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Abstract

Artificial intelligence (AI) is the development of computer systems that are able to perform tasks that normally

require human intelligence. Advances in AI software and hardware, especially deep learning algorithms and the

graphics processing units (GPUs) that power their training, have led to a recent and rapidly increasing interest in

medical AI applications. In clinical diagnostics, AI-based computer vision approaches are poised to revolutionize

image-based diagnostics, while other AI subtypes have begun to show similar promise in various diagnostic

modalities. In some areas, such as clinical genomics, a specific type of AI algorithm known as deep learning is used

to process large and complex genomic datasets. In this review, we first summarize the main classes of problems

that AI systems are well suited to solve and describe the clinical diagnostic tasks that benefit from these solutions.

Next, we focus on emerging methods for specific tasks in clinical genomics, including variant calling, genome

annotation and variant classification, and phenotype-to-genotype correspondence. Finally, we end with a discussion

on the future potential of AI in individualized medicine applications, especially for risk prediction in common

complex diseases, and the challenges, limitations, and biases that must be carefully addressed for the successful

deployment of AI in medical applications, particularly those utilizing human genetics and genomics data.

Background
Artificial intelligence (AI) is the simulation of

intelligence in a non-living agent. In the context of clin-

ical diagnostics, we define AI as any computer system

that can correctly interpret health data, especially in its

native form as observed by humans. Often, these clinical

applications adopt AI frameworks to enable the efficient

interpretation of large complex datasets. These AI sys-

tems are trained on external health data that have usu-

ally been interpreted by humans and that have been

minimally processed before exposure to the AI system,

for example, clinical images that have been labeled and

interpreted by a human expert. The AI system then

learns to execute the interpretation task on new health

data of the same type, which in clinical diagnostics is

often the identification or forecasting of a disease state.

AI interpretation tasks can be grouped into problem

classes such as computer vision, time series analysis,

speech recognition, and natural language processing.

Each of these problems is well suited to address specific

types of clinical diagnostic tasks [1]. For example, com-

puter vision is useful for the interpretation of radio-

logical images, time series analysis is useful for the

analysis of continuously streaming health data such as

those provided by an electrocardiogram [2], speech-

recognition techniques can be used for detection of

neurological disorders [3], and AI-based natural lan-

guage processing can be helpful in the extraction of

meaningful information from electronic health record

(EHR) data [4]. In some areas, the association between

problem classes and diagnostic tasks may not be as obvi-

ous; for example, techniques from computer vision are

also useful for the identification of functional regulatory

elements in the human genome, where they can be used

to identify recurrent motifs in DNA sequences in a man-

ner analogous to that in which pixel patterns are de-

tected in images by convolutional neural networks

(CNNs; described in the next section) [5].

Many of these problems have been addressed by a spe-

cific group of AI algorithms known as deep learning,

which can learn interpretable features from large and

complex datasets by using deep neural network
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architectures. Neural networks are computational sys-

tems of artificial neurons (also called ‘nodes’) that trans-

mit signals to one another, often in interconnected

layers. The layers that are not the input or output layer

are termed the ‘hidden’ layers. A deep neural network

consists of many hidden layers of artificial neurons.

Neural networks often take as input the fundamental

unit of data that it is trained to interpret: for example,

pixel intensity in images; diagnostic, prescription, and

procedure codes in EHR data; or nucleotide sequence

data in genomic applications [6]. In other words, unlike

most machine-learning approaches, minimal or no hu-

man extraction and definition of predictive features are

required. A multitude of these simple features are com-

bined in successive layers of the neural network in a var-

iety of ways, as designed by the human neural network

architect, in order to represent more sophisticated con-

cepts or features of the input health data. Ultimately, the

output of the neural network is the interpretation task

that the network has been trained to execute. For ex-

ample, successive layers of a computer vision algorithm

might learn to detect edges in an image, then patterns of

edges that represent shapes, then collections of shapes

that represent certain objects, and so on. Thus, AI sys-

tems synthesize simple features into more complex con-

cepts to derive conclusions about health data in a

manner that is analogous to human interpretation, al-

though the complex concepts used by the AI systems

are not necessarily recognizable or obvious concepts to

humans.

In this review, we describe the recent successes and

potential future applications of AI, especially deep learn-

ing, in clinical diagnostics, with a focus on clinical gen-

omics. We provide a brief overview of AI algorithms and

the classes of problems that they are well suited to ad-

dress. Next, we provide a more detailed review of how

AI has been used to accomplish a variety of clinical gen-

omics tasks, including variant calling and annotation,

variant impact prediction, and phenotype-to-genotype

mapping. Finally, we end by discussing the potential fu-

ture applications and challenges of AI in genotype-to-

phenotype prediction, especially as it relates to common

complex diseases and individualized medicine.

Artificial intelligence and its applications

The AI algorithms deployed today for clinical diagnos-

tics are termed ‘narrow’ or ‘weak’ AI. These AI algo-

rithms are trained to perform a single task: for example,

to classify images of skin lesions into diagnostic categor-

ies or to provide a molecular diagnosis from a combin-

ation of genomic and phenotypic data. These algorithms

do not display general intelligence and are not flexible

enough to address other clinical diagnostic tasks. How-

ever, transfer learning approaches can be used to adapt a

fully trained AI algorithm to accomplish closely related

tasks. This is best exemplified by image-based diagnostic

AI algorithms that benefit from advances in computer

vision and neural networks trained for general image

recognition tasks. Thus, the first step in the design of

clinical diagnostic AI algorithms usually involves map-

ping the specific diagnostic task to a more general prob-

lem class. Here, we review these problem classes and

briefly highlight the intersection of these techniques with

genomics.

Computer vision

Computer vision is an interdisciplinary field that focuses

on acquiring, processing, and analyzing images and/or

video. Computer vision algorithms ingest high-

dimensional image data and synthesize (or ‘convolute’) it

to produce numerical or symbolic representations of

concepts that are embedded in the image. This process

is thought to mimic the way humans identify patterns

and extract meaningful features from images. The main

steps in computer vision consist of image acquisition,

pre-processing, feature extraction, image pattern detec-

tion or segmentation, and classification. Deep-learning

algorithms such as CNNs have been designed to perform

computer vision tasks. In simplified terms, a typical

CNN tiles an input image with small matrices known as

kernel nodes or filters. Each filter encodes a pixel inten-

sity pattern that it ‘detects’ as it convolves across the in-

put image. A multitude of filters encoding different pixel

intensity patterns convolve across the image to produce

two-dimensional activation maps of each filter. The pat-

tern of features detected across the image by these filters

may then be used to successively detect the presence of

more complex features (Fig. 1).

Surveillance, image recognition, and autonomous vehi-

cles are some of the major applications of computer vi-

sion. In clinical diagnostics, the first applications of AI

in healthcare to be cleared by the US Food and Drug

Administration (FDA) have been dominated by applica-

tions of computer vision to medical scans (for example,

magnetic resonance imaging (MRI) or positron emission

tomography images), and pathology images (for example,

histopathological slides). The first medical imaging ap-

plications include the automated quantification of blood

flow through the heart via cardiac MRI [7], the deter-

mination of ejection fraction from echocardiograms [8],

the detection and volumetric quantification of lung nod-

ules from radiographs [7], the detection and quantifica-

tion of breast densities via mammography [9], the

detection of stroke, brain bleeds, and other conditions

from computerized axial tomography [10, 11], and auto-

mated screening for diabetic retinopathy from compre-

hensive dilated eye examination [12, 13]. Imaging

applications in pathology include an FDA-cleared system

Dias and Torkamani Genome Medicine           (2019) 11:70 Page 2 of 12



Fig. 1 Examples of different neural network architectures, their typical workflow, and applications in genomics. a Convolutional neural networks

break the input image (top) or DNA sequence (bottom) into subsamples, apply filters or masks to the subsample data, and multiply each feature

value by a set of weights. The product then reveals features or patterns (such as conserved motifs) that can be mapped back to the original

image. These feature maps can be used to train a classifier (using a feedforward neural network or logistic regression) to predict a given label (for

example, whether the conserved motif is a binding target). Masking or filtering out certain base pairs and keeping others in each permutation

allows the identification of those elements or motifs that are more important for classifying the sequence correctly. b Recurrent neural networks

(RNNs) in natural language processing tasks receive a segmented text (top) or segmented DNA sequence (bottom) and identify connections

between input units (x) through interconnected hidden states (h). Often the hidden states are encoded by unidirectional hidden recurrent nodes

that read the input sequence and pass hidden state information in the forward direction only. In this example, we depict a bidirectional RNN that

reads the input sequence and passes hidden state information in both forward and backward directions. The context of each input unit is

inferred on the basis of its hidden state, which is informed by the hidden state of neighboring input units, and the predicted context labels of

the neighboring input units (for example, location versus direction or intron versus exon)
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for whole-slide imaging [14], and promising approaches

to the automated classification of dermatological condi-

tions [15], as well as numerous other whole-slide im-

aging and AI systems in development that are expected

to dramatically enhance the efficiency of pathologists

[16].

Computer vision can also inform clinical genomic test-

ing. For example, deep learning of lung cancer histo-

pathological images is able to identify cancer cells,

determine their type, and predict what somatic muta-

tions are present in the tumor [17, 18]. Similarly, facial

image recognition can be used to identify rare genetic

disorders and to guide molecular diagnoses [19, 20].

Thus, computer vision can extract phenotypic features

from medical images in order to provide recommenda-

tions for molecular testing in a manner similar to that

performed by a skilled pathologist or dysmorphologist.

In some cases, AI-based systems have exceeded the cap-

abilities of human experts, for example, by accurately

predicting gender from retinal fundus images, a task that

human experts would perform no better than random

guessing [21].

Time series analysis

Time series analysis is the processing of temporal data

to forecast future observations, to predict the discrete

state producing a sequence of observations (for example,

normal heart rhythm versus arrythmia), or to detect

anomalies within a sequence of observations. More gen-

erally, time series analysis can be applied to any ordered

data; for example, to DNA sequence that is ordered but

not temporally ordered. Time series analysis algorithms

ingest data sequences and are generally tasked to learn

sequential dependencies. The primary advantage of AI

algorithms in time series analysis is an improved ability

to detect non-linear and/or multi-step relationships that

are not efficiently interrogated by traditional approaches

such as hidden Markov models. Deep-learning algo-

rithms, especially recurrent neural networks (RNNs),

have been designed for sequence analysis tasks. A typical

RNN includes some form of ‘memory’, in which prior in-

puts in a sequence influence future output. This is

achieved by linking the hidden state of an input to the

hidden state of the next input (Fig. 1). Extensions of this

concept, which are implemented in specialized networks

such as long short-term memory networks (LSTMs),

add network elements that enhance the ability of the

network to ‘remember’ long-term dependencies in the

input data. CNNs are often applied to time series data

when the task is to define the discrete state, or context,

that produces the sequential data pattern.

Time series analysis has major applications in the fore-

casting of equity prices, weather conditions, geological

events, and essentially any future event of interest. In

clinical diagnostics, time series AI algorithms can be ap-

plied to medical devices producing continuous output

signals, with the application of electrocardiograms being

an especially active area of interest. AI applied to elec-

trocardiograms can detect and classify arrythmias [22],

especially atrial fibrillation [23], as well as cardiac con-

tractile dysfunction [24], and blood chemistries linked to

cardiac rhythm abnormalities [25]. When applied to gen-

omic sequence data, AI time series algorithms appear to

be especially effective at detecting functional DNA se-

quence elements that are indicative of gene splicing [26,

27], large-scale regulatory elements [28], and gene func-

tion [29].

Automatic speech recognition

Automatic speech recognition includes a group of meth-

odologies that enable the interpretation of spoken lan-

guage. Speech-recognition algorithms ingest raw sound

waves from human speech and process them to allow

the recognition of basic elements of speech including

tempo, pitch, timbre, and volume, as well as more com-

plex features of speech including the spoken language,

words, and sentences [30]. More advanced speech-

recognition algorithms can identify sophisticated fea-

tures from audiological data, such as mood changes or

emotional states [31, 32]. Because of the temporal com-

plexity of speech, traditional speech-recognition algo-

rithms have typically relied on separate models to

reassemble meaning from spoken language. These steps

include segmenting audio into distinct units of sound

(for example, phonemes), connecting those sound units

into language units (for example, words), and assembling

those language units into more complex language ele-

ments (for example, phrases) to extract meaning. Recent

advances in AI algorithms that address temporal se-

quences through sequence-to-sequence attention-based

and recurrent neural network transducer-based ap-

proaches now allow for these tasks to be executed in a

single model with streaming output [33, 34]. In

sequence-to-sequence models, for example, a neural net-

work can map the sequences of phonemes produced by

an acoustic model into sequences of words, or a se-

quence of words can be translated into another lan-

guage. Thus, sequence-to-sequence and other speech-

recognition models can also act as powerful tools for the

communication of medical and health information

across language barriers.

Voice command and virtual assistant systems are the

major applications of speech recognition. Speech-

recognition algorithms have not yet found widespread

use in clinical diagnostics but they have shown great

promise in the detection of neurological conditions that

are often challenging to diagnose with traditional clinical

tools. In these clinical applications, the same general
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speech-recognition strategies are used, but the outcome

targeted by the final classification step is a disease

phenotype that is typically associated with characteristics

of speech (tone, tempo, pitch, and so on) and not neces-

sarily the content of the language. Speech recognition

has been successfully applied to the detection of diseases

with an obvious influence on speech, notably chronic

pharyngitis [35], and of diseases with a less obvious in-

fluence on speech, including Alzheimer’s disease [3],

Parkinson’s disease [36], major depressive disorder [37],

posttraumatic stress disorder [38], and even coronary ar-

tery disease [39]. Like imaging, speech recognition can

detect potential genetic disorders and inform down-

stream clinical testing. In addition, speech recognition

can be used as a tool to streamline the use of EHRs

through automatic transcription, benefitting clinicians

and patients and enabling natural language processing

(NLP) analysis [40, 41], as described in the next section.

Natural language processing

NLP is the computational extraction of meaning from

natural human language. These algorithms take as input

a document, or potentially the output from automatic

speech recognition, and output a useful transformation

of the document. This transformation could be language

translation, document classification, summarization, or

extraction of higher-level concepts described by the text.

Typical NLP algorithms involve syntactic analysis, which

involves parsing the written text in a variety of ways to

extract useful computational representations of language

(by sentence breaking, tagging parts of speech, and

standardizing inflected word forms, for example),

followed by semantic analysis to extract meaning and/or

the identification of named entities from the text. A wide

variety of neural network architectures have been devel-

oped for NLP depending upon the target outcome, from

sequence-to-sequence networks and other RNN variants

for language translation [42], to CNNs to extract higher-

level interpretations of the text [43].

A major challenge that is addressed by NLP is the var-

iety of synonyms, phrases, and interrelated concepts that

can be used to express a singular meaning. This problem

is especially pronounced in clinical applications where

controlled vocabularies are numerous and in constant

flux. Thus, NLP has been effectively used to automatic-

ally standardize and synthesize these terms to produce

predictions of current and future diagnoses and medical

events [4, 44]. Similarly, NLP can be used to make health

information more accessible by translating educational

materials into other languages or by converting medical

terms to their lay definitions [45]. AI-based chatbots

have already been deployed to augment the capabilities

of genetic counselors to meet rising demands on their

time generated by the rapidly expanding volume of

clinical and direct-to-consumer genetic testing [46]. In

addition, NLP approaches to EHR analysis can overcome

the high dimensionality, sparseness, incompleteness,

biases, and other confounding factors present in EHR

data. For example, NLP has been applied to EHRs to

predict patient mortality after hospitalization. In this ap-

plication, EHR data are converted to a series of patient

events streamed into an RNN, which was trained to

identify patterns of patient characteristics, diagnoses,

demography, medications, and other events that are pre-

dictive of near-term patient mortality or hospital re-

admission [4]. Similarly, when combined with other

medical data, predictions of disease severity and therapy

efficacy can be made [47]. When combined with gen-

omic data, NLP-based methods have been used to pre-

dict rare disease diagnoses and to drive phenotype-

informed genetic analysis, resulting in automated genetic

diagnoses with accuracy similar to that of human experts

[48, 49].

Artificial intelligence in clinical genomics

Mimicking human intelligence is the inspiration for AI

algorithms, but AI applications in clinical genomics tend

to target tasks that are impractical to perform using hu-

man intelligence and error prone when addressed with

standard statistical approaches. Many of the techniques

described above have been adapted to address the vari-

ous steps involved in clinical genomic analysis—includ-

ing variant calling, genome annotation, variant

classification, and phenotype-to-genotype correspond-

ence—and perhaps eventually they can also be applied

for genotype-to-phenotype predictions. Here, we de-

scribe the major classes of problems that have been ad-

dressed by AI in clinical genomics.

Variant calling

The clinical interpretation of genomes is sensitive to the

identification of individual genetic variants among the

millions populating each genome, necessitating extreme

accuracy. Standard variant-calling tools are prone to sys-

tematic errors that are associated with the subtleties of

sample preparation, sequencing technology, sequence

context, and the sometimes unpredictable influence of

biology such as somatic mosaicism [50]. A mixture of

statistical techniques including hand-crafted features

such as strand-bias [51] or population-level dependen-

cies [52] are used to address these issues, resulting in

high accuracy but biased errors [53]. AI algorithms can

learn these biases from a single genome with a known

gold standard of reference variant calls and produce su-

perior variant calls. DeepVariant, a CNN-based variant

caller trained directly on read alignments without any

specialized knowledge about genomics or sequencing

platforms, was recently shown to outperform standard
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tools on some variant-calling tasks [54]. The improved

accuracy is thought to be due to the ability of CNNs to

identify complex dependencies in sequencing data. In

addition, recent results suggest that deep learning is

poised to revolutionize base calling (and as a result, vari-

ant identification) for nanopore-based sequencing tech-

nologies, which have historically struggled to compete

with established sequencing technology because of the

error-prone nature of prior base-calling algorithms [55].

Genome annotation and variant classification

After variant calling, the interpretation of human gen-

ome data relies on the identification of relevant genetic

variants through prior knowledge and inference of the

impact of genetic variants on functional genomic ele-

ments. AI algorithms can improve the use of prior

knowledge by informing phenotype-to-genotype map-

ping (described in the next section). Here, we describe

both genome annotation and variant classification be-

cause many of the AI algorithms that are used to predict

the presence of a functional element from primary DNA

sequence data are also used to predict the impact of a

genetic variation on those functional elements.

Classification of coding variants

Many methods have been developed for the classification

of nonsynonymous variants [56]. Some of these methods

have been integrated into deep-learning-based meta-

predictors (models that process and merge the predic-

tions produced by several other predictors) that outper-

form both their individual predictive components and

the combination of those predictive components when

integrated using regression or other machine-learning

approaches [57]. For example, the combined annotation-

dependent depletion approach (CADD) [58] combines a

variety of predictive features in a machine-learning algo-

rithm to predict the deleteriousness of genetic variants.

A deep-learning-based extension of CADD, named

DANN, demonstrated improved performance using the

same set of input features as CADD but combined in a

deep neural network [57]. This technical extension of

CADD suggests that deep learning may be a superior ap-

proach for integrating known features that are predictive

of deleteriousness. However, the classification accuracies

of these tools are not sufficient to drive clinical report-

ing, although they can be useful for guiding the inter-

pretation of clinical genomic data by prioritizing

potential candidate variants for further consideration.

More interesting are AI-based methods that make pre-

dictions directly from DNA or protein sequence data

with minimal hand-crafting of features. One approach,

PrimateAI, which used CNNs trained on variants of

known pathogenicity with data augmentation using

cross-species information, was shown to outperform

prior methods when trained directly upon sequence

alignments [59]. The network was able to learn import-

ant protein domains, conserved amino acid positions,

and sequence dependencies directly from the training

data consisting of about 120,000 human samples. Prima-

teAI substantially exceeded the performance of other

variant pathogenicity prediction tools in differentiating

benign and pathogenic de-novo mutations in candidate

developmental disorder genes, and in reproducing prior

knowledge in Clinvar [60]. These results suggest that

PrimateAI is an important step forward for variant-

classification tools that may lessen the reliance of clinical

reporting on prior knowledge. In addition, deep genera-

tive models have shown promise for predicting the ef-

fects of genetic variants [61], and are especially

intriguing given their ability to evaluate the joint influ-

ence of multiple genetic variants and/or complex indels

on protein function, a capability that is largely absent

from most pathogenicity prediction tools. Deep genera-

tive models are a type of deep neural network that can

learn to replicate data distributions and produce exam-

ples not previously observed by the model. For example,

a deep generative model trained on images of birds

could learn to generate novel bird images.

Classification of non-coding variants

The computational identification and prediction of non-

coding pathogenic variation is an open challenge in hu-

man genomics [62]. Recent findings suggest that AI al-

gorithms will substantially improve our ability to

understand non-coding genetic variation. Splicing de-

fects in genes are responsible for at least 10% of rare

pathogenic genetic variation [63], but they can be diffi-

cult to identify because of the complexity of intronic and

exonic splicing enhancers, silencers, insulators, and

other long range and combinatorial DNA interactions

that influence gene splicing [64]. SpliceAI, a 32-layer

deep neural network, is able to predict both canonical

and non-canonical splicing directly from exon–intron

junction sequence data [27]. Remarkably, SpliceAI was

able to use long-range sequence information to boost

prediction accuracy from 57%, using a short window size

(80 nucleotides) typical for many prior splicing predic-

tion tools, to 95% when a 10 kb window size was

ingested by the AI algorithm, and was able to identify

candidate cryptic splicing variants underlying neurode-

velopmental disorders.

Deep-learning-based approaches have also substan-

tially improved our ability to detect regulatory elements

[65, 66] and to predict the influence of genetic variation

on those elements. DeepSEA, a multitask hierarchically

structured CNN trained on large-scale functional gen-

omics data [67], was able to learn sequence dependen-

cies at multiple scales and simultaneously produce
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predictions of DNase hypersensitive sites, transcription

factor binding sites, histone marks, and the influence of

genetic variation on those regulatory elements, with a

level of accuracy superior to those of other tools for pri-

oritizing non-coding functional variants [68]. As seen for

SpliceAI, the ability of DeepSEA to ingest DNA se-

quences of 1 kb, which is substantially larger than the in-

put to typical motif-based search tools, was critical to

this improved performance. Extensions of DeepSEA have

been applied to whole-genome sequencing data from

families with autism spectrum disorder to reveal several

candidate non-coding mutations [69]. Further extension

to the ExPecto algorithm has demonstrated its ability to

predict gene expression levels directly from DNA se-

quence information [70]. Further investigation of these

new deep-learning based frameworks for the analysis of

non-coding sequence data is likely to provide new in-

sights into the regulatory code of the human genome.

Phenotype-to-genotype mapping

Human genomes contain numerous genetic variants that

are either previously described as pathogenic or pre-

dicted to be pathogenic [71], regardless of the individual

health status [72]. Therefore, the molecular diagnosis of

disease often requires both the identification of candi-

date pathogenic variants and a determination of the cor-

respondence between the diseased individual’s

phenotype and those expected to result from each candi-

date pathogenic variant. AI algorithms can significantly

enhance the mapping of phenotype to genotype, espe-

cially through the extraction of higher-level diagnostic

concepts that are embedded in medical images and

EHRs.

Image to genetic diagnosis

The human phenotype ontology lists 1007 distinct terms

defining different abnormalities of the face [73]. These

abnormalities are associated with 4526 diseases and

2142 genes. A dysmorphologist will often identify these

abnormalities individually and synthesize them into a

clinical diagnosis. The clinical diagnosis may then in-

form targeted gene sequencing or phenotype-informed

analysis of more comprehensive genetic data. Often the

human-provided clinical diagnosis and molecular diag-

noses overlap but do not match precisely because of the

phenotypic similarity of genetically distinct syndromes.

DeepGestalt, a CNN-based facial image analysis algo-

rithm, dramatically outperforms human dysmorpholo-

gists in this task and is precise enough to distinguish

between molecular diagnoses that are mapped to the

same clinical diagnosis (that is, distinct molecular forms

of Noonan syndrome) [19]. When combined with gen-

omic data, PEDIA, a genome interpretation system in-

corporating DeepGestalt, was able to use phenotypic

features extracted from facial photographs to accurately

prioritize candidate pathogenic variants for 105 different

monogenic disorders across 679 individuals [74]. De-

ployment of DeepGestalt as a face-scanning app has the

potential to both democratize and revolutionize the

identification of genetic syndromes [20].

Genetic syndromes that are identified through facial

analysis can be readily confirmed with DNA testing, but

adequate material for somatic mutation testing is not al-

ways available in some instances of cancer. Nevertheless,

knowledge of the genomic underpinnings of a tumor are

critical to treatment planning. Here again, AI can bridge

the gap between image-derived phenotypes and their

probable genetic source. A ‘survival CNN’, which is a

combination of a CNN with Cox proportional hazards-

based outcomes (a type of statistical survival analysis),

was able to learn the histological features of brain tu-

mors that are associated with survival and correlated

with somatic mutation status [75]. Importantly, this al-

gorithm was not trained to predict genomic aberrations

directly. Inspection of the CNN concepts used to make

the survival predictions identified novel histological fea-

tures that are important for prognosis determination.

Like the faces of individuals with phenotypically overlap-

ping genetic syndromes, these results suggest that the

genomic aberrations underpinning an individual’s tumor

could potentially be predicted directly from tumor hist-

ology images. More generally, AI-based computer vision

systems appear to be capable of predicting the genomic

aberrations that are likely to be present in an individual’s

genome on the basis of the complex phenotypes embed-

ded in relevant clinical images [20, 75].

EHR to genetic diagnosis

Disease phenotypes can be complex and multimodal;

captured not only by medical imaging, but also by bio-

chemical and other tests that may be ordered at different

times and perhaps by different physicians during the

course of a differential diagnosis. These results are docu-

mented in an EHR where physicians synthesize these

findings to provide diagnoses and inform clinical

decision-making. Although human specialists can ac-

complish this task accurately within their area of expert-

ise, AI-based algorithms can be general EHR pattern

recognition experts. In a recent study involving more

than 500,000 patients, an AI-based NLP approach was

used to extract clinically relevant features from EHR

data. A hierarchical statistical model, tiered on the basis

of anatomic divisions in a manner meant to mimic the

clinical reasoning of a composite of experienced physi-

cians, was trained on the NLP output to generate a diag-

nostic system [48]. Overall, this system was able to

differentiate between 55 common pediatric diagnoses

with 92% accuracy.
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When linked with genomic data, an AI-based diagnos-

tic agent coupled with a genome interpretation system

can rapidly produce genetic diagnoses. For example, an

NLP system was designed to extract phenotypic descrip-

tions automatically from EHR data of pediatric patients

with rare diseases, and to rank matches to the expected

phenotypic features of candidate pathogenic variants in

the patients’ genomes [49]. In 101 children with 105

genetic diseases, automated retrospective genomic diag-

noses agreed with expert human interpretation at 97%

recall and 99% precision. The system was also able to

provide automated genomic diagnoses prospectively for

three of seven seriously ill ICU infants. Intriguingly, a

simpler phenotypic risk score approach, applied to an

adult population with EHR and genomic data, was able

to identify previously unrecognized monogenic condi-

tions in 18 individuals from a population of 21,701 [76].

These results suggest that AI-based phenotype-to-

genotype mapping approaches could significantly im-

prove the diagnostic yield of genetic testing and the

identification of individuals with unrecognized genetic

disorders.

Genotype-to-phenotype prediction

Ultimately, the clinical purpose of genetics is to provide

diagnoses and forecasts of future disease risk. Relatively

simple statistical approaches to polygenic risk prediction

allow for personally and clinically useful stratification of

risk for some common complex diseases [77]. A few

studies have attempted genomic prediction of complex

human traits using AI algorithms, but most of those re-

ported in the literature to date are probably overfit as

they purportedly explain substantially more trait vari-

ance than should be possible on the basis of heritability

estimates. One application of machine learning to gen-

omic prediction of height was able to provide relatively

accurate predictions within expected bounds [78], sug-

gesting that AI-based methods can be used to improve

upon statistical techniques. However, the true utility of

AI-based approaches in genotype-to-phenotype predic-

tion will probably come from the integration of a variety

of health data types and risk factors into comprehensive

predictors of disease risk.

Common diseases are a result of a complex interplay

between inherited genetic risk factors, environmental ex-

posures, and behaviors. Genetic risk alone provides a

baseline estimate of lifetime risk for disease, but genetic

risk combined with other risk factors allows for a nar-

rowing of that probability space into a short-term pro-

jection of disease risk. For example, several non-genetic

risk factors are associated with breast cancer risk, in-

cluding mammographic density, age at first birth, age at

menarche, and age at menopause. Combining these non-

genetic risk factors with genetic data significantly

improves the accuracy of breast cancer risk models and

can inform risk-based mammographic screening strat-

egies [79]. Similarly, significant improvement in risk

stratification can be achieved by integrating conventional

and genetic risk factors for coronary artery disease [80].

Genetic risk score models are more useful than simple

pathogenicity assertions in cases where a common dis-

ease is the result of a combination of weak effects from

multiple loci. However, current models integrate genetic

and non-genetic risk factors in simple additive models

that probably do not capture the complex causal rela-

tionships between these heterogenous risk factors. AI al-

gorithms, given an appropriate volume of data, excel at

dissecting this complexity. Unraveling the complex

interplay between genetic data, EHR data, digital health

monitoring devices, and other sources of health informa-

tion with AI-based algorithms is a compelling prospect

for the future.

Challenges and limitations

AI-based algorithms can be superhuman in their ability

to interpret complex data. However, their power and

complexity can also result in spurious or even unethical

and discriminatory conclusions when applied to human

health data. Without careful consideration of the

methods and biases embedded in a trained AI system,

the practical utility of these systems in clinical diagnos-

tics is limited. Thus, we end with a discussion on the

challenges and limitations of AI in clinical diagnostics.

Regulatory issues

A growing number of AI algorithms have been approved

by the FDA [81]. These algorithms raise a number of

regulatory and ethical challenges around the sourcing

and privacy of the data used to train the algorithms [82],

the transparency and generalizability of the underlying

algorithms themselves, the regulatory process for re-

freshing these algorithms as further data become avail-

able, and the liability associated with prediction errors

[83]. Some of these issues can and should be addressed

by open sharing of AI models in detail (including source

codes, model weights, meta graphs, and so on) with the

scientific and medical community to improve transpar-

ency. Other issues will need to be addressed by the de-

velopment of: (i) best practices for the interpretability of

predictions to protect patient autonomy and shared

decision-making; (ii) fairness standards to minimize dis-

parities induced by machine bias; and (iii) ad hoc guid-

ance to allow for continuous improvement of the

algorithms [83]. As with most biomedical advances, the

cost and expertise necessary to deploy AI algorithms is

another concern, although these concerns diminish as

interpretability and fairness issues are addressed. We ex-

plore these issues in further detail below.
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AI interpretability

AI is often criticized for being a ‘black box’: a system

that produces an output without any explanation or jus-

tification. While this is perfectly acceptable in low-risk

situations, clinical decision-making is not a low-risk situ-

ation. ‘What?’ may sufficiently encompass the question

of interest in a general object-detection task, but ‘why?’

is an inherent part of the question in most clinical diag-

nostic tasks, because it is often crucial to subsequent

clinical decision-making or at least necessary for accept-

ance of the prediction by both physicians and patients.

An ideal AI-based clinical diagnostic system should pro-

duce accurate predictions and provide human-

interpretable explanations of those predictions. A com-

mon approach to answering ‘why?’ in computer vision

applications is to generate a visual overlay of the por-

tions of an image that contribute most strongly to an

output prediction [84, 85]. This strategy works well for

image-based and other CNN-based clinical diagnostic

tasks. In fact, many of the AI-based clinical diagnostic

methods described in this review include some form of

interpretive analysis. Thus, although AI interpretability

is an important problem in general, the criticism of

‘black box’ systems in current AI-based clinical diagnos-

tics may be overstated.

When complex interdependencies form the basis of a

prediction, however, accurate interpretation of AI output

becomes quite challenging [86]. Interpretable machine-

learning methods are an active area of computer science

research [87], but most interpretable AI approaches in-

volve the production of a simplified and potentially in-

accurate approximation of the more complex AI system

[86]. Recently, a move towards more interactive models

of interpretability through ‘dialogue’ with the AI system

has been proposed [86]. This approach allows the hu-

man user to ask contrastive questions of the AI system

in order to explore how its output predictions would

change if inputs were modified. This approach could

also facilitate a dialogue between physician and patient,

with the aid of the AI interpretation system, to help

them to understand the clinical diagnosis and, in some

instances, the risk factors that could be modified to

change the predicted outcome. Thus, further improve-

ments to interpretable AI systems could not only sub-

stantially enhance the acceptability of AI predictions but

also enhance the transparency of health communication

between physicians and patients.

Data and machine bias

Interpretative output is not only necessary for accept-

ance in clinical practice but is also important for unveil-

ing the knowledge discovered by AI systems and for

detecting biases that may result in undesirable behavior.

There is substructure embedded in genomic and health

data. Some substructure is due to truly differing causal

relationships between alleged risk factors and health out-

comes, whereas other substructure can be attributed to

external factors such as socioeconomic status, cultural

practices, unequal representation, and other non-causal

factors that relate to the delivery and accessibility of

medicine and clinical tests rather than to their efficacy

[88, 89]. AI systems must be carefully applied to differ-

entiate between these types of bias. When medical AI

systems are not inspected for non-causal bias, they can

act as propagators of disparity. For example, DeepGes-

talt, the previously described AI system for facial dys-

morphology analysis, displayed poor accuracy for the

identification of Down syndrome in individuals of Afri-

can versus European ancestry (36.8% versus 80%, re-

spectively) [90]. Retraining the model with examples of

Down syndrome in individuals of African ancestry im-

proved the diagnosis of Down syndrome in individuals

of African ancestry to 94.7% [90]. Genetic risk prediction

is also prone to unequal performance in different popu-

lation groups because of underrepresentation in the

training data [91].

However, not all machine bias can be resolved by ad-

dressing underrepresentation in training data. In some

cases, the bias is embedded in ostensibly representative

training data. For example, gender bias is common in

written documents and can be rapidly incorporated into

NLP systems [92]. Extensions to these models were re-

quired to ‘debias’ word embeddings. In clinical applica-

tions, EHR data may be representative overall, but the

contents may include biases that result from the delivery

of care or physician bias. For example, recent immi-

grants in Canada are more likely to receive aggressive

care and die in intensive care units than are other resi-

dents [93]. Furthermore, the substructure of genomic

data is correlated with population structure, which can

lead to the appearance of non-causal trait associations

[94]. However, tools that will help to address machine

bias are being developed, and careful attention to these

issues could not only help to resolve machine bias issues

but could eventually lead to diagnostic systems that are

free from human bias [95].

Conclusions and future directions

AI systems have surpassed the performance of state-of-

the-art methods and have gained FDA clearance for a

variety of clinical diagnostics, especially imaging-based

diagnostics. The availability of large datasets for training,

for example, large collections of annotated medical im-

ages or large functional genomics datasets, in conjunc-

tion with advances in AI algorithms and in the GPU

systems used to train them, is driving this surge of prod-

uctivity. Currently, the most promising applications of

AI in clinical genomics appear to be the AI extraction of
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deep phenotypic information from images, EHRs, and

other medical devices to inform downstream genetic

analysis. However, deep-learning algorithms have also

shown tremendous promise in a variety of clinical gen-

omics tasks such as variant calling, genome annotation,

and functional impact prediction. It is possible that more

generalized AI tools will become the standard in these

areas, especially for clinical genomics tasks where infer-

ence from complex data (that is, variant calling) is a fre-

quently recurring task. These applications have benefited

from advances in CNNs and RNNs which appear to be

particularly well suited for the analysis of genomic data.

Yet, the utility of AI algorithms as the ultimate clinical

decision support tool in predicting common complex

human phenotypes has not been convincingly demon-

strated. The rise of biobank-scale efforts with longitu-

dinal health data collection, such as the UK Biobank [96]

and All of Us Research Program [97], will potentially

provide the training datasets necessary to make this goal

a reality. Given the reliance of AI on large-scale training

datasets, it is likely that the scalable collection of pheno-

type data, and not genomic data, will be the more diffi-

cult barrier to overcome in realizing this ambition.

Modern DNA sequencing technology allows for the gen-

eration of genomic data uniformly and at scale, but the

collection of phenotype data requires numerous data

collection modes, and tends to be slow, expensive, and

highly variable across collection sites. Finally, the inter-

pretability and identification of machine bias are essen-

tial to broad acceptance of AI technology in any clinical

diagnostic modality.
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