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Abstract

In the past decade, advances in precision oncology have resulted in an increased demand for 

predictive assays that enable the selection and stratification of patients for treatment. The 

enormous divergence of signalling and transcriptional networks mediating the crosstalk between 

cancer, stromal and immune cells complicates the development of functionally relevant biomarkers 

based on a single gene or protein. However, the result of these complex processes can be uniquely 

captured in the morphometric features of stained tissue specimens. The possibility of digitizing 

whole-slide images of tissue has led to the advent of artificial intelligence (AI) and machine 

learning tools in digital pathology, which enable mining of subvisual morphometric phenotypes 

and might, ultimately, improve patient management. In this Perspective, we critically evaluate 

various Al-based computational approaches for digital pathology, focusing on deep neural 

networks and ‘hand-crafted’ feature-based methodologies. We aim to provide a broad framework 

for incorporating AI and machine learning tools into clinical oncology, with an emphasis on 

biomarker development. We discuss some of the challenges relating to the use of AI, including the 

need for well-curated validation datasets, regulatory approval and fair reimbursement strategies. 

Finally, we present potential future opportunities for precision oncology.
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Digital pathology includes the process of digitizing histopathology slides using whole-slide 

scanners as well as the analysis of these digitized whole-slide images (WSI) using 

computational approaches. Such scanners were introduced two decades ago (ca. 1999), but 

the roots of digital pathology can be traced back to the 1960s, when Prewitt1–3 and 

Mendelsohn3 devised a method to scan simple images from a microscopic field of a 

common blood smear, converting the optical data into a matrix of optical density values 

while preserving spatial and grey-scale relationships, and then discerning the presence of 

different cell types based on the information in the scanned image (FIG. 1).

Artificial intelligence (AI) is a broadly encompassing term, coined by McCarthy et al.4,5 in 

the 1950s, referring to the branch of computer science in which machine-based approaches 

are used to attempt to make a prediction — emulating what an intelligent human might do in 

the same situation. Machine learning (ML)-based approaches, which involve the machine 

‘learning’ from data that are fed into it in order to make a prediction, fall under the broad 

umbrella of AI. Deep learning (DL) is a particular ML approach developed through the 

advancement of artificial neural networks6,7, which were devised in the 1980s as artificial 

representations of the human neural architecture. A DL network8,9 typically comprises 

multiple layers of artificial neural networks and tends to include an input layer, an output 

layer and multiple hidden layers. Interestingly, the hidden layers are also used to generate 

new representations of the image and, with a sufficient number of training instances, can be 

used to identify the representations that best distinguish categories of interest. In the past 15 

years, the findings of many research groups (such as Hinton and others10–15) and a parallel 

increase in computational processing power have resulted in increasing interest in the use of 

DL for a number of different applications, including digital pathology.

The term digital pathology was initially coined to include the process of digitizing WSIs 

using advanced slide-scanning techniques, and now also refers to AI-based approaches for 

the detection, segmentation, diagnosis and analysis of digitized images (FIG. 2). To our 

knowledge, the first large-scale multicentre comparison of diagnostic performance between 

digital pathology and conventional microscopy was a comprehensive study by 

Mukhopadhyay et al.16 including specimens from 1,992 patients with different tumour types 

and involving 16 surgical pathologists. This study showed that primary diagnostic 

performance with digitized WSIs was non-inferior to that achieved with traditional 

microscopy-based approaches (with a major discordance rate from the reference standard of 

4.9% for WSI and 4.6% for microscopy).

The development of new AI-based image analysis approaches in pathology and oncology is 

being led by computer engineers and data scientists, who are developing and applying AI 

tools for a variety of tasks, such as helping to improve diagnostic accuracy and to identify 

novel biomarker approaches for precision oncology. Pathologists and oncologists are the 

primary end users of these image analysis approaches. In routine clinical practice, 

pathologists (particularly anatomical pathologists) base their histological diagnosis in the 

visual recognition, semi-quantification and integration of multiple morphological features of 

the analysed sample and in the context of the underlying disease process. With extensive, 

postgraduate systematic training, pathologists are able to rapidly extract dominant 
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morphological patterns that are associated with predefined criteria and established pre-

existing clinical features in order to classify their observations. Most commonly, the result of 

this process is a histopathological diagnosis that is delivered in a written report to the 

treating physicians. While the systematic training and use of standardized guidelines can 

support harmonization of the analytical process and diagnostic accuracy, the histopathology 

analysis is inherently limited by its subjective nature and the natural differences in visual 

perception, data integration and judgement between independent observers17–20. 

Discrepancies in opinion can arise even between pathologists with the same training, leading 

to diagnostic inconsistencies21,22 and potential suboptimal patient care. The nature of this 

problem is, most likely, multifactorial and effective solutions remain elusive. In addition, the 

widespread use of non-invasive or minimally invasive procedures to acquire diagnostic 

samples has considerably reduced the size and quality of specimens obtained, making the 

work of pathologists more challenging. This difficulty is paradoxically accompanied by an 

increasing demand to perform refined diagnostics, including reporting of variables with 

prognostic or predictive value. Even with the use of molecular analysis strategies (in 

principle more objective), frequent limitations complicate definitive diagnosis or 

characterization of the biological drivers of the disease process to anticipate a clinical 

course. Patient preferences and reimbursement considerations can also considerably 

influence the diagnostic process and should be leveraged carefully by the clinical team23. 

These issues are further compounded by the variability in companion diagnostic assays and 

biomarkers24 for guiding treatment decisions, which is often the result of a lack of 

standardization but also of spatial and/or temporal biological heterogeneity in samples25,26.

In cancer, the complexity of genomic alterations that affect cell signalling and cellular 

interactions with their environment can influence the biological course of the disease and 

affect responses to therapeutic interventions. The assessment of such alterations requires the 

simultaneous interrogation of multiple features with highly sensitive and precise approaches. 

In addition, most biological features are continuous variables, and the reduction of these 

characteristics into categorical and/or discrete variables is necessary for their use in clinical 

decision-making. Nevertheless, biomarker development is often unidimensional, qualitative 

and does not account for the complex signalling and cellular network of tumour cells and/or 

tissues. Automated AI-based extraction of multiple subvisual morphometric features on 

routine haematoxylin and eosin (H&E)-stained preparations remains limited by sampling 

issues and tumour heterogeneity, but can help to overcome limitations of subjective visual 

assessment and to integrate multiple measurements in order to capture the complexity of 

tissue architecture. These histopathological features could potentially be used in conjunction 

with other radiological, genomic and proteomic measurements to provide a more objective, 

multi-dimensional and functionally relevant diagnostic output.

Thus, AI-based approaches, which are robust and reproducible, are a starting point in 

alleviating some of the challenges faced by oncologists and pathologists. This premise is 

supported by the results of several studies showing that AI-based approaches have a similar 

level of accuracy to that of expert pathologists27–29 and, more importantly, can improve the 

performance of the human reader when used in tandem with standard protocols in detection 

and diagnostic scenarios30,31. Herein, we present an overview of how AI-based approaches 

can be integrated into the workflow of pathologists and oncologists, and discuss the 
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challenges associated with the implementation of such tools in the routine management of 

patients with cancer.

AI approaches in pathology

In digital pathology, AI approaches have been applied to a variety of image processing and 

classification tasks, including low-level tasks, focused around object recognition problems 

such as detection27,32–37 and segmentation38–41 as well as higher-level tasks such as 

predicting disease diagnosis and prognosis of treatment response on the basis of patterns in 

the image42–53. Independently of the final application, AI approaches are built to initially 

extract appropriate image representations, which can then be used to train a machine 

classifier for a particular segmentation, diagnostic or prognostic task. Several AI 

applications in digital pathology have been focused on the need to automate tasks that are 

time consuming for the pathologist27,32,36–38,54–57, subsequently enabling them to spend 

additional time on high-level decision-making tasks — especially those related to disease 

presentations with more confounding features31,58,59. In addition, AI approaches in digital 

pathology have been increasingly applied towards helping to address issues faced by 

oncologists, for example, through the development of prognostic assays to evaluate disease 

severity and outcome42,45,47,60,61 as well as assays to predict response to therapy62–64.

Hand-crafted feature-based approaches

Feature engineering is the process of delineating and developing the building blocks of ML 

algorithms, either by leveraging intrinsic domain knowledge (domain-inspired features) of 

pathologists and oncologists to create a particular hand-crafted feature-based ML approach, 

or without inherent domain knowledge (domain-agnostic features). In the hand-crafted ML 

approach, attempts are made to engineer new features that are anchored to the problem 

domain — that is, the algorithms are usually targeted towards a specific cancer or tissue 

type, focusing on particular features that might not be applicable for a broad use (FIG. 3). 

For example, these hand-crafted features could reflect the quantitative enumeration of 

mitotic figures36,65,66, which are currently qualitatively (and hence, subjectively) assessed 

by pathologists during the grading of breast cancers. Nevertheless, hand-crafted features can 

also encompass domain-agnostic features, such as subvisual textural heterogeneity 

measurements43,44,62,67 of the tissue or quantitative measurements of nuclear shape and size, 

which could be applied across disease and tissue types. Other domain-agnostic features that 

are broadly used include graph-based approaches, which enable quantification of the spatial 

distribution, arrangement and architecture of individual types of discrete tissue elements or 

primitives (for example, nuclei, lymphocytes or glandular structures) or between different 

tissue-specific primitives. Herein, we highlight a selection of numerous hand-crafted feature-

based approaches that are being developed. These domain-agnostic and domain-specific 

hand-crafted feature-based approaches have been used for the diagnosis, grading, prognosis 

and prediction of response to therapy for cancer subtypes, including prostate68, breast69, 

oropharyngeal carcinomas60,70 and brain tumours71,72.

Diagnostic applications.—In the diagnostic setting, Osareh et al.73 presented a 

supervised ML model focused on 10 cellular features identified by an expert breast 
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pathologist in order to differentiate between malignant and benign breast tumours using 

images of samples obtained by fine-needle aspiration biopsy. Veta et al.74 showed that, in a 

tissue microarray (TMA) of male breast cancers, features such as nuclear shape or texture 

had prognostic value. In work from our group, Lee et al.42 presented a novel gland 

angularity feature associated with the level of disorganization of the glandular architecture in 

pathology images from prostate specimens; this feature occurred more frequently in 

advanced-stage prostate cancers compared with indolent prostate cancers. We have also 

presented novel hand-crafted features relating to disorders in nuclear shape, orientation and 

architecture in the tumour and tumour-associated benign regions43. These features were 

subsequently used in conjunction with an ML classifier developed using H&E-stained 

surgical prostate specimens to predict the likelihood of biochemical recurrence within 5 

years of surgery. In a study of oral cavity squamous cell carcinoma, we used computerized 

features relating to the diversity of nuclear shape and texture to stratify patients into risk 

categories predictive of disease-free survival (DFS)75. The study44 also showed that a 

combination of nuclear shape and orientation features enables patients with oestrogen 

receptor (ER)-positive breast cancer with short-term survival (<10 years) to be distinguished 

from those with long-term survival (>10 years). Our team67 showed that quantitative 

features of nuclear shape, texture and architecture independently enable prediction risk of 

recurrence in patients with ER-positive breast tumours (on the basis of the 21-gene 

expression-based companion diagnostic test Oncotype DX).

Prognostic applications.—Graphical approaches are currently being used to evaluate 

the spatial arrangement and architecture of different types of tissue elements in order to 

predict clinical outcome. In an article published in 2018, Saltz et al.76 described the use of a 

convolutional neural network (CNN) in conjunction with feedback from pathologists to 

automatically detect the spatial organization of tumour-infiltrating lymphocytes (TILs) in 

images of tissue slides from The Cancer Genome Atlas, and found that this feature was 

prognostic of outcome for 13 different cancer subtypes. In a related study, we showed45 that 

the spatial arrangement of clusters of TILs in early stage non-small-cell lung cancer 

(NSCLC), which was calculated by computing the graph-derived relationships between TILs 

proximally located to each other and between TILs and cancer cell nuclei, was strongly 

prognostic of recurrence risk to a greater extent than TIL density alone. Yuan77 proposed a 

method to model and analyse the spatial distribution of lymphocytes among tumour cells on 

triple-negative breast cancer WSIs. Using this model, they identified three different 

categories of lymphocytes according to their spatial proximity to cancer cells. The ratio of 

intratumoural lymphocytes to cancer cells was found to be independently prognostic of 

survival and correlated with the levels of cytotoxic T lymphocyte protein 4 (CTLA-4) 

expression determined by TMA gene expression profiling. These investigators78 further 

expanded this method and found that the spatial distribution of immune cells was also 

associated with late recurrence in ER-positive breast cancer.

While many hand-crafted ML approaches have primarily been focused on analysing cells of 

epithelial origin within the tumour, increasing interest exists in trying to identify prognostic 

patterns within the tumour stroma. In a seminal study by Beck et al.79, 6,642 features 

relating to morphology as well as to spatial relationships and global image features of 
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epithelial and stromal regions were extracted from digitized WSIs of specimens from 

patients with breast cancer. The features were used to train a prognostic model, and were 

found to be strongly associated with overall survival (OS) in cohorts of patients with breast 

cancer from two different institutions; features extracted from the stromal compartment had 

a stronger prognostic value (P = 0.004) than features extracted from the epithelial 

compartment (P = 0.02). In a study presented by our team, Ali et al.60 showed that 

combining nuclear features of the stromal and the epithelial compartments enabled 

prediction of the likelihood of progression of human papillomavirus-positive oropharyngeal 

cancer. Our team80 discovered statistically significant differences in nuclear features of the 

stromal compartment (23 discriminative features were selected with a P < 0.05) in images of 

surgically excised tissues from African American versus white American patients with 

prostate cancer, after correcting for disease stage and grade, indicating that population-

specific features need to be taken into account in model design. Additionally, these 

investigators found that a prognostic model based on stromal features alone and trained in a 

cohort of African American patients with prostate cancer had a stronger prognostic accuracy 

for biochemical recurrence after surgery in an independent test cohort of African American 

patients than a model trained with both African American and white American patients with 

prostate cancer (average area under the curve (AUC) 0.82 versus 0.68).

Drug discovery and development applications.—Over the past few years, interest in 

the use of ML-based approaches for drug discovery and development has increased81. The 

fact that a substantial proportion of patients receiving certain therapeutic modalities, such as 

cytotoxic agents or immune-checkpoint inhibitors (ICIs), do not respond to treatment has 

resulted in increased interest in combining AI with digital pathology to identify the patients 

who are most likely to derive therapeutic benefit. Wang et al.64 developed an approach 

whereby nuclear and perinuclear features (shape, orientation and spatial arrangement) could 

be used to stratify patients with early stage NSCLC treated with surgery alone into two 

distinct groups according to the risk of disease recurrence; patients in the high-risk group 

were considered potential candidates who might benefit from adjuvant chemotherapy. Hand-

crafted ML approaches have also been focused on probing therapeutic response to particular 

therapeutic agents, including targeted agents, chemotherapy drugs and ICIs. Wang et al. have 

developed an approach whereby the spatial arrangement of nuclei62 or TILs63 enables 

prediction of the responsiveness of patients with late-stage NSCLC to the anti-programmed 

cell death 1 (PD-1) antibody nivolumab.

Deep neural network-based approaches

DL approaches have been increasingly used and are being adapted in the context of digital 

pathology because they do not rely on engineered features and they can learn representations 

directly from the primary data82. DL approaches typically involve a learning set of images 

with associated class labels (for example, whether the tumour is benign or malignant83,84) 

and subsequent interrogation of new input data with no pre-existing assumptions. The 

process involves generating and subsequently learning the optimal image features to best 

separate the categories of interest. Other reasons for the wide acceptability of DL-based 

methods are their easier application (compared with hand-crafted feature engineering) and 
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high accuracy. Consequently, several DL models or algorithms for analysing pathology 

images have been developed.

Convolutional neural networks.—CNNs are the most extensively used DL algorithms 

to date and have been applied to a variety of pathology image analysis applications83–86. A 

CNN is a type of deep, feedforward network that comprises multiple layers in order to infer 

an output (typically a fixed category) from an input (for example, an image), and is so 

named because of the presence of multiple convolutional sheets, which are the building 

blocks of a CNN in which the network learns and extracts feature maps from the image 

using filters between the input and output layers. The layers in a CNN are not fully 

connected: the neurons in one layer interact with only a fixed region of the previous layer 

and not with all neurons. In addition, CNNs also comprise pooling layers in between, whose 

primary function is to scale down or reduce the dimensionality of the features. The CNN 

thus works by hierarchically deconstructing the image into low-level cues, such as edges, 

curves or shapes, which are then aggregated to form high-order structural relationships in 

order to identify features of interest. CNN DL-based approaches have been used for image-

based detection and segmentation tasks to identify and quantify cells32,33,82,87 (such as 

neutrophils, lymphocytes and blast cells), histological features (for example, 

nuclei34,35,88,89, mitotic figures, stroma90 and glandular structures38,39) or regions of interest 

(such as the tumoural54 or peritumoural areas). In addition, Senaras et al.91 have developed 

the CNN-based DeepFocus system to automatically detect and segment out-of-focus and 

blurry areas in digitized WSIs, with an average accuracy of 93.2% (±9.6%).

With regard to AI-based diagnostic approaches, Araujo et al.33 used a CNN to classify WSI 

images of suspected breast cancer specimens as containing non-malignant tissue, benign 

lesion, in situ carcinoma or invasive carcinoma. Esteva et al.92 used a deep CNN trained on 

images of skin lesions and compared its performance against that of 21 board-certified 

dermatologists in differentiating keratinocyte carcinoma from benign seborrheic keratosis 

and malignant melanoma from benign nevi. The CNN achieved results comparable to those 

of evaluations by expert dermatologists. Tschandl et al.93 compared the diagnostic accuracy 

of different CNN-based DL models against human readers in correctly classifying 

pigmented skin lesions into one of seven predefined disease categories using digital 

dermatoscopic images. The investigators found that the DL models consistently 

outperformed human physicians. In a comparison of 511 human readers against 139 DL 

algorithms, the algorithms achieved a mean of 2.01 more correct diagnoses (17.91 versus 

19.92; P < 0.0001).

In terms of prognostic applications, Couture et al.94 applied a CNN to images of H&E-

stained TMA in order to determine the histological and intrinsic molecular subtypes of the 

component breast cancers. Our group95 used a CNN combined with a fully connected 

network to automatically detect mitotic figures in WSIs of ER-positive breast cancer 

specimens, and found that the distribution of mitotic figures differed significantly between 

those with a high versus a low Oncotype DX-defined risk of disease recurrence (P = 

0.00001). Nagpal et al.28 used a DL system to automatically assign Gleason scores 

following detection of cancerous regions in WSIs of radical prostatectomy specimens. In a 

validation set of 331 slides, with the reference diagnostic standard set by an expert 
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genitourinary pathologist who also had access to initial diagnostic comments from prior 

reviews of at least three general pathologists, the DL approach had an accuracy of 0.70 in 

predicting Gleason scores, whereas 29 general pathologists had a mean accuracy of 0.61. 

Geessink et al.96 used CNN-based approaches with prognostic intent in patients with 

colorectal cancer. This CNN was leveraged to quantify the presence of the stromal 

component within the tumour using pathologist-identified ‘stromal hotspots’; the ratio of 

tumour-to-stroma was independently prognostic for DFS (HR 2.05, CI 1.11–3.78) in a 

multivariable analysis incorporating clinicopathological factors. Kather et al.97 used a CNN 

to generate a ‘deep stroma score’ and found it to be independently prognostic of recurrence-

free survival (HR 1.92, CI 1.34–2.76) and OS (HR 1.63, CI 1.14–2.33) in an independent 

validation set of 409 patients.

Fully convolutional networks.—Another popular DL model is the fully convolutional 

network (FCN), which lacks fully connected layers and comprises only a hierarchy of 

convolutional layers. Unlike a CNN, which is used to aggregate information locally for a 

global prediction, FCNs can be used to learn representations from every pixel and, therefore, 

potentially enable detection of an element or feature that might occur sparsely in an entire 

pathology image. This attribute enables a FCN to make pixel-level predictions with a 

possible advantage over a CNN, which learns from repetitive features that occur throughout 

the entire image. In digital pathology, FCNs have been used by Rodner et al.98 to 

differentiate cancerous regions from non-malignant epithelium in histopathology images of 

head and neck cancer specimens. Using co-registered H&E images with multimodal 

microscopy techniques, the FCN was used to segment the WSIs into four classes: cancer, 

non-malignant epithelium, background and other tissue. Our group99 used a FCN, which 

was trained on 500 images from 349 patients, in 195 patients in order to detect invasive 

breast cancer regions on WSIs, resulting in a detection accuracy of 71% (Sørensen-Dice 

coefficient) when compared with the assessment of an expert breast pathologist.

Recurrent neural networks.—Unlike CNNs and FCNs, which are limited to the analysis 

of data from one individual time point, recurrent neural networks (RNN) can store inputs 

over different time intervals or time points in order to process them sequentially and learn 

from (often several million) discrete earlier steps100. The RNN takes into account the status 

of the input at different time points, thus exhibiting dynamic behaviour. Long short-term 

memory101 (LSTM) networks are a type of RNN augmented by the presence of recurrent 

gates, referred to as ‘forget’ gates, which enable the CNN to learn tasks by looking back at 

propagated errors. Bychkov et al.29 built a network combining a LSTM and a CNN to 

predict the risk of disease recurrence (high versus low, based on retrospective DFS data) 

using images of H&E-stained colorectal cancer TMA specimens. The investigators first 

deconstructed the entire TMA image into small patches, which were then fed into the CNN. 

Thus, the advantage of using the LSTM network was that the model was able to learn 

patterns from each patch, all of which were aggregated to generate a patient-level prediction. 

Accordingly, the predictive performance of this LSTM network (average AUC 0.69) was 

higher than that based on histological grade alone (average AUC 0.57) and a visual risk 

score agreed by three expert pathologists (average AUC 0.58). The analysis of tissue images 

obtained at different time points, for example, serial follow-up biopsy samples from patients 
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with prostate cancer who are under active surveillance, is another potential use of the RNN-

based AI approach.

Generative adversarial networks.—In addition to CNNs, generative adversarial 

network102 (GAN)-based approaches are showing increasing promise in DL-based digital 

pathology approaches, including feature segmentation103 and stain transfer (a term that 

refers to the correction of colour variations)104,105. A GAN works by implementing two 

simultaneous neural networks, which compete with each other. One network is the generator 

and produces synthetic data from training exemplars fed to the network, while the second 

network evaluates the agreement between the generated and the original data. The objective 

of a GAN is to decrease the degree of classification error of the second network, such that 

the generated images more closely resemble the original images. Gadermayr et al.106 used a 

GAN to segment out glomeruli from images of renal pathology specimens obtained from 

resected mouse kidneys (which show high similarity to human kidneys). A GAN-based 

approach107 has also been used for training a DL method to automatically score tumoural 

programmed cell death 1 ligand 1 (PD-L1) expression in images of NSCLC biopsy samples. 

This approach helped minimize the number of pathologist annotations necessary and thus 

compensate for the lack of tissue available in a biopsy specimen. Similarly, Xu et al.105 

proposed a novel GAN-based approach to convert the H&E staining of WSIs to virtual 

immunohistochemistry staining based on cytokeratins 18 and 19, an approach that 

potentially obviates the need for destructive immunohistochemistry-based tissue testing 

(TABLE 1).

Integration of pathology and oncology

Successful Al-based approaches for digital pathology need to closely integrate the work of 

the pathologist with that of the oncologist (FIG. 4). For example, most supervised AI 

algorithms are crucially dependent on carefully annotated digital slide images for classifier 

training. The pathologist also has an essential role in providing domain-specific knowledge 

to the computational and data scientists involved in designing and developing the AI 

algorithms. This collaboration might entail the pathologist directing the developers towards 

the specific attributes of the pathology image that should be examined and helping in the 

training of the algorithms through the annotation and segmentation of cells, tissue types, 

biological structures or regions of interest. The pathologist also often provides the diagnostic 

reference or gold standard against which the ML algorithms will be compared.

A major dilemma for oncologists is the lack of consensus when deciding whether to provide 

a particular treatment or not when tailoring therapy to an individual patient. In addition to 

their utility as decision support systems, AI approaches can also serve as companion tools 

for precision patient-centred approaches. For example, a thoracic oncologist might be 

initially undecided regarding offering chemotherapy to a patient with stage IA (early stage) 

NSCLC according to guidelines, despite a symptomatic decline following surgery. However, 

if an AI-based predictive approach assigns a high risk of recurrence to the patient on the 

basis of the histomorphometric analysis of a surgical specimen, this clinician would be more 

likely to recommend chemotherapy. In addition to enabling the standardization of 

management plans, AI could help oncologists to handle some of the limitations of current 
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companion diagnostic assays based on genetic or tissue-based biomarkers108–110. Besides 

being tissue-destructive and requiring a large amount of viable tissue for analysis, one of the 

challenges associated with genomic-based tests is the increasingly well recognized intra-

tumour and inter-tumour heterogeneity25,26,111,112 across cancer types, whereby diverse 

spatial locations can yield different prognostic information (for example, differences in the 

tumour genetic signatures according to the tissue sampling coordinates113). Thus, the final 

results of those tests are dependent on the specific area of the tumour from which the tissue 

is sampled. AI-based interrogation tools could help overcome this limitation by enabling the 

analysis of all the individual slides from the tumour to generate an integrated consistent 

signature representative of the entire lesion. Implementing ML methods into routine clinical 

practice is also potentially easier, less expensive and less disruptive than using genomic tests 

because routine standard-of-care images can be used. Genomic approaches have the 

advantage that they could provide considerable insight into the underlying molecular 

characteristics of the disease and, thus, several groups are exploring ways to combine 

molecular and morphological attributes of the tumour to improve the prognostic and 

predictive performance of ML approaches61,114,115. Indeed, future companion diagnostic 

tests for precision medicine applications will likely involve a combination of tumour 

morphological and molecular attributes58,116–119.

Oncologists also have to contend with rapidly changing treatment guidelines incorporating 

new therapeutic agents such as ICIs and targeted agents that require substantial out-of-

pocket expenses and might not be covered by insurance. Optimized AI-based biomarker 

approaches could provide oncologists in this situation with an accurate and inexpensive tool 

to potentially pre-select patients for treatment with novel agents from which they would 

actually derive benefit, not only saving patients from incurring unnecessary expenses but 

also unwanted systemic toxicities without any substantial physiological improvement.

Challenges towards clinical adoption

Regulatory roadblocks

One of the key questions with regard to the clinical adoption of AI approaches for digital 

pathology in the clinic is the pathway for approval by regulatory agencies. The key principle 

guiding the approval process in most countries is the requirement of ‘an explanation of how 

the software works’120–122; this is obviously crucial for DL-based AI approaches, which are 

perceived as being a ‘black-box’ and lacking interpretability123. In the USA, the FDA uses a 

three-class system for the approval of medical devices on the basis of the risks that the 

device poses to the patient, as well as the intended use of the device, with Class I devices 

deemed to have the lowest risk and Class III devices to have the highest risk — AI-based 

devices tend to be assigned to Classes II or III. Typically, Class II devices are allowed to be 

marketed through the 510(k) approval pathway, whereas Class III devices require a more 

rigorous premarket approval.

In addition, under proposed changes published by the FDA in 2018124, the De Novo 

pathway can be used as an alternative approval mechanism for novel Class I or II devices. 

Applications for licensing of devices can be submitted directly through this pathway or after 

the device receives a ‘not substantially equivalent’ designation after submission for approval 
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via the 510(k) pathway. In the European Union (EU), any software, including AI-based 

devices, “to be used for the purpose, among others, of diagnosis, prevention, monitoring, 

treatment, or alleviation of disease”125,126 is considered a medical device. The Medical 

Devices Regulation127 and the In Vitro Diagnostic Device Regulation128 will be effective 

from 26 May 2020 as a reform of the existing directives from the 1990s, bringing them into 

line to regulate AI-based health-care systems. Similar to the FDA’s system, the EU 

regulations that will be effective from May 2020 will use a four-tiered medical device risk 

classification, with Class A denoting the lowest risk and Class D implying the highest 

risk129.

In the USA, the FDA has started granting approval to DL-based approaches for clinical use. 

In 2018, the cloud-based Arterys130 imaging platform received approval via the 510(k) 

pathway to be used in radiology in order to help physicians track tumours in MRI and CT 

scans from patients with lung or liver cancer131. In 2017, Philips received De Novo pathway 

clearance to market the IntelliSite Pathology Solution as a comprehensive digital pathology 

system132. In 2019, the digital pathology solution PAIGE.AI133 was granted Breakthrough 

Device designation by the FDA134. Meanwhile, current guidelines in the EU require a 

Conformité Européenne (European Conformity) marking on devices and software before 

they can be applied to human tissue for diagnostic purposes129,135. Currently, no AI 

solutions with prognostic and/or predictive intent have a Conformité Européenne marking, 

but digital pathology solutions developed by Sectra, Philips and OptraSCAN have secured 

clearance to carry such a designation, thus paving the way for their deployment in the EU. In 

2017, the FDA decided to downgrade radiology-based companion diagnostic assays from 

Class III to Class II medical devices136. With the new proposed changes to the De Novo 

pathway, as well as the intention to implement the Software Precertification programme 

under it, this pathway could become a viable mechanism for approving novel AI-based 

devices with low-to-moderate risk without predicates. MammaPrint137, an RNA-based 

genomic test to determine the likelihood of benefit from adjuvant chemotherapy in patients 

with early stage breast cancer, received 510(k) clearance138 from the FDA, suggesting that 

AI-based digital pathology companion diagnostic approaches might be able to leverage 

MammaPrint as a predicate device. Interestingly, FDA approval has not been sought for 

Oncotype DX139, another gene expression-based test for patients with breast cancer, owing 

to the status of this assay as a Clinical Laboratory Improvement Amendments (CLIA)-

certified central test. Thus, developers of AI-based digital pathology tests could potentially 

take a similar approach and apply for CLIA certification as a Laboratory Developed Test. 

Actions taken in 2019 by the FDA, such as sending a warning letter140 to a lab illegally 

using CLIA-based genomic tests to predict response to specific drugs and publishing a 

discussion paper141 about the needs for future oversight of CLIA tests, suggest that this 

agency is reinforcing the concept that regulatory approval be obtained for predictive assays 

before they are used in the clinic. In addition, the College of American Pathologists, which 

is the organization that grants CLIA certification, has also called for the FDA to regulate 

high-risk prognostic and predictive tests currently considered to be Laboratory Developed 

Tests owing to the complexity and lack of transparency in how the test results are obtained 

with these tests142.
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Quality of data

The performance of any AI-based approach is primarily dependent on both the quantity and 

quality of the input data. The data used to train an AI algorithm need to be clean, curated, 

with a maximal signal-to-noise ratio, and as accurate and comprehensive as possible in order 

to achieve the maximum predictive performance58,82,143,144. For example, if an AI approach 

is meant to segment a particular biological structure present in a WSI, the performance of 

the approach is primarily dependent on the fidelity of the reference annotations by expert 

pathologists in the learning set54,145. The importance of well-curated data is apparent in the 

work of Doyle et al.145, who have developed an ML-based AI approach to automatically 

detect regions of prostate cancer in WSIs. The investigators noted a decrease in the 

performance of the method when the magnification was increased, which they determined 

was due to the apparent loss in granularity and detail of the reference learning manual 

annotations at increased resolution. This situation also highlights the issue of the scanning 

resolution when digitizing WSIs. Most existing slide scanners have a maximum capability to 

scan at ×40. Higher resolution images (>×20) can be scaled down to be used by an algorithm 

trained at a resolution of ×20, but the use of an AI approach developed at ×40 when the 

maximum scanning resolution available is ×20 would likely result in a loss of data fidelity. 

Super-resolution microscopy techniques146 enable focus to be placed on specific biological 

elements (such as mitotic figures or nucleoli) at much higher resolution than can be obtained 

with standard optical microscopy techniques. An AI approach could be used to identify sites 

on the slides for subsequent imaging with super-resolution techniques, thus helping to scan 

certain key structures and locations in the image at substantially higher resolution while also 

reducing the total amount of digitally scanned data generated. Taking this approach, Kleppe 

et al.147 used an ML-based algorithm and determined that, across different solid tumour 

types, patients with chromatin defined as homogeneous had more favourable survival 

outcomes than those with heterogeneous chromatin.

Situations such as those discussed above warrant the need for the creation of accurate, 

manually annotated reference datasets by expert pathologists in order to standardize the 

evaluation of the performance of AI algorithms. In addition to efforts by the FDA to curate 

these datasets148, global digital pathology image analysis challenges at major AI and 

imaging conferences149 have led to the development of well-curated, accurate WSI reference 

datasets across cancer subtypes, with annotated cancerous regions as well as regions of 

interest, including mitotic figures, glandular structures and lymph node metastases, among 

others.

Interpretability

Despite their high accuracy and ease of application, criticism regarding the lack of 

interpretability and contrasting domain-inspired intuitiveness found in hand-crafted 

networks58,123,150 is a possible obstacle towards the clinical adoption of deep neural 

networks. A few studies31,55 have been aimed at providing biological interpretability to DL 

tools with current approaches, including post hoc methods or supervised ML models, to 

explain the output after the DL model has already made its prediction. Mobadersany et al.61 

used a CNN trained using images of brain tumour biopsy specimens to predict OS. In one of 

the patients with high-grade tumours, the heat-map visualization of the AI prediction 

Bera et al. Page 12

Nat Rev Clin Oncol. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponded to pathologist-identified areas of early microvascular proliferation, which is a 

hallmark of malignant progression, thus providing unique interpretability to the analysis. 

These visual attention maps and post hoc analyses of DL methods have also been 

criticized123 on the basis that additional models should not be required to explain how a DL 

model works.

Hand-crafted AI approaches can provide greater interpretability because they are typically 

developed in conjunction with domain experts. Nevertheless, engineering hand-crafted 

features is often a challenging and non-trivial task owing to the substantial time investment 

of the pathologist or oncologist in the development of such approaches. In the past few 

years, fusion approaches involving integration of DL and hand-crafted strategies have started 

to gain attention. These strategies might involve the use of DL algorithms for the initial 

detection of cells or elements with subsequent reliance on hand-crafted ML approaches for 

prediction, thereby leveraging domain knowledge to ensure the biological interpretability of 

the approach. For example, our team47 used a DL approach to segment nuclei in images of 

TMAs comprising early stage NSCLC specimens before applying a hand-crafted approach 

involving the interrogation of nuclear shape and texture to predict which patients were more 

likely to have disease recurrence.

Algorithm validation

Prior to clinical adoption, AI-based and ML-based tools need to be sufficiently validated 

using multi-institutional data in order to ensure generalizability of the approaches. The 

available data for building an AI approach is often partitioned into training and validation 

sets. The initial dataset, often referred to as a training, learning or discovery set, is typically 

class balanced and exemplars from the categories of interest are equally represented. Once 

the model has been trained and locked down on the learning set (that is, no more alterations 

need to be made to the AI model), validation without further optimization is typically 

performed on a test set, which is either extracted from the original set of cases or obtained 

from a different institution.

One of the critical reasons for attempting to independently validate AI approaches using 

separate test sets is to ensure that these approaches are resilient to pre-analytical sources of 

variation, which can include variations in slide preparation, scanner models and/or protocols. 

Coudray et al.151 showed that a CNN trained on NSCLC images from The Cancer Genome 

Atlas could not only distinguish adenocarcinomas from squamous cell carcinomas with an 

average AUC of 0.97 but also, more interestingly, had consistent performance when 

validated on frozen tissue preparations, formalin-fixed paraffin-embedded tissues or biopsy-

derived samples from a separate institutional cohort. By contrast, Zech et al.152 found that a 

CNN trained to detect pneumonia showed significantly poorer performance when it was 

trained using data from one institution and validated independently using data from two 

other institutions (P < 0.001) than when it was trained using data pooled from all three 

institutions. AI algorithms have been developed to standardize the data153, including 

stain154,155 and colour normalization40,156 techniques. In the past few years, research has 

also been aimed at building comprehensive quality control and standardization tools157,160. 

For example, we159,160 have developed novel stability measures in an attempt to instil AI 
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algorithms with resilience to pre-analytic variations, and found that stable features (all of 

which were relating to gland shape) enabled better discrimination of Gleason grade and the 

presence of prostate cancer within surgical resection specimens.

Reimbursement and clinical adoption

Reimbursement of the costs of performing AI-based companion assays or decision-support 

systems is one of the major issues that needs to be overcome for assays to be implemented in 

routine clinical practice144. In the USA, insurance companies presently standardize expenses 

according to the current procedural terminology codes maintained by the American Medical 

Association and reported by medical professionals135,161–163. In the EU, procedure codes 

(analogous to current procedural terminology codes) differ among countries. In many other 

regions of the world, for example in India, no standardized system for medical billing exists 

and individual institutions typically implement their own procedures.

Currently, no dedicated procedure codes exist for the use of AI approaches in digital 

pathology with diagnostic or prognostic intent. New procedure codes might need to be 

established, but AI-based tools will probably first need to be approved by the FDA before 

they are reimbursable and thus implementable in the clinic — especially considering the 

possibility that the FDA will regulate complex CLIA-based tests in the near future. AI-based 

pathology companion diagnostic assays, however, could follow the model established by 

CLIA-based genomic tests, which again could be challenging owing to the apparent FDA 

intention to regulate CLIA-based tests more stringently. The needs of the end user might 

also dictate the way in which AI-based tools will be deployed.

Perspective of the pathologist.—For a pathologist, AI-based tools will be mainly 

needed to detect structures or specific regions of interest in digitized WSIs. Hence, the key 

element in the development of such applications is the digital slide scanner in order to 

enable quick turnaround times and the ability to control the clinical workflow. Moving 

forward, when slide scanners become more ubiquitous at hospitals and medical institutions, 

the deployment of AI tools might be app-based, with integration into the data cloud in order 

to enable pathologists to instantly share images and AI-based prediction with collaborators 

and patients around the world. Current challenges associated with cloud-based usage include 

the massive bandwidth required to transmit gigapixel-sized WSI images into data clouds as 

well as managing permanent and uninterrupted communication channels between end users 

and the cloud. Another consideration relating to the transition to digital pathology is the 

possibility of having automated approaches to assess the quality of slide digital images. 

Automated algorithms (for example, HistoQC157 and DeepFocus91) have been developed in 

the past few years to standardize the quality of WSIs; these tools can be used to 

automatically evaluate and detect optimum quality regions for analysis while eliminating 

out-of-focus regions or those with artefacts.

The performance thresholds that AI algorithms would have to achieve in order for 

pathologists to feel comfortable using them is an issue that has not been explicitly addressed. 

Nevertheless, Wang et al.30 demonstrated that the combination a DL-based model 

predictions with pathologist diagnoses of breast cancer metastases in WSIs of sentinel 
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lymph-node biopsy specimens decreased the human error rate by almost 85%. In a study 

addressing a similar problem, Steiner et al.31 showed that algorithm-assisted pathologists 

were more accurate than the pathologist or the algorithm alone in the detection of 

micrometastases (sensitivity 91% versus 83%; P = 0.02).

Perspective of the oncologist.—For oncologists, digital pathology-based companion 

diagnostic tests could provide additional valuable information for disease risk stratification 

and patient selection for targeted therapies. Genomic companion diagnostic tests involve 

shipping tissue to a centralized location (usually one or two central labs worldwide), with a 

turnaround time of ~2 weeks. These AI-based tests could potentially be set up as CLIA-

based tests, whereby tissue blocks are shipped and slides are centrally constructed and then 

digitized in order to maximize control over the process of creating the digital slides and to 

minimize pre-analytic variance. Obviously, this approach limits scalability, and hence a 

cloud-based approach using locally scanned WSIs stored in a Health Insurance Portability 

and Accountability Act-secure cloud environment might be another viable option for 

deploying AI-based companion diagnostic assays. These images would be accessible for 

interrogation and the generated risk score would be sent electronically to the ordering 

oncologist. Another important question for the oncologist is deciding the minimum 

performance and accuracy of companion diagnostic assays required for routine clinical use. 

In situations in which these tests are directly competing with existing tests, non-inferiority 

would be a minimum requirement but, ideally, superiority in direct comparisons is the level 

of performance that would convince the oncologist to adopt a new AI-based test.

The adoption of a prognostic or predictive biomarker is usually guided by the levels of 

evidence demonstrated in the validation of the test164,165. The highest level of evidence is 

level IA, generated by prospective validation of the assay in a large multi-centre prospective 

phase III clinical trial (possibly from cooperative oncology groups). Previously, prospective 

clinical trials were considered the highest level of evidence, and evidence from retrospective 

studies was relegated to level II or lower165, yet updated evidence guidelines indicate that 

retrospective studies using controlled archived samples from at least two independent 

prospective phase III trials can provide evidence of up to level IB164. Genomic assays 

currently in clinical use need at least level IB evidence of clinical validity before they can be 

incorporated into practice guidelines. For instance, the recent National Comprehensive 

Cancer Network guidelines for breast cancer166 included Oncotype DX and MammaPrint 

owing to level IA evidence following the completion of the landmark 10-year analyses of the 

phase III TAILORx167 (involving 9,719 patients) and MINDACT168 (in 6,693 patients) 

trials, respectively. Interestingly, Oncotype DX was CLIA certified without traditional 

prospective validation, following level IB evidence generated using archived samples of the 

already completed NSABP B-14169 (in 668 patients) and B-20170 (in 651 patients) studies. 

Interestingly, Decipher171, an assay for predicting the risk of metastasis in patients with 

prostate cancer treated with radical prostatectomy, currently only has level IB evidence172, 

but is CLIA certified and currently in the National Comprehensive Cancer Network 

guidelines173.

Likewise, AI-based prognostic and predictive assays will probably need to achieve at least 

level I evidence to support clinical deployment. Another consideration is whether AI assays 
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are validated in a way that enables their use in clinically relevant applications. For example, 

the use of Oncotype DX in routine oncology practice was spurred by an evolution from 

being merely prognostic to also being predictive of benefit from adjuvant chemotherapy in 

patients with ER-positive, HER2-negative, lymph node-negative, early stage breast cancer. 

In 2018, our team114 presented the first findings of a digital pathology AI test to predict the 

risk of recurrence in patients with breast cancer on archived samples from a completed 

clinical trial (ECOG 2197). We showed that the AI-derived risk groups enabled prediction of 

breast cancer recurrence with a HR of 2.41 (CI 1.21–4.79) in 378 patients from the trial. In a 

subset of 116 patients with available Oncotype DX scores, patients in the low-risk group 

predicted with the AI tool had a 10-year recurrence rate of 17.2% as compared to 19.6% for 

those in the Oncotype DX-defined low-risk group.

Conclusions

The advent of whole-slide digital scanning and the concomitant rise of DL-based neural 

networks for interrogating digital images of slides has resulted in an explosion of interest in 

AI-based digital pathology technologies. Despite the ambiguity and challenges surrounding 

regulatory strategies, reimbursement and deployment, interest in the development and use of 

these technologies, both from the pathology and oncology communities, is 

increasing58,144,174–177. Startups like PAIGE.AI178,179, Proscia180, DeepLens181, PathAI182 

and Inspirata183 are using DL-based AI tools for detection, diagnosis and prognosis of 

several cancer subtypes. Some of them, such as Inspirata and PAIGE.AI, are spending 

substantial time and resources on creating large libraries of digital WSI for use in training AI 

algorithms. Interestingly, the landscape of digital pathology is, in parallel, also undergoing 

important innovation and rapid changes. Breakthroughs from the past few years include 

open-top light sheet microscopy184, which generates 3D images of a tissue sample without 

the need for destructive sectioning or slide preparation, and MUSE microscopy185, which 

can be used to gather high-resolution images of tissue surfaces almost instantly through the 

use of ultraviolet illumination, in some cases without the need for tissue processing or 

staining. These non-destructive, slide-less techniques might provide a substantially greater 

degree of 3D spatial and volumetric information and might render conventional 2D whole-

slide scanners redundant in the future. The AI approaches that have been developed to date 

using 2D-stained slides would have to be suitably adapted to leverage the novel techniques 

that generate 3D images of the entire tissue, keeping in mind that a substantially larger 

volume of data would need to be analysed. In addition, future companion diagnostic 

approaches might need to incorporate multimodal measurements, such as proteomics, 

genomics and measurements from multiplexed marker-staining platforms (for example, 

fluorescence in situ hybridization, immunofluorescence or digital spatial profiling), in order 

to provide a comprehensive and holistic patient-specific portrait of the tumour.

Despite these challenges and obstacles, the potential of AI approaches for digital pathology 

is promising. In the past few years, several institutions around the world have decided to 

digitize their entire pathology workflow177,186,187, and the FDA approval of the Philips 

whole-slide scanner in 2017 marked a major inflexion point in the path towards truly digital 

pathology laboratories. It is worth remembering that changes are hard to accept: the light 

microscope popularized by Anton van Leuwenhoek has been the mainstay for pathologists 
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for the past 100 years, and the advent of digital mammography in radiology involved a 

sudden transition to a film-less workflow. Now, after radiology has transitioned from 2D X-

ray images to 3D CT scans and MRIs, pathology is on the cusp of incorporating 3D tissue 

representations with more extensive sampling to improve diagnostic, prognostic and 

predictive decision-making. AI approaches will thus be key in analysing and interpreting 

these high-volume data, aiding pathologists and oncologists in the process.
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Fig. 1 |. Milestones in computational pathology.
Over the past two decades, technological advances have enabled efficient digitization of 

whole-slide images, subsequently helping to streamline pathology workflows across 

pathology labs worldwide. Slide digitization has enabled the creation of large-scale digital-

slide libraries, the most popular of which is probably The Cancer Genome Atlas188, which 

has enabled researchers around the world to freely access a richly curated and annotated 

dataset of pathology images linked with clinical, outcome and genomic information, in turn 

spurring substantial research activity into artificial intelligence for digital pathology and 

oncology189.
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Fig. 2 |. Workflow and general framework for artificial intelligence (Ai) approaches in digital 
pathology.
Typical steps involved in the use of two popular categories of AI approaches: deep learning 

and hand-crafted feature engineering.
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Fig. 3 |. Visual representations of hand-crafted features across cancer types.
a | Spatial arrangement of clusters of tissue-infiltrating lymphocytes in a non-small-cell lung 

carcinoma (NSCLC) whole-slide image. b | Features developed using quantitative 

immunofluorescence of tissue-infiltrating lymphocyte subpopulations (including detection 

of CD4+ and CD8+ T cells and CD20+ B cells) in NSCLC samples. c | Features reflecting 

the distribution and entropy of global cell cluster graphs constructed using NSCLC 

specimens. d | Features computing the relative orientation of the glands present in prostate 

cancer tissue. e | Diversity of texture of cancer cell nuclei in an oral cavity squamous cell 

carcinoma. f | Nuclear shape feature computed on cancer cell nuclei in a human 

papillomavirus-positive oropharyngeal carcinoma. g | Graph feature showing the spatial 

relationships of different cancer cell nuclei in an oral cavity carcinoma. h | Hand-crafted 

feature capturing cellular heterogeneity in an oestrogen receptor-positive breast cancer.
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Fig. 4 |. Artificial intelligence (Al) and machine learning approaches complement the expertise 
and support the pathologist and oncologist.
Some of the existing AI approaches currently used by pathologists to analyse images from 

tumours are depicted. For the practicing oncologist, AI approaches can be used to aid 

decision making for different aspects of the management of patients with cancer.
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