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Abstract

The idea of artificial intelligence (AI) has a long history. It turned out, however, that reaching intelligence at human levels is
more complicated than originally anticipated. Currently, we are experiencing a renewed interest in AI, fueled by an enormous
increase in computing power and an even larger increase in data, in combination with improved AI technologies like deep learning.
Healthcare is considered the next domain to be revolutionized by artificial intelligence. While AI approaches are excellently
suited to develop certain algorithms, for biomedical applications there are specific challenges. We propose six
recommendations—the 6Rs—to improve AI projects in the biomedical space, especially clinical health care, and to facilitate
communication between AI scientists and medical doctors: (1) Relevant and well-defined clinical question first; (2) Right data
(ie, representative and of good quality); (3) Ratio between number of patients and their variables should fit the AI method; (4)
Relationship between data and ground truth should be as direct and causal as possible; (5) Regulatory ready; enabling validation;
and (6) Right AI method.

(Interact J Med Res 2019;8(2):e12100) doi: 10.2196/12100

KEYWORDS

artificial intelligence; deep learning; clinical data; Bayesian modeling; medical informatics

Introduction

The idea of artificial intelligence (AI) has a long history. Since
the 1950s there have been several revolutionary promises of AI
replacing human work within a few decades. It turned out,
however, that reaching intelligence at human levels was more
complicated, which led to several “AI winters,” where interest
in AI disappeared [1]. Currently, we are experiencing a renewed
interest in AI, fueled by an enormous increase in computing
power and an even larger increase in data generation. In
combination with improved algorithms that allow training of
deep neural networks, several high-tech companies have reached
successes in performing tasks that are close to human or even
beyond human performance: playing games like chess and Go,
image recognition and computer vision, natural language
processing, machine translation, and self-driving cars are just
a few examples.

Health care is considered the next domain to be revolutionized
by AI [2-5]. In addition to many academic efforts, companies

are also getting involved. IBM has developed Watson for several
health applications, such as Watson for Oncology and Watson
for Genomics, and there is a large number of start-ups addressing
all possible aspects of the health continuum [6,7].

Artificial Intelligence

The term artificial intelligence is used to indicate development
of algorithms that should execute tasks that are typically
performed by human beings and are, therefore, associated with
intelligent behavior. AI makes use of a variety of techniques,
such as deep learning, but also probabilistic methods like
Bayesian modeling [8,9]; for definitions, see He et al [2].
Colloquially, the term is applied to a machine that mimics
cognitive functions, such as learning and problem solving
[2,4,10,11].
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Use of Artificial Intelligence Methods in
Health Care

It is clear that health care has numerous needs that could benefit
from solutions developed with, or by embedding, artificial
intelligence [2,4,8]. In this brief article, we focus on the
contributions AI can make to clinical health care, a domain that
poses new and sometimes unique challenges to the application
of AI. In the next sections, we discuss some important
challenges and provide our recommendations on how to deal
with them.

While radiology imaging was first in delivering digital data,
digital pathology is a more recent revolutionary development
[4,12,13]. In addition, for many years, hospitals have been
digitizing their medical patient records [14]. Hence, a large and
ever-increasing body of reasonably annotated clinical data has
been collected: partially structured data in machine-readable
formats, such as those from medical imaging, and partially
unstructured data in natural language. As in other industrial
sectors, it is expected that this big data movement can be
leveraged to transform health care and drive unprecedented
improvements in quality of patient diagnostics, treatment, care,
and clinical outcome. Expected results range from identification
of individuals at high risk for a disease, to improved diagnosis
and matching of effective personalized treatment to the
individual patient, as well as out-of-hospital monitoring of
therapy response [15]. Although these opportunities and this
potential are widely acknowledged, it is important to understand
what can be delivered in practice with the current state-of-the-art
AI technologies and which applications require further advances
in AI to become feasible.

Artificial Intelligence Methods: Supervised
or Unsupervised Learning;
Knowledge-Based or Data-Driven?

Multiple AI technologies are available to choose from [2,9,16].
Algorithmic learning-based AI can be performed in a supervised
mode; this means that a ground truth label is available for every
data sample, which guides the AI effort and is based on domain
knowledge. It will be obvious that the correctness of ground
truth labels is a prerequisite for good performance of an AI
solution. The alternative, unsupervised mode, is when no ground
truth is available and only similarities can be found with a yet
undefined meaning [2,16].

Machine learning traditionally involves a human to determine
features of the data, using domain knowledge. In contrast, deep
learning allows finding such features from the data by itself.
The features are subsequently used in various models. Some of
those can be knowledge-based models in which new deep
learning-defined features are integrated according to knowledge
[17,18]. The current interest in AI from industry comes from
the recent breakthroughs in data-driven approaches, such as
deep learning, and their applicability in industrial applications
such as speech recognition, machine translation, and computer
vision. Still, it is expected that combining data-driven and

knowledge-based approaches will bring AI to the next level,
much closer to human intelligence [17,18].

Artificial Intelligence for Well-Defined
Narrow Tasks: Radiology Imaging and
Digital Pathology

One of the more studied and successfully executed AI
opportunities is in imaging. For example, AI technologies can
be applied to problems such as distinguishing cell nuclei or
certain cell types present in a tumor sample on a histopathology
slide, using slide images obtained with a digital pathology
scanner [19-21]. Such images are made with consistent
equipment and acquired in a controlled fashion, generating
images consisting of uniform data and providing very good
representations of the phenomena to be modelled. The problem
domain is limited. For instance, in the training process, the AI
system gets as input raw images with associated labels for
different cell types that are provided by a pathologist. The
pathologist is providing a ground truth , based on existing expert
knowledge (eg, on the different cell types or architecture present
in the tissue slide). Deep learning has been applied to this
problem and AI technologies already outperform manually
crafted tissue analysis technologies [16,20,22,23]. It is expected
that they will soon be on par or better than a human pathologist
on certain well-defined histology feature recognition and
measurement tasks, though not yet for clinical interpretation.

Artificial Intelligence for Wider Purposes:
Coupling Patient Clinical Data to Clinical
Outcome

On the other hand, research projects are ongoing using
multimodal data (ie, a combination of datasets of a different
data type), for example, to enable prediction of prognosis of a
patient or clinical outcome after a certain treatment. One may,
for example, use medical imaging data combined with
histopathology and clinical laboratory data and even lifestyle
data to try to predict survival, risk of rehospitalization within a
certain number of days, etc. Such projects remain challenging
and have typically been proven not to be very successful [5,24].
IBM’s Watson for Oncology claims to integrate all available
cancer patient data and disease information for improved
diagnosis and therapy decision making. In 2013, the MD
Anderson Cancer Center started using IBM Watson technology
to increase effective treatment of cancer patients; however, the
project was stopped in 2017 because it “did not meet its goals”
[25,26]. In contrast, the concordance with respect to clinical
interpretation of single-modality genome sequencing data using
Watson for Genomics versus a clinical genomics expert group
was reportedly quite good, between 77% and 97%, depending
on the type of identified genomic mutations [7].

The most difficult challenge for AI in the coming years will be
to move from successful narrow domains into wider-purpose,
multimodality, data systems. A promising approach here is not
to find one methodology to address every problem but to
separate the wider-purpose AI goal into smaller goals. In this
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approach, subgroups of the data may be processed separately
with suitable AI methods to provide meaningful, clinically
relevant output. For example, for cardiac ultrasound images,
one could zoom in to develop an algorithm with deep learning
to measure left ventricular volume; or for pathology slide
images, one could zoom in to develop an algorithm for
recognition and quantification of a specific cell type (eg,
lymphocytes). To increase chances at success, it is important
to determine a well-defined, focused, and clinically relevant
question for an AI project that can be adequately answered with
the available data.

The conclusion of this section is that a relevant and well-defined
clinical question should come first.

The Relationship Between Patient or
Sample Numbers and Data Variables

Many AI techniques, especially deep learning, rely on the
availability of large datasets or big data [15]. Sometimes domain
knowledge can help to create additional data derived from the
data that are available. It is important, however, to distinguish
the type of data that is needed. In games, such as chess and Go,
it is easy to artificially synthesize additional data of the right
type to increase the size of the dataset. With respect to medical
and histopathology imaging, large amounts of data are available
since samples are defined on an image pixel basis. Using this
type of data, with relatively few images one can create millions
of annotated samples with drawing tools. It is relatively easy
to further augment every sample with artificially generated
variations (eg, mirror copies, rotated versions, modified
intensities, and modified colors) without consequences for the
annotation.

In contrast, in clinical health care the type of data typically is
a pathology or radiology report from a patient, associated with
a clinical annotation such as diagnosis or response to therapy.
In this case, the number of samples is generally equal to the
number of patients. The annotation is often more difficult, as it
requires an expert physician to provide the ground truth . When
using multimodal data to find parameters that, for example,
predict clinical outcome, despite all digital records and digital
health devices, there are not enough data. The number of patients
for which the necessary multimodal data are available is, in
general, the limiting factor for using AI methods on such
combined data sources to create a valid algorithm for risk
prediction, diagnosis, or a therapeutic decision. When the
number of patients of a specific defined disease (sub)type is
low, the often-heard strategy is to extend a study to include
more patients, even all patients worldwide, which requires
addressing various legal and technical barriers. However, this
is still likely to fail in reaching the required patient number;
with efforts to increase the number of patients for inclusion in
data analysis, the amount of variation per patient, including
many unknown features and variables, tends to grow as well,
leading to uncontrolled data variation. This is caused by the
large variation in human individuals: their DNA (ie, just think
of the 3 billion base pairs and the near-infinite combinations of
genomic variations), their lifestyle, family medical history, use
of medication, etc. Moreover, patients are never treated in

exactly the same manner in the various hospitals, bringing in
many additional variables. It is a well-recognized issue in
clinical trials run by pharma companies [24]. The challenge is
to minimize such unwanted variables in the patient or sample
set to analyze. Much of this uncontrolled variation is not
recorded or, at best, only in a very noisy way. The number of
unknown parameters that may have influenced the outcome,
especially if its measurement lies many years after the diagnosis
and treatment, is typically underestimated. Examples of failure
of AI methods caused by these issues include many
genome-wide association studies aimed at identification of
clinically useful genomic risk factors for complex diseases and
genomic studies aimed at identification of biomarkers for cancer
diagnostics and treatment decisions [27].

Similar challenges are present in other domains, but solutions
in those areas can be invoked that are not possible in the health
care domain. In natural language processing, Google Translate
is a well-known example. When it started, translations were of
very poor quality and heavily criticized, but Google decided to
keep the service up and running; online feedback was used to
collect a large amount of translation data, enabling continuous
improvement of the performance of the translation algorithm
[28].

In summary, for applying AI to multimodal patient data, the
number of patients from whom the complete set of multimodal
data is available is frequently too limited to address the curse
of dimensionality. In the scientific community, dimensionality
reduction remains an active research area [29-31]. In clinical
application areas for AI, it remains the main challenge to
address. The first solution lies in reducing data modality and
bringing the number of variables (P) on the right level in relation
to the number of patients or samples (N) for which a ground
truth is available. The desired solution will reduce
high-dimensional data to biologically sound knowledge-based
features. Introducing knowledge-based computational
approaches is expected to provide a way forward to reduce
model freedom and handle high-dimensional data [32].

The conclusion of this section is that the ratio between the
number of patients and their variables should fit the AI method.

Insufficient Data Quality and Many
Subjective Parameters

For the patient data that is available, it turns out that this data
is usually neither 100% complete nor 100% correct. For
example, diagnoses are not always complete or correct, or they
were not correctly entered into the digital domain. The main
diagnosis is, in general, reasonably well-documented; however,
side diagnoses and complications that arise, for example, during
hospital admission or in the home setting, as well as treatment
details are less-accurately or not documented [5]. For many
clinical variables, such as diagnoses, the ground truth comes
from a physician’s judgement and cannot be objectively
measured or quantified. For example, it is documented that
histopathology diagnoses differ to a varying extent among
pathologists that diagnose the same slide [33-35]. As a
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consequence, datasets may be incomplete and noisy, and
presumed ground truths may not always be correct.

The conclusion of this section is that the right data (ie,
representative and of good quality) needs to be obtained.

Causal Relations Versus Correlations: A
Role for Bayesian Reasoning

Any data-driven approach on data for which the ratio of number
of patients (ie, samples) to variables is too low can lead to
multiple spurious correlations [36]. This means that the data
suggest a correlation between two factors, but this is purely due
to chance and there is no underlying explanation or causal
relationship. In machine learning, this can easily lead to
overfitting and finding of irrelevant correlations [16,37]. Also,
for clinical implementation, any interesting correlation (eg, a
feature or combination of features associated with increased
disease risk) needs to be clinically validated at high cost, where
lack of causality generally results in very low success rates.
Therefore, turning an algorithm, based on correlations, into a
successful proposition will, in general, be easier if causal
relations underlie the found correlations. Knowledge-based
reasoning techniques, such as Bayesian network models, can
reduce the number of spurious relations and overfitting problems
by using existing knowledge on causal data relations to eliminate
noisy data [11,14]. As an additional advantage, Bayesian models
can deal very well with uncertainty and missing variables, which
is the rule rather than the exception in clinical data [11]. Not a
coincidence, with respect to patient data interpretation, Bayesian
models reason the way a medical doctor does [38].

The conclusion of the section is that the relationship between
data and ground truth should be as direct and causal as possible.

Validation of Artificial Intelligence-Based
Solutions

For many of the success stories of AI, a robust and reliable
result is usually not necessary. For a free translation service,
the consequence of a wrong decision is at most a dissatisfied
customer. Improvements of those services could happen
relatively quickly because many of those AI applications are
deployed in the field and iteratively improve their performance
on the basis of new data, thus learning from their mistakes. In
sharp contrast to most of these consumer or lifestyle solutions
based on AI, every clinical application, be it hardware or
software, requires a thorough clinical validation in order to be
adopted by the professional clinical community for use in patient
care, such as diagnostics or treatment decisions, and must be
approved by regulatory authorities [24]. The requirements for
clinical validation will be more stringent when errors or mistakes
can have greater consequences. In a clinical trial, it needs to be
demonstrated how accurately the developed AI solution
performs compared to the clinical standard (eg, sensitivity and
specificity of a diagnostic test). Still, it is not completely clear
whether good performance of an algorithm is acceptable if the
solution is a “black box” and not transparent and rationally
explainable [2]. On top of that, it is not obvious what proper
validation of a continuous learning-based solution implies. An

important issue is that because of lack of transparency, deep
learning-based “black box” algorithms cannot be easily
improved, in contrast to, for example, Bayesian models that are
based on a transparent structure. Initial attempts to tackle this
challenge are on the way [39].

Have AI-based solutions already been approved for clinical
use? The earlier mentioned Watson for Oncology system
operates as a “black box” and its advice could not be clinically
validated [26]. On the other hand, in 2017 it was claimed that
the first deep learning-based algorithm, which identifies contours
of cardiac ventricles from a magnetic resonance imaging (MRI)
image to calculate ventricular volume, was validated and
approved by the US Food and Drug Administration (FDA) for
performing the calculation faster than a clinician [40].
Obviously, this system’s scope is far more restricted than
Watson’s; the unimodal imaging data that were used were
directly and causally related to the ground truth provided during
every image analysis by the clinician. Also, it can be considered
a measurement algorithm and does not include a clinical
interpretation claim. Clinical validation and obtaining regulatory
approval are much more difficult for those algorithms for which
such an interpretation claim is added [4].

Several new solutions are ready or able to perform continuous
(ie, incremental) learning [41]. However, within current
regulations, an AI system for clinical applications should be
“frozen” and can, therefore, not learn online and immediately
apply its new knowledge. Rather, it needs to have an offline
validation of the obtained “frozen” model on an independent
series of patient or sample data. Following a next
continuous-learning cycle, the validation process needs to be
repeated again prior to renewed implementation of the model.
Ideally, new clinically acceptable ways to shorten validation
tracks for digital applications in a patient-safe manner should
be found; it is expected that special procedures will be put in
place to facilitate regulatory approval of updated algorithms.
In line with this, the FDA is actively developing a strategy to
deal with AI-based software solutions [42]. Maximal use of
existing knowledge in transparent and causal model algorithms,
as in Bayesian modeling, is expected to facilitate both clinical
validation and obtaining regulatory approval, both for unimodal
as well as for multimodal data.

The conclusion of this section is that procedures must be put in
place to facilitate algorithms to be regulatory ready and to enable
validation.

Methods to Use

Technology-wise, numerous methods from the domain of AI
have been explored for the development of clinical applications
[8,11,16,43]. Some have been more successful than others,
mostly depending on application type. For automating pathology
diagnosis using tissue slide images, deep learning has proven
to be an appropriate technology. When dealing with more
general multimodal problems, such as predicting clinical
outcomes, patient assessments, and risk predictions, other
methods that often include domain knowledge are likely to be
more appropriate choices. Probabilistic methods using
knowledge representation are increasingly used and enable

Interact J Med Res 2019 | vol. 8 | iss. 2 | e12100 | p. 4https://www.i-jmr.org/2019/2/e12100/
(page number not for citation purposes)

van Hartskamp et alINTERACTIVE JOURNAL OF MEDICAL RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


reduction of the number of influencing variables, determining
sensible features or latent variables. Probabilistic Bayesian
modeling is well-suited to deal with complex biological (eg,
“omics” data, such as genomics and transcriptomics data) as
well as medical and clinical data; it is finding its way into
diagnostic applications as well as drug development [9,44-49].
However, where knowledge is lacking, knowledge-agnostic AI
approaches become valuable; Bayesian reasoning networks are
thought to have high potential for use in combination with deep
learning, combining the best of two worlds in Bayesian deep
learning [17,18,50].

The conclusion of this section is that the right AI method must
be used for the problem.

Recommendations for Use of Artificial
Intelligence Methods to Develop Clinical
Applications: The Six Rs

In view of the challenges related to the use of AI for health care
and biomedical applications, we believe it will be of value to
have some guidelines when designing a study. They may also
serve to facilitate communication between scientists involved
in AI and medical doctors. From the discussion above, we have
extracted six basic recommendations.

1. Relevant and well-defined clinical question first. Data
analytics without domain knowledge can be applied in the
health care domain, but at high risk of getting clinically
irrelevant outcomes. For every new AI project, the clinical
questions should be well-defined and reviewed with clinical
experts. The outcome of the analysis should also be
reviewed for clinical and/or biological sense.

2. Right data (ie, representative and of good quality). Carefully
define the dataset that is needed to answer the clinical
question. A clinical dataset with ground truth should be
sufficiently clean and reliable. Be aware of hidden variation
between samples that is not visible in the dataset. The
dataset should be appropriate for the question at hand as
well as representative for the population under study.

3. Ratio between number of patients and their variables should
fit the AI method. To obtain useful results, ensure working
with adequately large datasets (ie, numbers of patients or
samples) for the AI method to be used, and reduce patient
variables where possible. Use domain knowledge to limit
spurious correlations.

4. Relationship between input variables and predicted output
variable, as the dependent value, should be as direct and
causal as possible. The clinical question should as closely
as possible relate the ground truth to the data. Hence,
finding new pathology features that best distinguish between

two different pathology diagnoses can be successful; using
lifestyle information to predict 10-year survival might not.

5. Regulatory ready; enabling validation. Upfront, consider
how a certain solution can be validated and pass regulatory
requirements. Consider how using domain knowledge could
speed up the validation process, for instance, by breaking
up the AI system into smaller AI systems. This effectively
excludes systems that iteratively change by continuous
learning.

6. Right AI method. Use the right method for the question at
hand. Data-driven methods can be used if the data available
allows it, and knowledge-based methods can be applied if
there is knowledge available but not enough data; a mixture
of the two, combined in a wise manner, may be highly
productive for development of clinically applicable health
care solutions.

Privacy Issues

Driven by the big data analysis developments in health care,
new privacy regulations were recently implemented in
Europe—General Data Protection and Regulation (GDPR) [51].
To protect privacy, individuals control their own personal data,
and explicit informed consent is required for access to the data
and use in AI. This regulation is expected to make it more
difficult to share patient data between multiple medical centers
and with companies involved in development of AI solutions.

Key Takeaways

While AI approaches are excellently suited to develop
algorithms for analysis of unimodal imaging data (eg,
radiological or digital pathology images), for clinical (ie,
patient-related) applications, major challenges lie in the usually
limited patient or sample numbers (N). This is in comparison
to the number of multimodal variables (P) due to patient
variation, inadequate ground truth information, and a
requirement for robust clinical validation prior to clinical
implementation. Artificial Intelligence solutions that combine
domain knowledge with data-driven approaches are, therefore,
preferable over solutions that use only domain knowledge or
are fully data driven. We introduce the following 6R model to
keep in mind for AI projects in the biomedical and clinical
health care domain:

1. Relevant and well-defined clinical question first.
2. Right data (ie, representative and of good quality).
3. Ratio between number of patients and their variables should

fit the AI method.
4. Relationship between data and ground truth should be as

direct and causal as possible.
5. Regulatory ready; enabling validation.
6. Right AI method.
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