesiologist’s workflow, decision-mak-
ing, and other elements of clinical care. Thus, although 
artificial intelligence is an expansive field, the results of 
this review demonstrated the literature’s focus on machine 
learning and its applications to clinical care. To structure the 
findings of the scoping review, we have presented below 
the following: machine learning and the types of learning 
algorithms, major topics in artificial intelligence, artificial 
intelligence techniques, and the six aforementioned catego-
ries of applications of artificial intelligence to anesthesiol-
ogy that were found in the literature.

Machine Learning and Learning Algorithms in Artificial 
Intelligence

Although different taxonomies of artificial intelligence have 
been previously described, common to many of these is 
the categorization of machine learning as one of the major 

Fig. 1. Preferred reporting Items for Systematic reviews and Meta-Analyses diagram of screening and evaluation process.
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subfields of artificial intelligence. Traditional computer pro-
grams are programmed with explicit instructions to elicit 
certain behaviors from a machine based on specific inputs 
(e.g., the primary function of a word processing program 
is to display the text input by the user). Machine learn-
ing, on the other hand, allows for programs to learn from 
and react to data without explicit programming. Data that 
can be analyzed through machine learning are broad and 
include, but are not limited to, numerical data, images, text, 
and speech or sound. A common manner with which to 
conceptualize machine learning is to consider the type 
of learning algorithm used to solve a problem: supervised 
learning, unsupervised learning, and reinforcement learn-
ing.8 Each of these types of learning algorithms has a range 
of techniques that can be applied and will be covered in the 
next section.

Supervised learning is a task-driven process by which an 
algorithm(s) is trained to predict a prespecified output, such 
as identifying a stop sign or recognizing a cat in a photo-
graph. Supervised learning requires both a training dataset 
and a test dataset. The training dataset allows the machine 
to analyze and learn the associations between an input and 
desired output while the test dataset allows for the assess-
ment of the performance of the algorithm on new data. In 
many studies, one large dataset is subdivided into a training 
set and a test set (often 70% of the data for training, 30% 
for testing).

For example, Kendale et al.9 conducted a supervised 
learning study on electronic health record data with the 
goal of identifying patients who experienced postinduction 
hypotension (mean arterial pressure [MAP] less than 55 
mmHg). The training dataset included 70% of the patients 
and variables such as American Society of Anesthesiologists 
(ASA) physical status, age, body mass index, comorbidities, 
and medications as well as the blood pressures of the patients. 
The various algorithms used by Kendale et al.9 could then 
analyze the training dataset to learn which variables were 
predictive of postinduction hypotension. The test dataset 
was then analyzed to assess how accurately the algorithm 
could predict postinduction hypotension in the remaining 
30% of patients.9 Some studies use external validation (i.e., 
the use of a separate dataset) to assess the generalizability of 
the algorithm to other data sources.10 A study using elec-
tronic health record data from one hospital in their training 
and testing datasets may then incorporate electronic health 
record data from a separate hospital to further validate the 
performance of their algorithm on a different data source, 
demonstrating generalizability to other populations.

Unsupervised learning refers to algorithms identifying 
patterns or structure within a dataset. This can be useful 
to find novel ways of classifying patients, drugs, or other 
groups. Bisgin et al.11 used unsupervised learning techniques 
to mine data from the Food and Drug Administration drug 
labels to identify the major topics (e.g., specific adverse 
events, therapeutic application) into which drugs could be 

automatically classified for hypothesis generation for future 
research.11 Similarly, unsupervised learning can be used 
to identify patients who could most benefit from certain 
drugs, such as asthmatics who would benefit most from glu-
cocorticoid therapy, based on genomic analysis.12

Reinforcement Learning refers to the process by which 
an algorithm is asked to attempt a certain task (e.g., deliver 
inhalational anesthesia to a patient, drive a car) and to learn 
from its subsequent mistakes and successes.13 A biologic 
analogy to reinforcement learning is operant conditioning, 
where the classical example is of a rat taught to push a lever 
through the use of food-based reward. However, reinforce-
ment learning problems today are more sophisticated. For 
example, Padmanabhan et al.14 used reinforcement learning 
to develop an anesthesia controller that used feedback from 
a patient’s bispectral index (BIS) and MAP to control the 
infusion rates of Propofol (in a simulated patient model). 
In this scenario, achieving BIS and MAP values within a 
set range result in a reward to the algorithm whereas values 
outside the range result in errors that prompt the algorithm 
to perform further fine-tuning.

Machine learning problems are often divided into 
those that require classification (dividing data into dis-
crete groups) and those that require regression (model-
ing data to better understand the relationship between 
two or more continuous variables with the potential for 
prediction). A frequent example of classification is image 
recognition (e.g., recognizing a cat vs. a dog), whereas a 
frequent example of regression is prediction (e.g., predict 
house prices from preexisting data on square footage).15 
Supervised, unsupervised, and reinforcement learning 
approaches can each be used to tackle problems of clas-
sification and regression depending on the nature of the 
question and the type of data available.

Techniques in Artificial Intelligence

There are various techniques and models within each of 
the three approaches to machine learning described above. 
Although a detailed description of the specific methods 
and algorithms used in machine learning are outside the 
scope of this review, it can be useful to have an introductory 
familiarity with basic concepts of the more popular tech-
niques used in artificial intelligence research.

Fuzzy Logic – A Historical Perspective. Fuzzy set theory and 
fuzzy logic were first described in 1965.16 Although fuzzy 
logic in and of itself is not necessarily artificial intelligence, 
it has been used within other frameworks to facilitate 
artificial intelligence–based functions. Standard logic allows 
only for the concepts of true (a numerical value of 1.0) and 
false (a numerical value of 0.0), but fuzzy logic allows for 
partial truth (i.e., a numerical value between 0.0 and 1.0). A 
comparison may be made to probability theory where the 
probability of a statement being true is evaluated (e.g., “a 
pancreaticoduodenectomy will be scheduled tomorrow”) 
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versus the degree to which a statement is true (e.g., “there 
is an 80% chance of a pancreaticoduodenectomy being 
scheduled tomorrow”). It is meant to resemble human 
methods of decision making with vague or imprecise 
information.

Fuzzy logic often uses rule-based systems (e.g., if…then 
systems) that have been largely used in control systems 
where precise mathematical functions do not accurately 
model phenomena. For example, an anesthesia monitor 
to detect hypovolemia was developed using fuzzy logic to 
approximate the presence of mild, moderate, and severe 
hypovolemia based on normalized values of heart rate 
(HR), blood pressure, and pulse volume that were divided 
into categories of mild, moderate, and severe. The monitor 
used rules built on fuzzy logic such as “If (electrocardio-
gram-HR is mild) and (blood pressure is mild) and (pulse 
volume is severe), then (hypovolemia is moderate).”17

The development of such rules requires expert human 
input to determine an appropriate rule set for the machine 
to follow, and early studies in fuzzy logic and other adap-
tive control mechanisms help set the foundation for explor-
ing more modern approaches to imprecise information or 
incomplete data. More recent research in the field has used 
artificial intelligence approaches to better evaluate and use 
data to trigger the rule functions of fuzzy systems. Thus, 
although research in fuzzy logic systems is ongoing (espe-
cially in control systems for applications such as medica-
tion delivery), progress in artificial intelligence research has 
focused on using more data-driven techniques in machine 
learning to achieve goals first explored by researchers work-
ing with fuzzy logic.

Classical Machine Learning. Machine learning uses features, 
or properties within the data, to perform its tasks. To 
analogize to an example in statistical analysis, features 
would be analogous to independent variables in a logistic 
regression. In classical machine learning, the features are 
selected (often referred to as hand-crafted) by experts to help 
guide the algorithms in the analysis of complex data.

Decision tree learning is a type of supervised learning 
algorithm that can be used to perform either classification 
(classification trees) or regression tasks (regression trees). As 
its name implies, this set of techniques uses flowchart-like 
tree models with multiple branch points to determine a tar-
get value or classification from an input. Each node within 
a tree has an assigned value, and the final node represents 
an endpoint and the cumulative probability of arriving at 
that point based on the preceding decisions (fig. 2). Hu et 
al.18 used decision trees to predict total patient-controlled 
analgesia (PCA) consumption from features such as patient 
demographics, vital signs and aspects of their medical history, 
surgery type, and PCA doses delivered with the promise of 
using such approaches to optimize PCA dosing regimens.18

The k-nearest neighbor algorithms are a group of 
supervised learning algorithms that assesses training data 

geometrically and then determine whether additional input 
data falls into a category based on the training examples 
plotted nearest to it (based on Euclidian distance). Based 
on the specific approach used, this may be based on a single 
nearest point (1-nearest neighbor) or the weight of a group 
of points (k-nearest neighbor).19 Support vector machines 
are another type of supervised learning algorithm that can 
also be used for both classification and regression. Support 
vector machines map training data in space and then use 
hyperplanes to optimally separate the data into representa-
tive categories or clusters (fig. 3). New data are then clas-
sified based on their location in the space relative to the 
hyperplane.20

Neural Networks and Deep Learning. One of the most popular 
methods today for performing work in machine learning is 
the use of neural networks. Neural networks are inspired 
by biologic nervous systems and process signals in layers 
of computational units (neurons).21 Each network is made 
up of an input layer of neurons comprised of features that 
describe the data, at least one hidden layer of neurons 
that conducts different mathematical transformations on 
the input features, and an output layer that yields a result 
(fig.  4). Between each layer are multiple connections 
between neurons that are parameterized to different 
weights depending on the input-output maps. Thus, neural 
networks are a framework within which different machine 
learning algorithms can work to achieve a particular task 
(e.g., image recognition, data classification).

Modern neural network architecture has expanded to 
allow for deep learning, neural networks that use many 
layers to learn more complex patterns than those that 

Fig. 2. An illustrative example of a decision node. Several ter-

minologies can be used to describe decision trees. The root 

node is the start of the tree, and branches connect nodes. A 

child node is any node that has been split from a previous node, 

whereas a decision node is any node that allows two or more 

options to follow it. A chance node is any node that may repre-

sent uncertainty.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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are discernible from simple one- or two-layer networks. 
Subtypes of deep learning networks that one may encoun-
ter are convolutional neural networks, which can process 
data composed of multiple arrays, and recurrent neural net-
works, which are better designed to analyze sequential data 

(e.g., speech).22 Unlike in classical machine learning where 
features are hand-crafted, deep learning self-learns features 
based on the data itself. It analyzes all available features within 
the training set to determine which features allow for the 
optimal achievement of the deep neural network’s given task 
(e.g., object recognition from an image). Thus, deep learning 
is potentially a powerful tool with which to analyze very 
large datasets where hand-crafted feature selection may be 
inadequate and/or inefficient in achieving an effective result.

Given their flexibility in analyzing various types of 
data, neural networks are a technique that have now been 
applied to other subfields of artificial intelligence, including 
natural language processing and computer vision. Within 
the field of anesthesia, multiple examples of the applica-
tions of neural networks exist, including depth of anesthesia 
monitoring and control of anesthesia delivery as described 
further below.

Bayesian Methods. Bayes’ theorem provides a description of 
probability of an event based on previous knowledge or 
data about factors that may influence that event. In many 
studies in the medical literature, a frequentist approach to 
statistics is applied, wherein hypothesis testing occurs based 
on the frequency of events that occur in a given sample 
of data as a representation of the study population of 
interest. A Bayesian approach differs by using the known 
previous probability distribution of an event along with the 
probability distribution represented in a given dataset.23

Bayes’ theorem provides the foundation for many tech-
niques in artificial intelligence as it allows for both mod-
eling of uncertainty and updating or learning repeatedly 
as new data is made available.24 Bayesian techniques have 
been incorporated into many common tasks such as spam 
filtering, financial modeling, and evaluation of clinical 
tests.25,26 Although delving into the specific methodologies 
of Bayesian methods is outside the scope of this review, 
Bayesian methods that are being used with increased fre-
quency in the medical literature include Bayesian networks, 
hidden Markov models, and Kalman filters.27

Applied Fields in Artificial Intelligence

Two other topics identified by the search as relevant to anes-
thesiology were natural language processing and computer 
vision, and these topics are both applications of and subfields 
within artificial intelligence that use machine learning.

Natural Language Processing. Natural language processing is 
a subfield of artificial intelligence that focuses on machine 
understanding of human language. Before the advent of 
natural language processing, computers were limited to 
reading machine languages or code (e.g., C++, JAVA, Visual 
Basic). Instructions programed in code are compiled by a 
computer to process a set of instructions to yield a desired 
output. With natural language processing, machines can strive 
toward the understanding of language that is used naturally by 

Fig. 3. An illustrative example of support vector machines. 

The goal of the support vector machines algorithm is to find the 

hyperplane that maximizes the separation of features. The solid 

black line represents the optimal hyperplane, whereas the dotted 

lines represent the planes running through the support vectors. 

The empty circle and the solid triangle represent support vec-

tors—the data points from each cluster that represent the clos-

est points to the optimal hyperplane. The dashed line represents 

the maximum margin between the support vectors.

Fig. 4. An illustrative example of a three-layer neural network. 

The input layer provides features such as electroencephalogram 

(EEG) power and entropy, the patient’s mean arterial pressure 

(MAP), and the patient’s heart rate variability (HrV) to the net-

work. A hidden layer transforms inputs into features usable by 

the network. The output layer transforms the hidden layer’s 

activations into an interpretable output (e.g., patient awake vs. 

asleep).

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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humans. Natural language processing, however, is not simply 
recognizing letters that construct a word and then matching 
them to a definition. It strives to achieve understanding of 
syntax and semantics to approximate meaning from phrases, 
sentences, or paragraphs.28

In medicine, the most natural application of natural 
language processing is to automated analysis of electronic 
health record data. Although the move to electronic health 
records has shifted a considerable amount of documenta-
tion to checkboxes, dropdown menus, and prepopulated 
fields, free text entry remains a critical component of cli-
nician documentation, allowing clinicians to communicate 
with one another and to document not just important 
findings but also the thought process behind medical deci-
sions. Natural language processing is currently being used 
to help extract information from free text fields to build 
more structured databases that can be further analyzed to 
identify surgical candidates, assess for adverse events, or to 
facilitate billing.29–31

Computer Vision. With the growing attention on autonomous 
vehicles, computer vision has become one of the most widely 
recognized subfields of artificial intelligence. Computer 
vision refers to machine understanding of images, videos, and 
other visual data (e.g., computed tomography). Automated 
acquisition, processing, and analysis of images are part of 
the computer vision process that leads to understanding 
of a scene. Color, shape, texture, contour, and focus are 
just some of the different elements that can be detected 
and analyzed by computer vision systems. While object 
detection and recognition (e.g., identifying another car on 
the road) have been popularized in the lay press, computer 
vision encompasses the field of work that includes research 
on describing the visual world in numerical or symbolic 
form to allow for interpretation of images for subsequent 
action (e.g., determining that the car on the road ahead of 
your will be slowing down at the stop sign, prompting the 
need to slow your vehicle as well).

In medicine, the application of computer vision to 
pathology and radiology have led to systems capable of 
assisting clinicians in reducing error rates in diagnosis by 
identifying areas on slides and x-rays that have a high prob-
ability of demonstrating pathology.32,33 Furthermore, com-
puter vision has been used to automatically identify and 
segment steps of laparoscopic surgery, suggesting that con-
text awareness is possible with computer vision systems.34 
In anesthesiology, computer vision has largely been applied 
to the automated analysis of ultrasound images to assist with 
identification of structures during procedures.35,36

Applications of Artificial Intelligence in Anesthesiology

Depth of Anesthesia Monitoring. Use of artificial intelligence 
to improve depth of anesthesia monitoring was identified in 
42 papers. The majority of these papers focused on use of the 
BIS (Medtronic, USA) or electroencephalography to assess 

anesthetic depth. The attention to these two modalities of 
measurement was not surprising given research efforts in 
reducing the risk of intraoperative awareness and previous 
literature suggesting that low BIS and burst-suppression on 
electroencephalography during anesthesia may be associated 
with poorer outcomes.37,38 In addition, careful monitoring 
of MAP has also been noted in the literature, likely due to 
the association of low MAP with postoperative mortality.39

Machine learning approaches are well-suited to analyze 
complex data streams such as electroencephalographies; 
thus, a range of electroencephalography-based signals was 
found to have been investigated to measure depth of anes-
thesia. Literature from the early 1990s described the use of 
neural networks to evaluate electroencephalography power 
spectra as a signal in discriminating awake versus anesthe-
tized patients and identified the potential of specific fre-
quency bands in assessing the effects of certain drugs.40,41 As 
use of index parameters of depth of anesthesia such as BIS 
increased in popularity, neural networks and other machine 
learning approaches were used to analyze electroencepha-
lography data with the goal of approximating BIS through 
other electroencephalography parameters.42,43

More recent papers have used artificial intelligence 
techniques and spectral analysis to more directly analyze 
electroencephalography signals to estimate the depth of 
anesthesia. Mirsadeghi et al.44 studied 25 patients and com-
pared the accuracy of their machine learning method of 
analyzing direct features from electroencephalography sig-
nals (e.g., power in different bands [delta, theta, alpha, beta 
and gamma], total power, spindle score, entropy, etc.) in 
identifying awake versus anesthetized patients against the 
BIS index. Their accuracy in using electroencephalography 
features was 88.4% while BIS index accuracy was 84.2%.44 
Similarly, Shalbaf et al.45 used multiple features from elec-
troencephalographies to classify awake versus anesthetized 
patients (as four possible states of awake, light, general, or 
deep anesthesia) during sevoflurane with 92.91% accuracy 
compared with the response entropy index which had an 
accuracy of 77.5%. This same algorithm demonstrated with 
generalization to Propofol and volatile anesthesia patients 
with 93% accuracy versus the BIS index’s 87% accuracy.45 
These papers highlight the power of artificial intelligence 
techniques in creating models that can efficiently consider 
linear and non-linear data together to generate predictions 
that maximize the utility of each available variable.

Whereas BIS and electroencephalography were the sub-
ject of the majority of the papers identified, other clinical 
signals have been investigated as well. Zhang et al.46 recorded 
mid-latency auditory evoked potentials from patients and 
used neural networks to assess the accuracy of these sig-
nals in determining when patients were awake (96.8% 
accuracy), receiving adequate anesthesia (86% accuracy), 
and emerging from general anesthesia (86.6% accuracy). 
In addition, clinical variables such as heart rate variability 
have been investigated to approximate sedation level as 
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typically measured by the Richmond Agitation Sedation 
Scale.46 Related to depth of anesthesia monitoring, Ranta 
et al.47 conducted a database study of 543 patients who had 
undergone general anesthesia with 6% reporting intraop-
erative awareness. Neural networks analyzed clinical data 
from these patients such as blood pressure, heart rate, and 
end-tidal carbon dioxide but did not use any electroen-
cephalography data. The prediction probabilities for these 
networks in predicting awareness was, at best, 66% though 
it had a high specificity of 98%.47 As described above about 
neural networks and deep learning, the strength of such 
approaches over classical regression techniques is a neural 
network’s ability to engage in self-learning of the features in 
the dataset, selecting features that will best predict a target 
value (e.g., awareness) rather being fed the features thought 
to be most predictive by a human expert.

Control of Anesthesia Delivery. Thirty-three (n = 33) papers 
were identified that pertained to control systems for 
delivery of anesthesia, neuromuscular blockade, or other 
related drugs. Control systems in anesthesia were reviewed 
in detail by Dumont and Ansermino48 with explanations 
of feedforward and feedback systems as well as multiple 
examples of different closed-loop systems.48 As automated 
delivery of anesthesia also requires a determination of the 
depth of anesthesia by a machine, approaches to control 
require the measurement of clinical signs or surrogate 
markers of anesthetic depth. Thus, the evolution of control 
system research in anesthesia is evident in the various targets 
used to approximate depth of anesthesia.

In the 1990s, clinical signs and measurements such as 
blood pressure were used as signals to the control systems 
to determine how to regulate delivery of anesthetics.49,50 
As new metrics to measure depth of anesthesia were devel-
oped, targets shifted to measuring values such as BIS. Early 
work used purely empirical approaches to tuning delivery 
of anesthesia to achieve a target BIS.51 As use of BIS became 
more widespread, researchers began to use more sophisti-
cated fuzzy logic systems or reinforcement learning to 
achieve anesthetic control using BIS as a target measure.52–54 
Our search did not return papers on the use of direct elec-
troencephalography measures for anesthesia control.

Control systems that use machine learning have also been 
used to automate the delivery of neuromuscular block-
ade,55,56 and these systems have also incorporated forecasting 
of drug pharmacokinetics to further improve the control of 
infusions of paralytics.57 Three papers were identified that 
described the use of artificial intelligence to achieve control 
of mechanical ventilation58,59 or to automate weaning from 
mechanical ventilation.60

Event Prediction. Our search identified 53 papers that could 
loosely be classified as pertaining to event prediction. We 
refer to event prediction as any studies that engage in 
prediction of an effect or event (e.g., complication, length 

of stay, awareness, etc.), and these papers were categorized 
into those pertaining to operative (immediate preoperative 
assessment; n = 26 papers), postoperative (n = 14 papers), or 
critical care-related events (n = 13 papers).

For perioperative care risk prediction, various techniques 
in machine learning, neural networks, and fuzzy logic have 
all been applied. For example, neural networks were used to 
predict the hypnotic effect (as measured by BIS) of an induc-
tion bolus dose of propofol (sensitivity of 82.35%, specificity 
of 64.38% and an area under the curve of 0.755) and was 
found to exceed the average estimate of practicing anesthe-
siologists (sensitivity: 20.64%, specificity 92.51%, area under 
the curve of 0.5605).61 At the tail end of an operation, Nunes 
et al. (2005)62 compared neural networks and fuzzy models 
in their prediction of return of consciousness after general 
anesthesia (propofol + remifentanil) in a small sample of 20 
patients, finding mixed results for all models. Neural networks 
have also been used to predict the rate of recovery from neu-
romuscular blockade63 and hypotensive episodes postinduc-
tion64 or during spinal anesthesia,65 while other machine 
learning approaches have been tested to automatically classify 
pre-operative patient acuity (i.e., ASA status),66 define diffi-
cult laryngoscopy findings,67 identify respiratory depression 
during conscious sedation,68 and to assist in decision-making 
for the optimal method of anesthesia in pediatric surgery.69

With regard to specific event detection in both the 
operating room and the intensive care unit  (ICU), Hatib 
et al.70 used two large databases (total of 1,334 patients) 
of waveform data from arterial lines to develop and test 
a logistic regression model that could predict hypotension 
(i.e., mean arterial pressure less than 65 mmHg sustained 
for 1 min) up to 15 min before its occurrence on an arte-
rial line waveform.70 Other ICU database studies have used 
machine learning models to predict morbidity,71,72 weaning 
from ventilation,73 clinical deterioration,74,75 mortality,76 or 
readmission77 and to detect sepsis.78

Machine learning approaches to critical care have not 
been limited to large database studies only. In a single-cen-
ter randomized control trial comparing a machine learn-
ing alert system (using six vital sign parameters as features) 
versus an electronic health record–based alert system that 
used other criteria for the prediction of sepsis, the machine 
learning alert system outperformed Systemic Inflammatory 
Response Syndrome criteria, Sequential Organ Failure 
Assessment score, and quick Sequential Organ Failure 
Assessment score in the detection of sepsis. Its use resulted 
in a 20.6% decrease in average hospital length of stay and, 
more importantly, a 58% reduction in in-hospital mortality.79

Ultrasound Guidance. Eleven (n = 11) papers were identified 
that described the use of artificial intelligence techniques 
to assist in the performance of ultrasound-based procedures, 
and neural networks were the most commonly employed 
method of achieving ultrasound image classification. 
Smistad et al.36 used ultrasound images of the groin from 15 
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patients to train a convolutional neural network to identify 
the femoral artery or vein while distinguishing it from other 
potentially similar appearing ultrasound images such as 
muscle, bone, or even acoustic shadow. Closer investigation 
of the network found that it would analyze horizontal edges 
in the ultrasound with greater priority than vertical edges to 
identify vessels with an average accuracy of 94.5% ± 2.9%.36

In addition to specific structure detection in ultrasound 
images, researchers have also used neural networks to assist 
in the identification of vertebral level and other anatomi-
cal landmarks for epidural placement. Pesteie et al.35 used 
convolutional neural networks to automate identification 
of the anterior base of the vertebral lamina,35 whereas 
Hetherington et al.80 used convolutional neural networks to 
automatically identify the sacrum and the L1–L5 vertebrae 
and vertebral spaces from ultrasound images in real time 
with up to 95% accuracy.80

Pain Management. Nine (n = 9) papers were identified 
that related to the field of pain management, ranging from 
prediction of opioid dosing to identification of patients 
who may benefit from preoperative consultation with a 
hospital’s acute pain service.81,82 Brown et al.83 used machine 
learning to analyze differences in functional magnetic 
resonance imaging data collected from human volunteers 
who were exposed to painful and nonpainful thermal 
stimuli, demonstrating that machine learning analysis of 
whole brain scans could more accurately identify pain than 
analysis of individual brain regions traditionally associated 
with nociception.83

Identification of pain was not limited to imaging tech-
niques, Ben-Israel et al.84 developed a nociception level 
index that was based on machine learning analysis of 
photoplethysmograms and skin conductance waveforms 
recorded from 25 patients undergoing elective surgery. 
However, the nociception level index was based on a target 
described as the combined index of stimulus and analge-
sia that was defined and validated within the same study, 
including an arbitrary ranking of intraoperative noxious 
stimuli.84 In an attempt to identify more objective bio-
markers for pain, Gram et al.85 used machine learning to 
analyze electroencephalography signals from 81 patients in 
an attempt to predict patients who would respond to opioid 
therapy for acute pain; the results demonstrated only 65% 
accuracy of preoperative electroencephalography assess-
ment of patients who would respond to postoperative opi-
oid therapy.85 Furthermore, Olesen et al.81 conducted a big 
data study searching for single nucleotide polymorphisms 
in 1,237 cancer patients that could predict opioid dosing 
for these patients; however, their study did not discover any 
single nucleotide polymorphism associations with opioid 
dosing in this population.81

Operating Room Logistics. Three (n = 3) papers described 
the use of artificial intelligence to analyze factors relating 

to operating room logistics, such as scheduling of 
operating room time or tracking movements and actions 
of anesthesiologists. Combes et al.86 used a hospital database 
containing extensive information on staffing, operating 
room use per procedure and staff, and post anesthesia care 
unit use with the electronic health record to train a neural 
network to predict the duration of an operation based on 
the team, type of operation and a patient’s relevant medical 
history; however, prediction accuracy of their models never 
exceeded 60%.86 In a different example, fuzzy logic and 
neural networks were used to optimize bed use for patients 
undergoing ophthalmologic surgery by modeling the type 
of case, modeling surgeon experience, staff experience, type 
of anesthesia and the experience of the anesthesiologist, 
patient factors, and comorbidities with error rates ranging 
from 14% to 19% depending on the type of case.87 In a 
different application of machine learning, Houliston et al.88 
analyzed radio frequency identification tags to determine 
the location, orientation, and stance of anesthesiologists in 
the operating room. Though their analyses were limited to 
simulated operating rooms with mannequins, the authors 
proposed the use of similar tracking applications with real 
patients to better understand potential impacts on patient 
safety based on the interaction of anesthesiologists with the 
various equipment in the room.88

Discussion

This scoping review identified six main clinical applica-
tions of artificial intelligence research in anesthesiology: (1) 
depth of anesthesia monitoring, (2) control of anesthesia, (3) 
event and risk prediction, (4) ultrasound guidance, (5) pain 
management, and (6) operating room logistics. From these 
applications, a summary of the most commonly encoun-
tered artificial intelligence sub-fields (e.g., machine learning, 
computer vision, natural language processing) and methods 
(classical machine learning, neural networks, fuzzy logic) 
was presented. Most applications of artificial intelligence for 
anesthesiology are still in research and development; thus, 
the current focus of artificial intelligence within anesthesi-
ology is not on replacing clinician judgment or skills but on 
investigating ways to augmenting them.

Some of the reviewed studies demonstrated improve-
ments over existing methods and technologies in measur-
ing clinical endpoints such as depth of anesthesia, whereas 
others showed no difference or even worse performance 
of artificial intelligence compared with currently available 
and widely used techniques. This dichotomy in the perfor-
mance of artificial intelligence is not surprising. Although 
artificial intelligence as a field has been in existence for over 
50 years, the recent resurgence of and increased attention 
on artificial intelligence as a potential enabling technology 
across industries has only occurred in the last 10 to 15 yr 
or so. The rapid advances that have been occurring in deep 
learning and reinforcement learning over this time frame 
have been attributed to a “big bang” of three factors: (1) the 
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availability of large datasets, (2) the advancement of hard-
ware to perform large, parallel processing tasks (e.g., use of 
graphical processing units for machine learning), and (3) a 
new wave of development for artificial intelligence archi-
tectures and algorithms. As a result, the lay press has written 
of examples of impressive feats of artificial intelligence in 
fields such as autonomous driving, board games (e.g., chess, 
Go), and complex strategy-based computer games (e.g., 
Starcraft). However, these applications have the advantage 
of being constrained environments with very specifically 
defined rules (as in gaming) or have had catastrophic fail-
ures that have gone along with their impressive successes 
(as exemplified by fatalities involving autonomous vehicles).

Deep Blue’s victory over chess grandmaster Garry 
Kasparov in 1998 stands as a famous example of a machine 
outperforming a human at a complex task, and even 
non–artificial intelligence–based computer programs have 
continued to demonstrate their superiority over humans 
in playing chess. These early programs were developed 
through simple optimization and search techniques or clas-
sical machine learning approaches that required input from 
expert players to help the machine develop effective strate-
gies to select the best moves in a given game scenario. More 
recently, AlphaZero is an example of artificial intelligence 
that uses deep neural networks and reinforcement learn-
ing to achieve its success as it learned from each play of 
the game to improve its strategy. Provided just the rules of 
chess, Go, and shogi, and a few hours of self-play to learn 
strategy, AlphaZero played at a superhuman level, beating 
the world experts and the other top computer programs in 
each game.89

We do not anticipate that artificial intelligence will 
master all aspects clinical anesthesiology in a matter of 
hours (or even years) as it has done with board games. 
Although games such as Go and shogi are complex, they 
are defined by well-understood rules that can be navi-
gated efficiently by artificial intelligence algorithms even 
when the possible set of moves is incredibly large (e.g., the 
estimated number of possible Go games is a googolplex 
or 10(10100 ).90 Clinical medicine, on the other hand, has sig-
nificant uncertainty; for much of the clinical data that we 
interpret during daily practice serve as surrogates for an 
underlying physiologic or pathophysiologic process rather 
than a direct measure of the process itself. Reinforcement 
learning and other approaches in artificial intelligence are 
thus left to tackle much more specific problems where the 
rules of clinical medicine are better understood, resulting 
in narrow artificial intelligence that seems constrained to 
accomplish one task at a time. However, feats such as arti-
ficial intelligence’s conquest of complex games and recent 
advances in artificial intelligence developed from large, 
well-curated clinical datasets70 raise hope that as we build 
better, more complete datasets, we could see more sophis-
ticated and clinically meaningful applications of artificial 
intelligence in medicine.

As described in the Results section, one strength of 
machine learning is its ability to learn from data; and this 
learning can happen continuously as more data becomes 
available. This provides a distinct advantage over static algo-
rithmic approaches (e.g., many of the existing risk predic-
tion models that have relied on a regression model run 
once) that analyze data once to determine how variables 
might predict outcomes or other clinical factors. A learn-
ing algorithm can be used statically or continuously as data 
are updated, and the choice of the approach often depends 
on its intended use. As of April 2019, the Food and Drug 
Administration had approved only static or locked algo-
rithms for medical use (e.g., detection of retinal pathology) 
as these algorithms can be expected to return predictable 
results for a given set of inputs. However, the Food and 
Drug Administration is considering policies for the intro-
duction of adaptive or continuously learning algorithms 
based on pre-market review and clear (as yet to be deter-
mined) guidelines around data transparency and real-world 
performance monitoring of these algorithms.91 It is unclear 
which field of medicine will see the first adaptive learning 
algorithm approved for clinical use, but a diagnostic rather 
than therapeutic application may be a more likely candidate.

This review was conducted as a focused scoping 
review intended to assess the breadth of artificial intelli-
gence research that has been conducted in anesthesiology 
rather than a systematic review designed to answer specific 
questions on the effectiveness or utility of artificial intel-
ligence–based technologies in clinical practice. Although 
additional papers that may be relevant to artificial intelli-
gence and anesthesiology may not have been captured with 
our search parameters, the breadth demonstrated in this 
review led us to identify areas where artificial intelligence 
will have implications for practicing clinicians, how clini-
cians can influence the future of artificial intelligence adop-
tion, and the limitations of artificial intelligence.

Implications of Artificial Intelligence for Practicing 
Clinicians

The practice of modern anesthesiology requires the anes-
thesiologist to gather, analyze, and interpret multiple data 
streams for each patient. As the healthcare system has 
increasingly moved from analog to digital data, practic-
ing clinicians have been asked to rely on ever-expanding, 
data-intensive workflows to accomplish their daily tasks. 
The electronic health record and the anesthesia infor-
mation management system are just two of the interfaces 
presented to clinicians.92 Fortunately, information manage-
ment systems that allow for automated extraction of clinical 
variables (e.g., vital signs, drug delivery timestamps, etc.) have 
eased the burden of documentation on the anesthesiologist. 
At the same time, the clinician must now consider how best 
to interpret the increasing amount of available data for the 
delivery of anesthetic and critical care. The application of 
artificial intelligence technologies should now emphasize 

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

s
a
h
q
.o

rg
/a

n
e
s
th

e
s
io

lo
g
y
/a

rtic
le

-p
d
f/1

3
2
/2

/3
7
9
/5

1
6
4
7
7
/2

0
2
0
0
2
0
0
_
0
-0

0
0
2
7
.p

d
f b

y
 g

u
e

s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



REVIEW ARTICLE

388 Anesthesiology 2020; 132:379–94 Hashimoto et al.

aiding the clinician in maximizing the clinical utility of the 
data that is now captured electronically.

Intraoperative and ICU monitoring of patients under 
anesthesia has relied on the experience of anesthesiolo-
gists to titrate anesthetics, neuromuscular blockade, and 
cardiovascular medications to safely maintain sedation and 
physiologic support. As medical technology has advanced, 
anesthesiologists are now expected to weigh and consider 
multiple sources of data to safely manage a patient’s anes-
thesia. Although commercially available devices such as the 
BIS and SEDLINE (Masimo, USA) monitors have offered 
the promise of simplifying the assessment of hypnosis, these 
devices have limited algorithms that can be unreliable at 
extremes of age,93 are dependent on the type of anesthetic 
agent(s) used,94 and are susceptible to interference (from 
motion, electrocautery, etc.). On the other hand, anal-
ysis of electroencephalography data can be complex and 
time-consuming for anesthesiologists who are having to 
analyze multiple data streams.

Shortcomings and barriers to electroencephalography 
usage during anesthesia could be mitigated by artificial 
intelligence as it excels in analyzing complex, large data sets, 
and our review has revealed multiple ongoing efforts to 
identify prediction features for depth of anesthesia or con-
sciousness states from electroencephalography signals and 
physiologic parameters.95 Furthermore, because intraopera-
tive awareness is a relatively rare event, big data approaches 
could be leveraged to overcome issues of data scarcity sur-
rounding awareness. This further highlights the importance 
of building and curating robust datasets that can provide an 
appropriate source of training material for the development 
of future artificial intelligence systems.

Examples such as the Philips eICU database (The 
Netherlands) and the Multiparameter Intelligent 
Monitoring in Intensive Care database demonstrate how 
current monitors and electronic health records or informa-
tion management systems can be leveraged to help auto-
mate the data collection process during episodes of care,96 
and datasets that combine traditional healthcare data (e.g., 
claims data, vital signs, laboratory values) with specific data 
such as images or video could further unlock the potential 
of artificial intelligence algorithms that excel at analyzing 
and integrating vast amounts of data.6 With enough data, 
tasks such as real-time event prediction, automated adjust-
ment of target-controlled infusions, and computer-assisted 
or even robotically autonomous ultrasound-guided proce-
dures could become real possibilities. However, accurate 
assessment of phenomena such as intraoperative awareness 
will be reliant on agreed upon standards of measurement as 
well as good annotation of data.

Good annotation of data is critical for the success of 
artificial intelligence in medicine. As artificial intelligence 
research attempts to approximate human performance in 
diagnostics and therapeutics or surpass human abilities 
in prediction, we must remember that assessment of the 

accuracy of artificial intelligence’s decisions and predictions 
are based on accepted standards to which we compare the 
artificial intelligence. Some accepted standards are objec-
tive and immutable: prediction of mortality can be validated 
against data that has recorded patient deaths. However, 
other accepted standards are subject to interpretation. In 
the studies we reviewed on ultrasound guidance, training of 
the selected machine learning method for identification of 
structures, landmarks, etc., was dependent on human label-
ing of the target in the training set (i.e., supervised learning). 
Thus, assessment of the accuracy of the artificial intelligence 
method was also based on comparison of the machine label 
to that of the human, underscoring the importance of hav-
ing reliable, consistent human-generated labels.

Identification of structures in ultrasounds can vary 
between novice and experienced sonographers. Thus, for 
a machine learning study or device development, it would 
be important to ensure that experienced sonographers 
were labeling training data and were the standard against 
which we compare a machine’s performance. Similarly, as 
we demonstrated in our review, much of the work on mon-
itoring depth of anesthesia in the 1990s and early 2000s was 
focused on the use of BIS as the target to assess awake versus 
anesthetized states in patients. BIS provided a convenient 
accepted standard target for artificial intelligence as a single 
numerical value could be used to approximate an appro-
priate depth of anesthesia; however, as recent clinical litera-
ture has called into question the utility of BIS in measuring 
depth of anesthesia, clinicians and researchers will have to 
collaborate to identify safe, valid target markers of hypnosis 
on which to train artificial intelligences.97,98 The continued 
development of technologies that use artificial intelligence, 
such as control systems for the delivery of medications such 
as anesthetics and paralytics, will be dependent on the iden-
tification of—and agreement on—accepted standard targets 
on which an artificial intelligence can tune its performance 
in achieving a given task.

Big data approaches to personalized medicine could play 
a large role in the delivery of anesthetic care in the future. 
Though a search of single nucleotide polymorphisms asso-
ciated with opioid dosing was not fruitful in a study on 
pain management,81 artificial intelligence has been used to 
great effect in other fields to identify and further investigate 
potential genetic markers of response to specific therapies.12 
The scope of this review may not have captured current 
or ongoing work on genome wide association studies that 
could uncover markers for optimal drug selection, dosing, 
or adverse reactions.

At this point in time, it is hard to predict the full potential 
of artificial intelligence applications as we continue to make 
significant strides in hardware and algorithm design as well 
as database creation, curation, and management—advances 
that will undoubtedly catalyze even further advances in 
artificial intelligence. Before pulse oximetry, trainees were 
taught to recognize cyanosis and other signs of hypoxia; 
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before automated sphygmomanometry, adept tactile esti-
mation of blood pressure from palpation of the pulse was 
a skill sought after by clinicians. Innovation led to devices 
that leveled the playing field for clinicians to be able to 
provide care based on reliable clinical metrics of oxygen 
saturation and blood pressure. Currently, the greatest near-
term potential for artificial intelligence is in its ability to 
offer tools with which to analyze massive amounts of data 
and offer more digestible statistics about that data that cli-
nicians can use to render a medical decision. Artificial intel-
ligence could thus provide anesthesiologists at all levels of 
expertise with decision support—whether clinical or pro-
cedural—to enable all clinicians to provide the best possible 
evidence-based care to their patients.

As Gambus and Shafer99 point out in their recent edi-
torial on artificial intelligence, humans have the ability to 
extrapolate from the known to the unknown based on a 
more complete understanding of scientific phenomena, but 
artificial intelligence can only draw conclusions from the 
data it has seen and analyzed.99 As more and more elements 
of clinical practice become digitized and accumulated into 
databases, we may one day see the development of artifi-
cial intelligence systems that have a more complete under-
standing of clinical phenomena and thus greater potential 
to deliver elements of anesthesia care autonomously.

Limitations and Ethical Implications of Artificial 
Intelligence

Artificial intelligence is not without its limitations. The 
hype surrounding artificial intelligence has reached a fever 
pitch in the lay press, and unrealistic expectations can result 
in eventual disillusionment with artificial intelligence if 
clinicians, patients, and regulators do not see the expected 
revolution in healthcare that is anticipated with artificial 
intelligence technologies.100 Therefore, it is critical to under-
stand that using artificial intelligence–based techniques will 
not necessarily result in classification or prediction that is 
superior to current methods. Artificial intelligence is a tool 
that must be deployed in the right situation to answer an 
appropriate question or solve an applicable problem.

One criticism of artificial intelligence, particularly of 
neural networks, is that the methods can result in black 
box results, where an algorithm can notify a clinician or 
researcher of a prediction but cannot provide further infor-
mation on why such a prediction was made. Efforts in 
explainable artificial intelligence are being made to improve 
the transparency of algorithms. The aim of explainable arti-
ficial intelligence is to produce models that can more read-
ily explain its findings (e.g., by showing which features it 
may have relied on to generate its prediction) with the end 
goal of improving its level of transparency and therefore 
increasing human trust and understanding of its predictions. 
Some techniques in artificial intelligence will more readily 
lend themselves to explanation than others. For example, 
decision trees allow for great transparency as each decision 

node could be reviewed and assessed while deep learn-
ing is currently assessed through inductive means. That is, 
each node within a deep learning model may not provide 
a clear explanation of why certain predictions were made; 
but the model can be asked to present relevant features or 
examples from its training data of skeletal x-rays to explain 
why a particular prediction was made on the bone age of a 
patient.101 In addition to concerns about transparency and 
trust in models, artificial intelligence can excel in demon-
strating correlations or in identifying patterns, but it can-
not yet determine causal relationships—at least not to a 
degree that would be necessary for clinical implementation. 
As research continues to expand in the field, clinicians will 
have to critically vet new research findings and product 
announcements, and medical education and training will 
necessarily have to incorporate elements of literacy in arti-
ficial intelligence concepts.

Artificial intelligence algorithms are also susceptible to 
bias in data. Beyond the basic research biases that clinicians 
are taught (e.g., sampling, blinding, etc.), we must also con-
sider both implicit and explicit bias in the healthcare system 
that can impact the large-scale data that is or will be used 
to train artificial intelligences. Eligibility of specific patient 
populations for clinical trials, implicit biases in treatment 
decisions in real world care, and other forms of bias can 
significantly affect the types of predictions that an artificial 
intelligence may make and influence clinical decisions.102,103 
Char et al.104 give the example of withdrawal of care from 
patients with traumatic brain injury. An artificial intelli-
gence may analyze data from a neuro-ICU and interpret 
a pattern of fatality after traumatic brain injury as a fore-
gone consequence of the injury rather than as secondary to 
the clinical decision to withdraw life support.104 Therefore, 
it is imperative that practicing clinicians partner or develop 
a dialogue with data scientists to ensure the appropriate 
interpretation of data analyses.

Future Directions

As this review has demonstrated, artificial intelligence algo-
rithms have not yet surpassed human performance; how-
ever, artificial intelligence’s ability to quickly and accurately 
sift through large stores of data and uncover correlations 
and patterns that are imperceptible to human cognition will 
make it a valuable tool for clinicians. In pathology, artificial 
intelligence has been demonstrated to augment the ability 
of clinicians in making diagnoses, such as in the reduction 
of error rate in recognizing cancer-positive lymph nodes.32 
This reduction error occurred not because the artificial 
intelligence outperformed humans—on the contrary it was 
worse—but because it could narrow the area of a histo-
pathologic slide that a human pathologist had to review, 
allowing more attention to be placed on a smaller area. 
Similarly, we anticipate that artificial intelligence technol-
ogy that can contribute to monitoring depth of anesthesia, 
maintaining drug infusions, or predicting hypotension in an 
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operation will allow practicing anesthesiologists to be more 
effective and efficient in the care they provide.

Medicine and the practice of anesthesiology is still, at its 
core, a uniquely human endeavor as both science and art. 
Although algorithms may one day exceed human capabilities 
in integrating complex, gigantic, structured datasets, much 
of the data that clinicians gather from patients comes from 
the clinician–patient relationship that is established when 
patients bestow trust on their doctor. Although anesthe-
siologists can develop the knowledge and training to trust 
artificial intelligence models, it remains to be seen to what 
extent patients will be willing to trust algorithms and how 
patients wish to have results from algorithms communicated 
to them. Therefore, qualitative research will be needed to bet-
ter understand the ethical, cultural, and societal implications 
of integrating artificial intelligence into clinical workflows.

Anesthesiologists should continue to partner with data 
scientists and engineers to provide their valuable clinical 
insight into the development of artificial intelligence to 
ensure that the technology will be clinically applicable, that 
the data used to train algorithms are valid and representa-
tive of a wide population of patients, and that interpreta-
tions of that data are clinically meaningful.105 Integration 
and analysis of data by models does not mean the mod-
els understand the implications of that data for specific 
patients. Thus, anesthesiologists should partner with other 
providers (e.g., surgeons, interventionalists, intensivists, 
nurses) and patients to help develop the strategy for the 
optimal use of artificial intelligence. Anesthesiology as a 
field has been a leader in the implementation and achieve-
ment of patient safety initiatives, and artificial intelligence 
can serve as a new tool to continue innovations in the 
delivery of safe anesthesia care.

Conclusion

The field of anesthesiology has a long history of engaging 
in research that incorporates aspects of artificial intelligence. 
Artificial intelligence has the potential to impact the clinical 
practice of anesthesia in aspects ranging from perioperative 
support to critical care delivery to outpatient pain manage-
ment. As research efforts advance and technology develop-
ment intensifies, it will be crucial for practicing clinicians 
to provide practice-based insights to assist in the clinical 
translation of artificial intelligence.
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