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Abstract As expenditure on drug development increases

exponentially, the overall drug discovery process requires a

sustainable revolution. Since artificial intelligence (AI) is

leading the fourth industrial revolution, AI can be considered

as a viable solution for unstable drug research and

development. Generally, AI is applied to fields with

sufficient data such as computer vision and natural language

processing, but there are many efforts to revolutionize the

existing drug discovery process by applying AI. This review

provides a comprehensive, organized summary of the

recent research trends in AI-guided drug discovery process

including target identification, hit identification, ADMET

prediction, lead optimization, and drug repositioning. The

main data sources in each field are also summarized in this

review. In addition, an in-depth analysis of the remaining

challenges and limitations will be provided, and proposals

for promising future directions in each of the aforementioned

areas.

Keywords: drug discovery, artificial intelligence, data-

driven, machine learning

1. Introduction

Small molecule drug research and development (R&D)

spending, in the pharmaceutical industry, has grown

exponentially over the past decades, with total R&D costs

per approved drug recently being about $2.6 billion [1].

Moreover, the entire process for one approved drug takes

approximately 13.5 years, namely 5.5 years before clinical

trials (drug discovery) and eight years for the remaining

process (drug development) [2]. Therefore, reducing the

overall cost and time is a major challenge in both industry

and academia, whereby the modern drug R&D process

may not be sustainable. The reason why the modern

pharmaceutical industry spends an astronomical amount of

money is the repeated attrition of drug candidates. According

to recent statistics [3], 80% of the causes for attrition were

attributed to poor pharmacokinetics (39%), lack of efficacy

(30%), and animal toxicity (11%). Surprisingly, the problems

mentioned above are closely related to the drug discovery

process, before clinical trials, demonstrating that there is

room for improvement. In general, the overall process is

determined by knowledge-based decisions, which can be

highly biased, as it is virtually impossible to synthesize and

evaluate all the possible compounds by experiments. In this

circumstance, Artificial intelligence (AI)-guided decision

making is a promising breakthrough [4,5]. Fortunately,

there are many pioneer groups who have been developing

fast and accurate AI-guided decision-makers for rational

drug discovery by adapting or inventing novel data-driven

machine learning techniques.

In this review, we focused on the recent data-driven

based research trends of the fields that are effectively cost-

reducible with AI, e.g., AI-applicable fields in the drug

discovery stages: i) Target identification, ii) Hit identification,

iii) Lead optimization, iv) Postmarket (Fig. 1). Taking

advantage of the latest AI technologies and the potential of

big data has a huge advantage in the areas mentioned drug

discovery stages. First, we can explore integrated multi-

omics and linkage data to find data-driven patterns that are

difficult for humans to extract, to identify less biased and

novel drug-targets. Second, by using fast and accurate
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predictive models to virtually screen many compounds, we

can significantly reduce the cost and time of experimental

validation. Third, the novel optimized candidate structures

could be generated and assessed by AI models, which in

turn will lead researchers to the ideal path for further lead

optimization. Lastly, AI-suggested promising off-targets of

the marketed drugs will bring significant savings because

the marketed drugs would have already passed rigorous

tests. Therefore, here we discuss the current limitations of

AI applications in each field and suggest future directions

by analyzing current trends.

2. AI-guided Target Identification

Target-based drug discovery is a highly conventional and

successful method in drug discovery. From 1999 to 2013,

70% of the Food and Drug Association (FDA) approved

drugs were discovered by the target-based approach [6].

However, in clinical trials, many drug candidates have poor

efficacy or increased toxicity because of the selection of

targets that are poorly linked to the disease or have an

unjustified hypothesis for the disease [7]. Hence, a well-

defined model for the disease and biological elements

association is essential in identifying adequate targets.

Various types of omics data such as genomics, proteomics,

and metabolomics can be used to interpret those associations.

As the volume of omics data grows, computational methods

are needed to analyze and to integrate the evidence of

associations among the vast heterogeneous omics data.

Conventional methods for computational target identification

can be grouped into three categories: statistical analysis,

network-based model, and machine learning. Thus, after an

introduction to the computational methods for target

identification, we focus on the curated omics databases

supporting the target identification.

2.1. Statistical analysis-based approaches

For decades, statistical analyzes of omics data have been

the most traditional and conventional ways for target

identification. These methods are based on the Genome-

wide association study (GWAS). It focuses on identifying

genetic variants between healthy and disease samples.

Candidate target genes are identified by association tests

such as the Chi-squared test, Fisher’s exact test, or t-test for

the gene expression of the disease. Hsu et al. [8,9] identified

three kinases (PKC-α, CDK6, and MET) targets for triple-

negative breast cancer (TNBC), by using TNBC and non-

TNBC data from the Cancer Cell Line Encyclopedia (CCLE)

project, Gene Expression Omnibus (GEO) breast tumor

sample data, and miRNA expression data of NCI-60 cancer

cell lines. They conducted a two-stage bioinformatics

analysis; cell-based gene expression analysis and patient

based Kaplan Meier survival test. They identified three

kinases that show both high expression in TNBC and high

association with patient survival. Kodama et al. [9,10]

identified CD44 as a therapeutic target of type 2 diabetes

by expression-based GWAS. They ranked the genes by the

Fig. 1. The overall process of drug discovery and development. The AI techniques are applied mostly in the drug discovery stage to
reduce the attrition rate in the drug development stage. The AI-applied drug discovery-related fields that are covered in this paper are
shown in the corresponding process.
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probability of differential expression in 130 microarray

experiments. For the top candidate CD44, they validated

by diabetic mouse experiments. GWAS can identify the

associated genetic variants for the disease. However, it is

difficult to determine the effect on the gene by the selected

genetic variants. To address this issue, Zhu et al. [11]

proposed a method named SMR (Summary data based

Mendelian Randomization) to identify genes associated

with a human complex trait. They defined a pleiotropic

association considering pleiotropy or causality between

gene and a trait to make improved MR analysis. By using

SMR, they integrated the GWAS trait summary and eQTL

(expression quantitative trait locus) data and analyzed the

association between a complex trait and gene expression.

2.2. Network-based approaches

Network-based methods have been widely used to represent

the complex connections among the various biological

elements. Networks comprise nodes that represent biological

elements, and edges that represent the interaction among

the nodes. Furthermore, this approach can manage the

multiple types of omics data by the heterogeneous network.

Hence, many studies use a network-based approach for

target identification.

Conventionally, networks are constructed based on the

similarity between the targets or disease. For gene-disease

association, gene co-expression networks, represented by a

gene-gene similarity matrix has been used. This network

captures genes with similar biological process activity [12]

and helps to find the gene sets associated with disease-

pathways. Petyuk et al. [13] used network analysis to

identify a late-onset Alzheimer’s target. They constructed a

co-expression network with peptides and transcripts data to

identify the gene-protein expression relationship profiles.

Moreover, they constructed causal predictive networks to

give ordering or direction to the network edges. Lee et al.

[14] performed network analyzes to identify targets for

liver disease. They constructed gene co-expression networks

for 46 human tissues to represent the functional interaction

of genes. Moreover, they constructed liver regulatory

networks and liver protein-protein interaction networks to

investigate the physical interactions of genes.

Network-based approaches for miRNA-disease associ-

ations have also increased. It is based on the theory that

miRNA can regulate gene expression and has some role in

some diseases [15]. Chen et al. [16] proposed a miRNA-

disease association prediction model named BNPMDA

based on the assumption that similar miRNA correlates to

a similar disease. They integrated three disease similarity

and miRNA similarity models with biased ratings based on

the known miRNA-disease associations. A bipartite reco-

mmendation algorithm was used to predict the associations

based on biased ratings. Ding et al. [17] proposed an

algorithm for miRNA-disease and gene-disease association

predictions. They built the heterogenous disease-gene-

miRNA association network and predicted the disease-gene

or miRNA association by their novel algorithm named

DMHM. The main rationale of DMHM is to make smooth

functions on data manifolds by graph-based regularization.

Recently, the knowledge graph has also been used for

target identification. Knowledge graphs represent entities,

relations, and semantic information as a graph that can be

easily interpreted for a machine. Mohamed et al. [18]

proposed a knowledge graph embedding model named

TriModel. They constructed a drug-target interaction

knowledge graph from KEGG, DrugBank, InterPRo, and

UniPRot. The entity and relationship of a knowledge graph

are embedded into three embedding vectors, based on

tensor factorization, and updated in iterative learning by

minimizing false fact and maximizing true fact. Richardson

et al. [19] suggested a potential COVID-19 target and

treatment. They used BenevoletAI’s knowledge graph,

which is a repository of structured biomedical information

from machine curated relationships between over 20 types

of biomedical entities like diseases, genes, and drugs [20].

They supposed that the 2019-nCoV receptor would be ACE2

and found AAK1, which is one of the ACE2 endocytosis

regulators in the knowledge graph. In the AAK1 inhibitors

in the knowledge graph, baricitinib showed high-affinity

and binding affinity to another regulator of endocytosis.

2.3. Machine learning-based approaches

As the mechanism of disease is complex, extracting

generalized patterns of disease targets using a data-driven

approach is a challenging task. Along with this difficulty,

several pioneer studies have shown the potential power of

using machine learning techniques in drug-target identification

and can learn patterns of disease targets without prior

biological dependency information. Ferrero et al. [21]

constructed classifiers that predict whether the gene is a

drug-target or non-target. They constructed four classifiers:

Random Forest (RF), Support vector machine (SVM),

Neural Net, and Gradient Boosting Machine (GBM) with

gene-disease association data from the Open Targets platform.

They used five data types (pathway, animal model, genetic

association, RNA expression, and mutation) as input features

and assessed the feature importance for target identification.

They found four classifiers showed similar performances

of ≈ 70% accuracy with 0.75 AUC. Mamoshina et al. [22]

constructed age prediction with five regression models by

using gene expression data from GEO and ArrayExpress.

They performed feature importance analysis to identify the

most associated genes for age prediction, with the top 20

genes included five known drug-targets.
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2.4. Curated databases/platforms for target identification

Large volumes of omics data and computational methods

lead to an increase in the performance of target identification.

However, problems with managing the heterogeneous

omics data still exist. First, the experimental conditions for

generating data and the formats or annotations for recording

the data are often not identical for each omics data [23].

Second, databases or publications for human diseases are

biased to specific topics [24]. To tackle these problems,

many efforts have been made to provide integrated or

curated databases for target identification. Table 1 describes

the databases reviewed.

2.4.1. DisGeNET

DisGeNET collects disease-associated genes and variants

from various repositories, GWAS catalogs, animal models,

and publications; to overcome the heterogeneity, availability,

and fragmentation of genetic information [25]. It contains

628,685 gene-disease associations (GDA) and 210,498

variant-disease associations (VDA). All data in DisGeNET

are homogeneously annotated by using community-driven

vocabularies and ontologies. DisGeNET uses association

scores to define GDAs and VDAs according to the number

of supporting data or publications for the association. In

addition, DisGeNET provides Cytoscape APP and disgenet2r

R packages to support the visualization or analysis of the

association data. All data in DisGeNET are available as

TSV, SQLite, and RDF dump files.

2.4.2. Comparative toxicogenomics database

A comparative toxicogenomics database (CTD) provides a

comprehensive database for understanding environmental

effects on human health [26]. It curates associations among

genes, chemicals, diseases, phenotypes, and environmental

exposures in 10 public resources including KEGG, GO,

PubMed, etc. In the latest update, in 2019, the content

volume and identifiers were updated; there are 27,054,182

curated and inferred GDAs. Approximately 40,000 GDAs

are curated, and the others are inferred from the chemical-

gene or chemical-disease associations in the CTD data.

Inference scores in CTD are defined according to the

connectivity of chemical-gene-disease association networks

of CTD data. All CTD associations, interactions, and

vocabularies data are available as CSV, TSV, and XML files.

2.4.3. LinkedOmics

LinkedOmics aims to provide a comprehensive and

analytical portal for a large amount of cancer molecular

properties and clinical data [27]. It collects multi-omics

data of 32 TCGA cancer types and clinical data of 11,158

patients in the TCGA project. Multi-omics data include

genomic, epigenomic, transcriptomic data of TCGA cancer,

and clinical data including information like survival time,

age, and tumor status. It also collects mass-spectrometry-

based proteomics data of the selected TCGA tumor samples

of the Clinical Proteomic Tumor Analysis Consortium

(CPTAC). LinkedOmics provides three data analysis web

modules to support the analysis of the collected data. First,

the LinkFinder module supports identifying the association

for the query attributes to others in the database. It uses

statistical tests such as Pearson’s correlation test and

Spearman’s rank correlation to rank the associations among

the attributes. Second, the LinkCompare module compares

the association results from LinkFinder with different

Table 1. Quantity and description of curated databases for target identification

Database Description Quantity

DisGeNET [25] A discovery platform of human-disease associated genes and 
variants with homogeneous annotation

628 K gene-disease associations,
17 K genes, 24 K diseases,
210 K variant-disease associations

Comparative toxicogenomics 
database (CTD) [26]

Comprehensive database for environmental effects on human 
health. It curates associations among chemical, gene, disease, 
phenotype, and exposure.

27 M gene-disease association

LinkedOmics [27] Comprehensive database for molecular properties and clinical data 
of cancer. It collects multi-omics, clinical and Mass-spectrometry 
proteomics data of TCGA cancer.

13 K TCGA cancer samples

Open-Target platform [28] A comprehensive database for target-disease association. It collects 
genetic and chemical data to aid target identification.  

6.3 M association data with 27 K 
targets and 13 K diseases

DepMap portal [31] A web portal providing cancer analytical and visualization tools. It 
contains genetic information and sensitivity of cancer cell lines. 

Genetic characters of over 1 K cell 
lines

HMDD [30] A database that collects miRNA-disease associations based on 
experimental evidence from PubMed papers

35 K miRNA-disease associations 
from 19 K papers

STRING [38] A database of physical and functional protein-protein interactions Total 3.1 B protein interactions 

Therapeutic Target Database 
(TTD) [39]

A database of known therapeutic proteins, nucleic acids and targeted 
disease with related drugs.

3.4 K Targets and 37 K Drugs 
information
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queries. Finally, the LinkInterpreter module provides a

biological interpretation of the association from LinkFinder.

It uses pathway or network analysis to interpret the

associations. All data is available as a matrix file or external

link to the data source.

2.4.4. Open-Target platform

The Open-Target platform curates 20 public databases to

support target identification, validation, and prioritization

[28]. The types of data sources are genetic associations,

somatic mutations, drugs, pathways, RNA expression, text

mining, and animal models. It has 6,336,307 data associations

with 27,069 targets and 13,579 diseases. The Open-Target

platform prioritizes targets by the association scores to the

disease. The association scores are based on the number or

strength of evidence such as p-value and sample size.

Moreover, it provides a target tractability analysis to assist

target prioritization. This process is based on a study for

the target suitability assessment method [29]; it provides

druggability information like whether the target has ligands

or binding sites for small molecules. The association and

evidence data can be available as a JSON file and target-

disease lists are available as JSON and CSV files.

2.4.5. The human microRNA disease database

The Human microRNA Disease Database (HMDD) curates

the miRNA-disease associations based on the experimental

evidence of the literatures [30]. The datasets are collected

from miRNA related PubMed papers by using ‘microRNA’,

‘miRNA’, ‘miR’ keywords, then miRNA-disease associations

are extracted from the abstract of the selected papers. There

exist 35,547 miRNA-disease associations from 19,280

papers. In HMDD, miRNA-disease associations are repre-

sented as the supporting evidence of genetics, epigenetics,

tissue expression, miRNA-target, and circulation assay. It

also provides visualized miRNA-gene regulation networks.

In the latest update HMDD v3.2, causality annotation

which represents the positive/negative miRNA-disease

associations were added. All data are available as text or

excel files.

2.4.6. DepMap portal

The Dependency Map (DepMap) Portal supports researchers

identifying genetic and molecular dependencies of cancers

by providing datasets and tools that are used in the Cancer

Dependency Map project at the Broad Institute [31]. The

datasets included in the DepMap portal are divided into

three parts: Genetic dependency, Cellular models, and Drug

Sensitivity. First, Genetic dependency identifies genetic

vulnerabilities of human cancers by project Achilles. Project

Achilles analyzes the genetic dependency of cancer by the

genome-wide RNAi function screens [32,33]. Second,

cellular models show the genetic and pharmacological

diversity of human cancers by the CCLE project. CCLE

databases contain expression, gene copy number, mutation,

and RNAseq based fusion for cancer cell lines [34-36].

Finally, Drug Sensitivity contains the small molecule viability

of diverse cancer cell lines by the Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM) approach

which shows high-throughput for cancer cell line screening

[37]. All data in the DepMap portal are available as a CSV

file.

2.4.7. STRING

The STRING (Search Tool for Retrieval of Interacting

Genes/Proteins) database provides physical and functional

interactions between proteins [38]. It contains 3,123,056,667

protein interactions of 24,528,628 proteins from 5,090

organisms. There are five categories for association evidence:

genomic context prediction, experiments data, text mining,

co-expression, and prior knowledge in databases. In the

STRING database, ‘normal’ and ‘transferred’ scores exist.

The normal score represents the evidence from the organism

itself and transferred represents the evidence transferred

from other homolog organisms. The score ranks 0-1, and

as the score increases, confidence increases. All interaction

data in the STRING database is available in a web service.

2.4.8. Therapeutic target database

The TTD (Therapeutic Target Database) provides information

about known therapeutic protein and nucleic acid, disease,

pathway, and the corresponding drugs of targets in literature

[39], with 3,419 targets and 37,316 drugs. The database in

TTD is categorized into five groups; Advanced search,

Target group, Drug group, Patient data, and Model &

Study; they can be browsed in the TTD web service. In the

latest update in 2020, the new information about target

regulators, target interacting protein, patented agents, and

targets were expanded. All data in TTD are available and

can be downloaded via the web service.

2.5. Limitations and future directions

As mentioned in section 2.4, there are problems when

using databases from different sources. These issues may

be avoided by using curated databases. However, there are

limitations for the curated databases.

The major limitation in data curation is the absence of

validation or benchmarks for the target-disease association

scores. As seen above, for Open Targets and DisGeNET, the

target-disease association scores are based on the number

of publications or databases with supporting evidence.

However, the number of supporting evidence in data

sources does not directly correlate with the efficacy of

target modification. Hence, the scores need to be validated
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by experiments, or benchmark studies. Another limitation

of data curation is the lack of target druggability information.

Most databases present only the supporting evidence or

number of supporting evidence from the data sources. For

drug discovery, besides the target’s efficacy or effect on the

disease, the possibility for target modification by a drug is

also needed. The Open-Target platform provides target

tractability, which shows whether the target has a ligand or

binding site for small molecules. Pearson et al. [40] proposed

a target druggability software named TractaViewer which

provides molecular ligand abilities or potential risks.

Finally, the utilization of curated databases needs to be

increased. Most of the curated databases mentioned in

section 2.4 have been activated later than the traditional

databases, and reference for using these curated databases

are not widely distributed. In addition, curated databases

are lack of programmatic accessibility. Like the disgenet2r

package of DisGeNET, a programmatic accessible package

may activate the usage of curated databases.

3. AI-guided Hit Identification

Identifying drug-target interactions is one of the crucial

steps in preclinical drug discovery. Desired effects of the

drugs depend on the interaction between the drug and

selected target, while the possibility of side effects and drug

repositioning can also come from interactions between

proteins that are not targeted during drug development

[41]. However, it is difficult to search the entire chemical

space of compounds for druggable target proteins by

experiments, as approved drugs are very sparse (Fig. 2).

Fortunately, data of compounds, drugs, proteins, and their

bioactivities accumulate fast, which enables data-driven

computation models to identify hits from vast chemical

space. Therefore, many computational models to identify

drug-target interaction and estimate binding affinities have

been developed to leverage the efficiency of the early

stages in drug development, which also has the advantage

Fig. 2. tSNE plot for 40,000 drug-like small molecules (white)
from ZINC DB and 2,403 approved drugs in DrugBank (yellow).

Fig. 3. Categories of AI-guided hit identification. There are three categories for hit identification, structure-based methods, ligand-based
methods, and chemogenomic methods.
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of delivering novel drug candidates. There are three main

categories of computational methods for hit identification,

as shown in Fig. 3; structure-based methods, ligand-based

methods, and chemogenomic methods concentrating on

protein structure, ligand structure, and their data, respectively.

3.1. Structure-based approaches

Structure-based methods take advantage of 3D structures

of target proteins, which are generated from X-ray crystallo-

graphy (XRC) or nuclear magnetic resonance spectroscopy

of proteins (protein NMR). A molecular docking simulation

is a major approach in structure-based methods and is

conducted in two steps. The first step is the conformational

space search of ligands, which extensively simulates

possible binding pose of binding. After a conformational

search, the second step, scoring function prioritizes possible

ligand pose on the target protein structure and estimates

binding affinity. Quality of scoring function contributes to

the assessment of docking simulations. Conventionally,

empirical, or knowledge-based scoring functions are devised

to predict binding affinity pose. They are driven by physical

theory or statistical analysis [42-44]

To correct the bias of classical scoring functions, data-

driven machine learning scoring functions (MLSF) are

developed by using a random forest score (RF-Score) [45]

and support vector machines [46].

Recently, many deep learning-based scoring functions

(DLSF) were developed to estimate binding affinity. With

given pose, they have applied various deep learning

techniques such as a 3D convolutional neural network (3D-

CNN) and graph convolutional network (GCN).

3D-Voxel based methods generate 3D-voxels from the

atomic coordination of 3D complexes. Each voxel contains

features (channels) describing internal properties such as

hydrophobicity, aromaticity, hydrogen bond, and ionization,

etc. The Convolutional neural network (CNN) is now a

major method to detect patterns in deep learning. For 3D-

voxel based methods, 3D-CNN was used to detect patterns

of binding pose and affinity. 3D-voxel based methods are

improved by using continuous features [47], more

sophisticated CNN designs [48,49], and transfer learning

[49]. 3D-CNN of KDEEP [48] was inspired by AlexNet,

while DenseFS [49] was inspired by DenseNet, whose

sublayers are densely connected, and outperform previous

methods [43,45]. Particularly, DenseFS used transfer learning

for protein classes to increase performance. In addition, a

recent study suggested an analysis of feature weights,

helping to elaborate the design of the compound [50].

Molecular graph-based methods represent the protein-

ligand complex on a graph. Atoms are represented as nodes,

while their interactions are represented as edges between the

nodes. To virtually screen given protein-ligand complexes,

the model aggregates nodes use their edges, which implies

locality on the graph. DeepVS [51] learns the context of an

atom from the closest atoms of its ligand and interacting

protein. Later models apply GCN for model aggregation,

which takes into account the locality of nodes on a graph

and the adjacency matrix [52,53]. PotentialNet used GCN

for both intramolecular interaction and non-covalent

interaction between molecules, with better performance than

the RF-Score [45]. Lim et al. [53] later built a distance-

aware graph attention model by using the adjacency matrix

for non-covalent bonds. By removing the intramolecular

graph attention model from the distance-aware graph

attention model; this model classifies activity by learning

the binding pose away from the inherent ligand structure,

outperforming both docking [44] and 3D-voxel based

methods [47].

3.2. Ligand-based approaches

Ligand-based methods are grounded on the assumption

that compounds of similar structures would interact with

the same target. Quantitative structure-activity relationship

(QSAR) models, one of the major approaches in ligand-

based methods, estimate quantitative relationships (weight)

between structure and its bioactivity. There are many

structural and physicochemical properties of a compound

which are related to bioactivity; for example, the partition

coefficient is strongly related to hydrophobic effect,

yielding binding to a receptor. Likewise, from a simple

count of atoms to Lipinski rule of five, many quantitative

descriptions of a compound can be used for prediction.

Hence, there are many programs to generate quantitative

molecular descriptors of compounds. RDKit [54], OpenBabel

[55], and chemical development kit (CDK) [56] are open-

source programs for bioinformatics and cheminformatics

to generate molecular descriptor. Not only is the command

line supported, but the GUI, web-applications, and progra-

mming language wrapper for convenient usage of descriptor

generation are also supported in PaDEL descriptor [57],

DRAGON [58], PyDPI [59], Rcpi [60], and Mordred [61].

From the generated quantitative descriptors, QSAR builds

a model to predict the bioactivity of molecules. Therefore,

well-established QSAR models enable statistical analysis on

each property descriptor, inspiring insight on the mechanism

of ligands. Conventionally, many machine learning models

are used for QSAR prediction [62,63]. In 2012, Merck

Molecular Activity Challenge (MMAC) published benchmark

datasets (Kaggle datasets) for QSAR prediction, which

comprise on-target bioactivities and ADME properties. As

an advanced deep learning technique, deep learning-based

QSAR predictions have outperformed previous RF QSAR

predictions [64]. Further expansion of deep learning models

such as multitask models, correlated assistant datasets [65],
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and deep belief networks (DBN) [66] have been developed

to increase performance.

Still, limitations of descriptors have been reported [67];

molecular fingerprints are sparse, and there is a possibility

for collisions in hashing. To overcome these limitations,

many learnable feature-based methods have been developed,

where the model learns local patterns and orders in raw

data itself. Lusci et al. [68] proposed the model that takes

a graph structure of a compound whose nodes are compound

atoms. To generate a feature of a compound, they built

recurrent neural networks (RNN) on every node in a

compound by building a directed acyclic graph and

summed up RNN results to generate features. Neural graph

fingerprints [69] mimicked Morgan algorithms [70], bringing

atom features in radius, while neural graph fingerprints

yielded continuous features of hidden layers to solve sparsity

of Morgan fingerprints. Mol2vec [71] generates compound

features that can be used to predict bioactivities by applying

the Word2vec algorithm on a compound’s molecular graph.

Simplified molecular-input line-entry system (SMILES) is

a well-defined representation of chemical compounds,

converting the molecular graph to a sequence of atoms and

bonds. To deal with the sequential representation of

SMILES, LSTM deals with sequential data which have

ordered in a series of data points. Chakravarti et al. applied

LSTM on established SMILES to predict bioactivities [72].

In contrast, Winter et al. translated the International Union

of Pure and Applied Chemistry (IUPAC) representation of

compounds into SMILES and InChI, which provides

comprehensive latent representation [73]. This model

comprises an encoder and a decoder. The encoder provides

a latent representation of input characters while the decoder

uses them as input to generate output SMILES or InChI.

Hence, intermediate latent variables are trained to predict

bioactivities. SMILES-BERT [74] applied a model and

training scheme of BERT [75] on SMILES string. BERT

model was pre-trained to recover masked SMILES tokens

from the rest of SMILES string with the assumption that it

can learn the relationships among atoms by multi-head

attention. Especially, representation token is attached to

original SMILES, which are trained during fine-tuning,

entailing relative importance on a specific molecular property.

While many QSAR studies have been developed, similarity-

based ligand screening models have been improved. One-

shot learning models [76], which are designed for over-

coming a small set of data, iteratively update prediction

models for test data according to similarities between the

pretrained representation of the compound. Compounds

are embedded using GCN while the contexts of training

data are considered by bi-directional LSTM. Embeddings

of samples in the test dataset are updated using attention-

LSTM, in which attention is calculated by the similarity

between training samples. Unfortunately, in the virtual

screening benchmark [77], RF outperforms a one-shot

learning model. Besides target protein bioactivity, similarities

in transcriptomic expressions can also screen for active

compounds (ReSimNet) [78]. ReSimNet takes two

compounds with identical extended-connectivity circular

fingerprints (ECFPs) [70] as input to predict CMap score,

which is a standardized measurement that indicates

expression similarity between compound pairs regarding

the reference gene set [79]. Each compound is fed into

Multi-Layer Perceptron (MLP) and cosine similarity

between their latent representation is translated to a

Connectivity Map (CMap) score. Therefore, ReSimNet

gives a better performance than the conventional machine

learning model of ECFP and Mol2Vec [71]. Conversely,

the ensemble model of the hierarchical evolutionary

chemical binding similarity (ECBS) tree builds more

reliable screening results [80]. While the QSAR model

concentrates on compounds of a specific target, the ECBS

model takes advantage of the evolutionary features of

targets. It takes two compounds; a known compound of the

target and a compound to predict. ECBS label compound

pairs with hierarchical evolution relationship. For example,

if compound C1 and C2 have targets in the same family,

they have a positive relationship between family-ECBS. By

integrating models of compound pairs, they provided

candidate compounds for serine/arginine protein kinases 1

and 2.

3.3. Chemogenomic approaches

Chemogenomic methods use the information of both target

proteins and compounds. The exponential increase of

protein, compound, and drug-target interaction (DTI) data

leverages the quality and diversity of chemogenomic

methods [81]. Chemogenomic methods are conventionally

classified in two categories, similarity methods and feature-

based methods [82].

3.3.1. Similarity-based approaches

Similarity-based methods concentrate on similarities between

gathered proteins and compounds to predict DTIs. Well-

designed similarity metrics between proteins and compounds

can be generated by various means including topological

similarity in graphs and networks, normalized Smith-

Waterman scores, Tanimoto coefficient, and hamming

distance between protein domains. One remarkable research

using the graph-based method is the bipartite local model

(BLM) [83]. BLM builds a bipartite graph between drugs

and targets and predicts interactions from two sides, the

target and drug sides, resulting in a final prediction by

aggregating both. Similarity matrices from targets and

compounds are taken as a kernel of SVM, building
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interaction classification hyperplanes for the interacting

partners. Successful performances of similarity-based methods

come from well-defined similarity metrics and well-studied

kernel methods [82]. To increase the performance, many

regularization techniques on the graph of BLM, such as

Laplacian regularized least square (LapRLS) [84], Gaussian

interaction profiles (GIP) [85], and Kronecker regularized

least square (kronRLS) are applied [86]. Furthermore,

credible negative interactions are sampled from unlabeled

interactions to build clear discriminative hyperplanes in the

pharmacological space (Self-BLM) [87].

Network-based methods build heterogeneous networks

from proteins, drugs, diseases, side effects, and their interac-

tions. By diversifying from the known target and compound,

it prioritizes interacting partners which have an opportunity

as a candidate (NRWRH) [88]. In addition, recent studies

integrated diverse networks of drugs and proteins to low

dimensional informative feature vectors to predict DTIs

(DTINet) [89]. DTINet learns a low dimensional represen-

tation of graph topology using the DCA algorithm [90] from

the heterogeneous network. DTINet trains the projection

matrix from known DTIs, which translates drug represen-

tations into protein representations.

3.3.2. Feature-based approaches

Feature-based methods take feature vectors of targets and

compounds, which is the fixed length of a vector that

describes important physicochemical properties. They

concatenate vectors of drug and target pairs and train

machine learning models to classify DTIs with given feature

vectors of interaction and their labels. The previous model

usually took chemical fingerprints [70,91] as compound

features, and many physicochemical properties as protein

features [92,93]. On constructed features, RF and SVM are

trained to classify DTI [94]. To increase prediction perfor-

mance, a drug-target feature can be weighted by networks

of protein-protein interaction and drug-drug interaction

[95,96]. To expand on deep learning models, many studies

were suggested to apply a deep learning model on feature-

based methods. A Restricted Boltzmann machine, stack of

restricted Boltzmann machine, and DBN are applied for

the reliable abstraction of features [97,98]. Likewise, a

sparse autoencoder was used to build deep representation

[99]. Deep representation of original features builds clearer

hyperplanes while they are fed into a deeper layer, outper-

forming previous machine learning methods [51]. However,

feature-based methods have many limitations, including

the loss of information during feature engineering. Fixed

length of feature vectors usually describes global physico-

chemical properties, losing informative local information

while features are aggregated [92].

3.3.3. Learnable feature-based approaches

One of the many advantages of deep learning is that it can

deal with any data structure. For example, the CNN works

well for image data with a locality, while RNN is a suitable

model for sequential data. In addition, deep learning can

entail connectivity in a graph, aggregating locality, which is

called graph convolution. Therefore, deep learning models

can extract informative local features and their dependency,

outperforming previous feature-based methods.

DeepDTA [100] applied CNN on protein amino acid

sequences and compound SMILES, which captures local

patterns in raw data. Therefore, DeepDTA performed better

than the previous similarity-based [86] and feature-based

methods [101]. Tsubaki et al. [102] suggested a model

applying CNN on protein sequence and GCN on compounds

and to aggregate compound-protein pairs, applied an

attention mechanism that gives high weights on interaction

sites in proteins; showing better performance than previous

similarity-based [83,85,103] and structure-based methods

[43,44,47]. DeepConv-DTI [104] used multiple-size kernels

of CNN on the protein sequence. DeepConv-DTI demon-

strated that detection of a binding region on protein by

CNN could be statistically validated and detected regions

featurize proteins. DeepConv-DTI performs better than

previous deep learning methods [51,98-100]. DeepAffinity

[105] first represented proteins as a structural property

sequence (SPS) and embedded SPS and compounds with

the Seq2Seq model. They applied attention mechanisms

and 1D-CNN embedded proteins and compounds to

predict the affinity of binding pairs. DeepAffinity proved

target selectivity of drugs for many protein classes and

predicted binding sites on proteins.

3.4. Limitations and future directions

The most representative limitation of the structure-based

approach is an insufficient number of 3D-structure datasets

and the difficulty in assessing the accuracy of the 3D-

structure. Likewise, the lack of activity data relative to the

complexity of the model is also a problem for the deep

learning model [67]. Inevitably, overfitting in deep learning

models is induced by a small data size [67]. For example,

it is reported that ML-based scoring functions are not

suitable for comparative assessment of scoring functions

(CASF) [106]. Besides the problem of overfitting, biases in

datasets are reported in the Directory of Useful Decoys-

Enhanced (DUD-E) and Maximum Unbiased Validation

(MUV) [107,108]. Recently developed chemogenomic

models are built and evaluated with different datasets.

Consequently, extensive external validation is needed for

fair comparison over bias in training. For chemogenomic

models, there are many deep learning protein models,
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entailing inherent protein characteristics, that are not used

in previous models [109,110]. Featurization by using those

models will improve performance.

3.5. Public databases for hit identification

Currently, many compounds, target proteins, and bioactivities

are deposited in a public database. The number of compounds,

drugs, target proteins, their interactions, and bioactivities

increases exponentially [81]. 3D structures are also quickly

accumulating annually in the Protein Data Bank (PDB)

[111], enabling data-driven scoring functions. Besides an

increase of screening data, the organization of data for a

specific task is also more enhanced. Table 2 lists commonly

used databases that can be used to build a hit identification

model.

4. AI-guided ADMET Prediction

One of the big challenges in drug discovery is optimizing

pharmacokinetic properties such as absorption, distribution,

metabolism, excretion, and toxicity (ADMET). Therefore,

the early assessment of compounds’ ADMET properties is

needed to guide the subsequent drug discovery steps

efficiently [112-114]. For decades, both pharmaceutical

industries and academia have been attracted to in silico

ADMET property prediction, because of the accumulation

of bioactivity and property data and sophisticated machine

learning methods. In this section, we focus on the recent

trend of ADMET property prediction by introducing the

various ADMET related properties and the characteristics

of current studies. A concise summary of this section is

shown in Fig. 4.

Table 2. Commonly used public databases for AI-guided hit identification

Database Description Quantity

PDB [111] Database for 3D shapes of proteins, nucleic acids, and complex 
assemblies

Approximately 1.6 M of 3D 
structures

PDBBind [306] A comprehensive collection of the experimentally measured binding 
affinity data for all types

21 K bio-molecular complexes 
deposited in the PDB 

CASF [307] Scoring benchmark, where the scoring process is decoupled from the 
docking process to depict the performance of the scoring function more 
precisely. Entries in PDBBind may be filtered by processes.

195 protein-ligand complexes

DUD-E [308] Benchmark molecular docking programs by providing challenging 
decoy

23 K active compounds with 
decoys for 102 protein structures

MUV [77] Collection of data sets of active compounds and corresponding decoy 
data sets that are unbiased with regards to both analogue bias and 
artificial enrichment 

510 active compounds with 
decoys for 17 protein structures

CSAR [309] Benchmark datasets of crystal structures and binding affinities for 
diverse protein-ligand complexes

647 active/inactive compounds for 
82 protein structures of 6 targets

PubChem [310] An integrated chemistry database. It contains small molecules to large 
molecules with structures, physical properties, bioactivities, patents, etc.

268 M bioactivities

ChEMBL [311] A curated database of bioactive drug-like small molecules. It mainly 
contains 2D structures, calculated properties, and bioactivities.

15 M bioactivities

Merck Molecular 
Activity Challenge [191]

The dataset which was used for Merck sponsored Kaggle competition in 
2012. It contains 15 types of molecular activities.

220 K activities and properties

BindingDB [312] Web-accessible database of measured binding affinities, focusing mainly 
on the interactions of proteins considered to be drug-targets with small, 
drug-like molecules 

1.7 M binding data for 7 K protein 
targets and 796 K small molecules

DrugBank [313] A free, comprehensive drugs and drug targets database. It contains 
various chemical and target information for each drug.

13 K drugs 4.8 K targets and 19 K 
interactions

KEGG [314] Databases resource for understanding high-level functions and utilities 
of a biological system

18 K metabolites and small 
molecules, 11 K drugs, 7.7 K 
enzymes

IUPHAR [315] Expert-curated resource of ligand-activity-target relationships, the 
majority of which come from high-quality pharmacological and 
medicinal chemistry literature

2.9 K targets, 9.8 K ligands, 1.4 K 
approved drugs

SuperTarget [316] Integrated database for drugs, proteins, and side effect 195 K compounds, 6.2 K targets 
and 332 K interactions

MATADOR [317] Integrated drug-related information about medical indication areas, 
adverse drug effects, drug metabolization, pathways, and gene ontology 
terms of target proteins 

2.5 K target proteins, 7.3 K 
relations, 1.5 K drugs

STITCH [318] Integrated information about interactions from metabolic pathways, 
crystal structures, binding experiments, and drug-target relationships 

500 K chemical compounds, 9.6 
M proteins, 1.6 B interactions
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4.1. Absorption

Absorption is the very first barrier to potential drugs

because they must first enter the circulatory system to be

active in the body. Drug absorption is complexly related to

various properties [5]. Among them, representative properties

that are not only actively studied but also directly related to

absorption are Human Intestinal Absorption (HIA) and

Membrane Permeability.

HIA is the most relevant property of orally administered

drug absorption [115]. Recently, some data-driven HIA

predictive models have been developed. Ponzoni et al.

[116] used both engineered and learned molecular descriptors

to construct a robust machine learning model with a

collected dataset comprising 202 molecules. Wang et al. and

Yang et al. [117,118] attempted to solve the data imbalance

problem by a modified RF algorithm and various sampling

methods, respectively. Both studies used molecular descriptors

and conducted feature selection, but interestingly, Yang et

al. [118] designed the workflow to find optimal feature sets

and the optimal ensemble model set.

Membrane permeability is a simple and powerful phy-

sicochemical property to predict the absorption accurately.

There are two major in vitro permeability assays that can

simulate and predict the absorption of potential drugs. One

is the human colon carcinoma (Caco-2) cell line permeability

assay, and the other is the parallel artificial membrane

permeability assay (PAMPA). In recent years, there have

been numerous efforts to predict the absorption potential of

compounds by using machine learning and molecular

descriptors [119-124]. Fredlund et al. [119] designed an in

vitro assay to measure intrinsic permeability in Caco-2

cells and built prediction models with the data measured by

a designed experiment. Furthermore, Lanevskij et al. [123]

proposed a nonlinear regression model fit by 1,366 collected

Caco-2 cell permeability data from various literatures.

Whereas, Sun et al. [121] constructed a permeability

prediction model with the PAMPA dataset they had

generated and used atom type-based molecular descriptors

and SVM for model building. Oja et al. [124] also

designed a study of pH-dependent permeability prediction

because the permeability largely depends on the pH level

in the gastrointestinal tract (GIT). They constructed a logistic

regression model with permeability data at different pH

levels, comprising around 150 compounds each. In addition,

there are sophisticated studies using deep learning techniques

to resolve current limitations. Shin et al. [125] collected

Caco-2 cell permeability data from literatures and constructed

a deep neural network (DNN) model to reduce feature

selection bias. Wenzel et al. [126] proposed a multitask

DNN model to relieve the data deficiency with ChEMBL

Fig. 4. An overview of AI-guided ADMET prediction. There are two main categories; (1) common patterns of materials and methods of
AI-guided ADMET prediction; (2) the major properties of each ADMET field.
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dataset which contains Caco-2 cell permeability and micro-

somal clearances.

4.2. Distribution

When a drug is administered or absorbed into the

bloodstream, it needs to be transported to the desired site of

action to be effective. This feature of the drug is called

distribution. The distribution of a drug is a complex function

of diverse properties; therefore, significant efforts are made

by many researchers to predict the distribution rate of

potential drugs. In this section, we surveyed representative

distribution-related property prediction research, plasma

protein binding (PPB) rate, P-glycoprotein (P-gp) inhibition,

and blood-brain barrier (BBB) permeability.

PPB rate is the percentage of the molecules that bind to

plasma proteins such as human serum albumin, lipoprotein,

and alpha-acid glycoprotein, among others. The binding

rate of drugs to the plasma protein is an important property

to predict distribution because the drug molecules have no

pharmacological effect when they form the protein-ligand

complex, although they have reached the target tissues

[127]. With the in vivo or in vitro measured data, the in

silico PPB predictive models are still actively studied [128-

132]. Wang et al. [129] collected a comprehensive PPB

dataset from various literatures and the DrugBank database

and constructed a prediction model with the optimized

feature set and the ensemble of various machine learning

models. Sun et al. [130] integrated three data sources from

literature and public databases to build a robust prediction

model. For modeling, engineered molecular descriptors

and various machine learning models are used. Toma et al.

[131] collected in vivo data for PPB prediction modeling.

They calculated molecular 2D descriptors and SMILES-

based features and trained the RF model. Zhuyifan et al.

[132] proposed multitask DNN architecture to predict few

ADME properties such as PPB rate, half-life, etc.

Interestingly, the model was pretrained with the molecular

property benchmark dataset from DeepChem to estimate

the vast chemical space.

P-gp is the membrane transporter, which is also well

known as multi-drug resistance protein 1 (MDR1). The

role of P-gp is to actively transport foreign substances out

of cells. Thus, the inhibition of P-gp is directly related to

the concentration of drug in the target tissue. Recently,

several machine learning-based P-gp inhibitor prediction

models were developed [133-135], all of which constructed

the prediction models with various machine learning

algorithms and engineered molecular descriptors as features

such as molecular fingerprints [134], 2D or 3D descriptors

[135], and SMILES-based features [133]. Notably, Kumar

et al. [135] used 3D-RISM-KH based solvation free energy

descriptors to increase performance. Meanwhile, Shi et al.

[136] used CNN to extract a task-specific feature of the

molecule and predicted its four ADMET properties from

the 2D structure image. The dataset contains CYP1A2

inhibitors, P-gp inhibitors, BBB penetrating agents, and

Ames mutagens.

BBB permeability is a major hurdle for developing central

nervous system targeted drugs because BBB protects the

brain from foreign substances in the blood. At present,

many researchers are attempting to make accurate prediction

models and find structural patterns. Both machine learning-

based [137-139] and deep learning-based models [136,140]

for BBB prediction appear currently. While Toropov et al.

[137] built a model with SMILES-based features generated

by CORAL software and 291 substances, Wang et al. [138]

and Yuan et al. [139] used conventional 2D molecular

descriptors and fingerprints as features and fit the model

with a relatively large dataset containing 2,358 and 3,538

compounds, respectively. Recently, Miao et al. [140]

published an interesting study of deep learning-based BBB

prediction. The author designed a unique drug-phenotype

feature derived from the SIDER database and the Medical

Dictionary for Regulatory Activities. The proposed feature

and DNN combination outperformed other conventional

machine learning-based models.

4.3. Metabolism & excretion

Metabolism is a biotransformation process that is mediated

by various metabolic enzymes. The drug can be transformed

into other compounds that can be excreted or activated

[127], or can affect the metabolic process which controls

the activation or excretion of other drugs. Excretion is the

process of eliminating the foreign compound from the

body. This is an important feature of a drug because the

dose of a drug is determined by the excretion factor. In fact,

drug excretion is a complex function of both chemical and

physiological features and also managed by the drug

metabolic process in direct or indirect ways. Therefore,

there are only a few recent studies that directly predict the

excretion-related properties. Thus, in this subsection, we

combined two categories: metabolism and excretion, and

focused on both general metabolic properties and excretion-

related properties.

The most active research field of drug metabolism is

Cytochrome P450 (CYP450) enzyme-related prediction.

There are two major streams of CYP450 related prediction,

predicting CYP450 substrates and predicting CYP450

inhibitors. Predicting the CYP450 substrate is important

because it can affect drug efficacy, excretion, and toxicity.

Likewise, predicting the CYP450 inhibitor is also crucial

because it is directly related to drug-drug interactions and

consequent toxicities. In recent years, some research

groups published CYP450 substrate prediction studies
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[141-143]. Hunt et al. [141] proposed the multiclass

prediction model for finding the CYP450 isoform that

metabolizes the query molecule. With 633 compound-

isoform pairs of data, they constructed the multiclass RF

model with conventional molecular descriptors. Tian et al.

[142] developed the prediction tool ‘CypReact’ with 1,632

collected compounds, including 679 CYP450 reactants. They

used physicochemical descriptors and various fingerprints

as a feature and employed a novel technique called Learning

base model; a cost-sensitive meta-learning technique which

seeks the best classifier and optimal feature sets that

minimize the defined cost. Shan et al. [143] proposed a

multi-label classification model with 1,299 compound-

isoform pairs of data. They used a network-based label

space division learning technique to make a multi-label

prediction model; which enables making a multi-label

model with multiple binary classifiers. Thus, it partitions

label space and trains the base classifier to classify each

subspace separately. Besides the aforementioned substrate

prediction studies, other remarkable CYP450 inhibitor

prediction studies have been published [136,144-146]. Pang

et al. [145] collected data from BindingDB and ChEMBL

and constructed a CYP450 3A4 isoform inhibitor prediction

model. This group also validated the prediction result by in

vitro experiments to prove the model’s prediction power.

Wu et al. used large-scale data (17,143 compounds) from

Li et al. [144] which was originally collected from the

PubChem bioassay database for five CYP450 isoforms.

They constructed a precise XGBoost model with fingerprint

and descriptor combinations. Unlike the conventional

aforementioned studies, Li et al. used a multitask DNN to

well-train the neural network model by weight sharing.

The proposed model learned to predict five CYP450

isoform inhibitors.

Another area of in silico drug metabolism research

studies is on the site of metabolism (SoM) prediction. The

ability to predict SoM can guide the next stage of drug

discovery, since knowing the site of metabolism is essential

in the drug optimization process. Many research groups

attempt to construct robust SoM prediction models. He et

al. [147] proposed the prediction model of SoM by

oxidoreductases, collecting the data from the BKM-react

database, comprising 28,042 unique biochemical reactions

and constructed the classifiers with various machine

learning algorithms and chemical bond descriptors. ‘FAME

2’ [148], the machine learning tool of SoM prediction by

CYP450 was also published. The author collected data and

trained the RF with various combinations of descriptors.

The dataset contains approximately 200-600 molecules for

each CYP isoform. Finkelmann et al. [149] proposed the

tool called ‘MetScore’ which can predict the SoM by

various metabolism enzymes including CYP isoforms.

They collected data from the BIOVIA Metabolite Database

to construct a comprehensive prediction model. Cai et al.

[150] developed a prediction model of SoM for UDP-

glucuronosyltransferase-catalyzed reactions. This group

retrieved data from the “Handbook of Metabolic Pathways

of Xenobiotics” [151] and reviewed the literature for

validation; they used atom environment fingerprint and

decision tree-based machine learning models such as RF

and Adaboost.

Assessing drug’s susceptibility to biotransformation is

another principal issue in drug discovery. This feature of

the drug, which is called metabolic stability, is explained

by the pharmacokinetic properties such as intrinsic clearance

and half-life. Therefore, there are attempts to predict the

intrinsic clearance and half-life by in silico method to

reduce the cost of experiments. Podlewska et al. [152]

proposed the tool, called ‘MetStabOn’ stands for an online

platform for metabolic stability prediction. They first

collected the various datasets from ChEMBL contains

approximately 60-2,500 molecules in different species like

human, rat, and mouse. They built both regression and

classification models with molecular 2D descriptors, the

former is trained to predict the half-life and clearance

values directly and the latter is trained to predict the level

of the values. Esaki et al. [153] showed the positive effect

of data curation by constructing an intrinsic clearance

prediction model with curated and non-curated datasets.

They initially collected the dataset from ChEMBL, and

manually curated the dataset using several rules. They

constructed conventional machine learning models such as

RF, Adaboost, and SVM. Recently, deep learning-based

studies [126,132,154] were conducted for clearance and

half-life prediction. Liu et al. [154] published interesting

work that used graph convolution on a molecular graph to

featurize and construct a multitask model to predict human

microsomal clearance, CYP450 inhibition, and other

physicochemical properties.

Although the excretion property studies are relatively

fewer than metabolism-related studies, there are some

meaningful studies that focused on predicting non-liver

clearance such as renal and plasma. Zhivkova et al. [155]

designed a study for predicting drug plasma clearance. They

built a linear regression model with optimally selected

descriptors using a genetic algorithm of relevant data

comprising 659 drugs. Wakayama et al. [156] proposed a

prediction model that predicts the several major clearance

pathways of drugs. They used 249 drugs with nine major

clearance pathways’ information such as renal, OATP, and

CYP450 related pathways. They constructed two-step SVM

with chemical descriptors. The first step is predicting the

pre-defined group of clearance pathways and the second

step is predicting the exact pathway of the compound.
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Watanabe et al. [157] developed in silico renal excretion

and clearance prediction models with manually collected

411 and 401 compounds, respectively. They constructed the

models by using conventional machine learning methods

with chemical 2D descriptors and fingerprints. Chen et al.

[158] developed both global and local models for predicting

human renal clearance of compounds with a combination

of molecular descriptors and conventional machine learning

methods. They collected the clearance data from various

literatures and U.S. FDA Drugs Database, containing 636

compounds. Notably, the model showed less reliable

performance in a global model but showed reasonable

performances in local models which are constructed with

specific subsets of compounds such as ionization-based

and elimination route-based subsets.

4.4. Toxicity

Undesired adverse effects, namely drug toxicity, may cause

high costs if it is not investigated carefully during the drug

development process. Since drug toxicity is the most

crucial aspect during the drug discovery process, in silico

toxicity prediction has been actively studied to reduce the

late-stage failure rate. Numerous toxicity prediction studies

exist, but drug-induced liver injury (DILI) and human

ether-à-go-go related gene (hERG)-related cardiotoxicity

prediction are studied mainly because many marketed

drugs are withdrawn for these toxicities. Therefore, we

categorized the numerous toxicities into DILI, hERG, and

several others in this section.

DILI is one of the main reasons for the withdrawal of

marketed drugs. Therefore, there have been many in silico

research studies to make precise predictive models and find

the patterns of hepatotoxic compounds [159-165]. Kotsam-

pasakou et al. [161] highlighted the importance of data

curation by curating 1,547 compounds from various sources

and testing the performance of machine learning-based

prediction models. In addition, our group recently proposed

a precise DILI prediction model by developing a novel

Bayesian weighted fingerprint for a molecule [160]. The

frequent substructures of DILI positive compounds are

reflected in a molecular fingerprint to improve the perfor-

mance and interpretability. The author collected data from

various sources; LTKB-BD, DrugBank, and literatures to

construct and validate the model. Hammann et al. [163]

constructed a DILI prediction model based on DILI

annotated drugs by using physicochemical descriptors and

machine learning methods. Furthermore, they analyzed the

interactions of hepatotoxic compounds with bioentities

such as carriers, transporters, and metabolizing enzymes.

They also found the relationship of defined daily doses

with hepatotoxicity. Williams et al. [165] proposed an

interpretable Bayesian regression model with both physico-

chemical properties and related bioactivities which they

measured through in vitro assay.

Inhibition of the hERG channel is another major issue

leading to the withdrawal of marketed drugs. The hERG

channel is the voltage-gated potassium ion channel (Kv11.1)

which regulates cardiac action potential to make a constant

period of QT interval. Thus, when the drug inhibits the

hERG channel, it causes severe cardiac arrhythmia by drug-

induced QT prolongation. Recently, it also has been actively

studied for data-driven in silico hERG-related toxicity

prediction by many researchers [166-173]. Siramshetty et

al. [167] collected and preprocessed 5,804 compounds

from the ChEMBL database for training and validated the

model with literature-derived data. Various molecular

fingerprints and machine learning models were used. There

is currently no standard cutoff potency of hERG blockers,

therefore, the authors compared the models that were

trained with multiple cutoffs. Ogura et al. [172] proposed

the hERG blocker classification model constructed with

the hERG integrated database from their previous work

[174]. The database comprises 9,890 hERG blockers and

281,329 hERG non-blockers. They selected the optimal

descriptors with a genetic algorithm and built an SVM

model for classification. Cai et al. [168] and Zhang et al.

[173] are the pioneers who applied deep learning in this

field. Zhang et al. collected data from the literatures

comprising 697 molecules. The author observed that the

three-layered DNN with molecular 2D descriptors had the

best performance. Cai et al. proposed a multitask DNN that

learns from applied data with different half maximal

inhibitory concentration (IC50) cutoffs. The authors used

the Mol2Vec feature and molecular descriptor for the

feature, and the data was collected from ChEMBL and

other literatures. Kim et al. proposed the interpretable deep

learning model for hERG blocker prediction, called

‘hERG-Att’. By employing a self-attention mechanism, the

model learns to not only classify the hERG blockers but

also capture the data-specific important substructures from

molecular circular fingerprints. The authors confirmed that

some of the captured substructures of predicted hERG

blockers are related to known hERG-related substructures

[175].

Apart from the above major toxicities, many other

toxicities have been studied for developing prediction

models [72,176-183]. The Lei et al. research group recently

published respiratory toxicity and urinary tract toxicity pre-

diction studies [176,177]. Both studies used the ChemIDplus

database and MOE software to collect and featurize the

toxic compounds. Furthermore, they constructed both

regression and classification models for generality. Liu et

al. [178] proposed the 35 target organ toxicity prediction

model. For the compound feature, they used the structural
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feature and the in vitro bioactivities of a compound. They

constructed each prediction model with various machine

learning algorithms, for example, SVM, RF, and k-nearest

neighbors. They curated data from ToxCast and ToxRefDB

databases. Zheng et al. [183] developed a hemolytic toxicity

prediction model with molecular fingerprint and machine

learning methods. Interestingly, they found the optimal

virtual fingerprint of the toxic compound with a genetic

algorithm and searched for other possible toxic compounds

using similarity searching. Furthermore, few deep learning-

based methods have also been developed. Xu et al. [179]

proposed a novel architecture, called molecular graph

encoding-convolutional neural network (MGE-CNN). It

automatically extracts the task-specific features and predicts

the toxicity from the raw molecular graph. Chakravarti et

al. [72] proposed attention-based LSTM networks, where

the raw SMILES is fed into the model directly. They bench-

marked three bioactivities: Ames mutagenicity, Inhibition

of Hepatitis C virus, and Inhibition of Plasmodium falciparum

Dd2 which were from PubChem and other public sources.

They identified the structural alerts of toxic compounds

from the model by analyzing attention coefficients.

Unlike other ADMET properties, toxicity data is relatively

well-known to the public because of the Tox21 challenge

in 2014. Therefore, methodology-based studies have recently

emerged, and benchmarked against major toxicity datasets

including the Tox21 dataset [76,184-187]. All of the

studies proposed deep learning-based novel architectures to

predict the compound toxic-related properties. Altae-Tran

et al. [76] used a one-shot learning technique to relieve the

data deficiency and consequently proposed iterative

refinement LSTM networks combined with GCN. It

showed a remarkable performance of small data with three

benchmark datasets Tox21, SIDER, and MUV. Abbasi et

al. [185] proposed a novel transferable deep learning

architecture that used GCN and an adversarial domain

adaptation network; they also deeply benchmarked their

model with various physiology and biophysics datasets,

such as Tox21, ToxCast, and SIDER.

4.5. Limitations and future direction

Here, we address the limitations of current research trends

and suggest future research directions.

First, the quality and quantity of the data is a huge hurdle

in ADMET property prediction fields. Specifically, most

predictive models comprise hundreds to thousands of small

chemistry datasets that cannot cover enough chemical

space [76,118,188]. Moreover, the data is usually dispersed

to many literatures [117,118,122,124,125,128-130,134-

144,150,155,159-169,173,176,179,183], is unbalanced, and

has cutoff ambiguity challenges [118,167]. Furthermore,

the bioactivity assay data is strongly biased to its platform,

and has an intrinsic experimental error which disrupts

accurate prediction [189]. Acquiring more data is practically

very difficult and even impossible, therefore, multitask

learning and transfer learning concepts may resolve these

data problems [65,76,126,132,144,185,187]. Besides, a

comprehensive well-curated database or benchmark [190,191]

could help researchers reduce the data collecting and

processing time and produce fair comparisons [65-67,192].

Remarkably, Wu et al. [190] proposed the comprehensive

benchmark called ‘MoleculeNet’. They offered the data of

various properties of over 700,000 compounds to compare

the algorithms fairly. Furthermore, they offered large-scale

data, standard metrics, basic models, and common featurizers.

Second, most of the studies used engineered molecular

descriptors to train the conventional machine learning

models, but there are feature-intrinsic biases and a model-

inherent low interpretability [72]. To address these problems,

a novel data-driven feature generation [71,73] or target-

specific feature learning from raw data offer good solutions

[76,136,154,179,184,185]. However, having interpretability

in the conventional machine learning and deep learning

model is still challenging. Therefore interpretable and end-

to-end molecular property prediction is definitely a

fascinating and promising research field [72,193,194].

Last, a challenge in ligand-based property prediction, is

the activity cliff [195]. The activity cliff is the concept of

circumstance where compounds, which have similar

structures, have different properties. This concept breaks

down the primary assumption of QSAR, therefore, it is the

most difficult problem in this field. To solve this problem,

we must use the information beyond the compound structure.

Remarkably, some novel strategies attempt to find the toxic

compounds beyond the QSAR assumption by using

machine learning techniques and using toxicogenomics data

containing both compound structure and gene expression

profiles [196-198].

4.6. Public Databases for ADMET properties

Until now, most data-driven ADMET prediction research

relies on literature-derived data. However, there have been

numerous efforts that pursue constructing a freely accessible,

integrated database that satisfies both quantity and quality

by curating the published literatures. Here, we summarize

the large-scale, integrated public databases which contain

enough molecular activities or properties. The databases

with simple descriptions are summarized in Table 3.

5. AI-guided Lead Optimization

Finding a molecule that has the desired pharmacological

properties or has activity against biological targets can be
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described by the metaphor “finding a needle in a haystack”.

Specifically, researchers estimate the chemical space of

synthesizable compounds to comprise approximately 1030-

1060 possibilities, whereas the number of compounds

registered in Chemical Abstracts Service has only reached

about 160 million to date. Fully enumerating this vast space

will require too much resource and computing power.

Thus, computer-aided de novo drug design has been an

active research area for the past 10 to 20 years [199-204].

In this section, we present recent studies on de novo drug

design using deep generative methods, which have gained

popularity over the past 2-3 years. These approaches adopt

the deep learning techniques that exhibited noticeable

successes in synthetic image generation and machine

translation domains. In the lead optimization domain, the

common objective of the deep generative models is to

learn the distribution of the chemical space, and perform

targeted optimization toward desired chemical properties,

as depicted in Fig. 5. Though each method introduced here

has its own distinct strengths, the deep generative methods,

have several benefits over other traditional approaches,

where the experts manually design with knowledge and

intuition, or use exhaustive enumeration on virtual libraries

[199,205-207]. First, deep generative modeling can reduce

human bias since it is completely data-driven. This is in

contrast with the traditional de novo design methods where

the generation of the molecules depends on expert-coded

rules [208]. Second, the chemical space is directly modeled

as a continuous function and learned by gradient-based

optimization, which is not viable for other computational

techniques such as genetic algorithms [209]. Third, it can

overcome the lack of target-specific data by using transfer

learning and semi-supervised learning techniques [202,

203,209,210].

5.1. Generating molecules with RNN

Deep learning has enabled significant advances in machine

translation and language modeling for the past decade.

RNN is the core component of language modeling, and

research has shown that RNN can effectively generate

synthetic texts [203]. There have been several attempts to

bring the deep learning techniques of language modeling

into drug design, which we aim to list some of these here.

Most of the studies focus on building deep generative

models that learn the SMILES grammar and generate

novel SMILES strings. SMILES is a type of molecular

graph representation that encodes the molecular graph into

a line of characters using depth-first graph traversal [203].

SMILES networks generation is usually done in a symbol-

by-symbol manner, where a recurrent unit of the network

calculates the probability of the next SMILES symbol to

appear based on the generated symbol at the previous step

and the recurrent unit’s state. A widely used technique for

training such RNN is a teacher forcing method [211], which

Table 3. Large-scale and integrated public databases commonly used in ADMET property prediction

Database Name Description Quantity

ChEMBL [311] A curated database of bioactive drug-like small molecules. It mainly 
contains 2D structures, calculated properties, and bioactivities.

15 M bioactivities

PubChem [310] An integrated chemistry database. It contains small to large molecules with 
structures, physical properties, bioactivities, patents, etc.

268 M bioactivities

admetSAR [319] Comprehensive ADMET related property data source and prediction tool 200 K activities and properties

MolculeNet [190] A molecular property benchmarking dataset containing various domains of 
property. The dataset is embedded in the DeepChem opensource python 
package.

700 K activities and properties

Merck molecular 
activity challenge [191]

The dataset which was used for Merck sponsored Kaggle competition in 
2012. It contains 15 types of molecular activities.

220 K activities and properties

DrugBank [313] A free, comprehensive drugs and drug targets database. It contains 
various chemical and target information for each drug.

13 K compounds, 5.1 K targets

SIDER [288] A database of marketed medicines and their recorded adverse drug reactions 1.4 K drugs, 5.8 K serious events

BindingDB [312] Web-accessible database of measured binding affinities, focusing mainly on 
the interactions of protein considered to be drug-targets with small, drug-
like molecules

1.7 M binding data for 7 K 
protein targets and 796 K small 
molecules

ChemIDplus [320] A web search portal that provides access to the chemical substances cited 
in the National Library of Medicine databases

112 K chemical records of 
various toxicities

ToxCast [321] A project of the U.S. Environmental Protection Agency. They generated 
toxicity-related high-throughput assay data on thousands of chemicals.

8.5 K chemicals with various 
toxicities

Tox21 dataset [322] Dataset published for the Tox21 challenge in 2014. It contains 12 assays 
related to human toxicities.

7.8 K chemicals with various 
toxicities

ToxRefDB [323] Information curated from over 5,000 in vivo toxicity studies; contains 
10 toxicity study types

1.1 K chemicals with various 
toxicities
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allows the RNN to learn the information in the training set

faster and more reliably, by enabling supervision of

generative learning.

Gupta et al. [212] successfully applied a generative

LSTM model for the molecular generative tasks. Their

LSTM model was first trained with approximately 500 K

SMILES strings from ChEMBL22, and they demonstrated

that the model can generate valid molecules following the

distribution of the training set. The model was further

trained (or fine-tuned) with some target-specific datasets of

4,367 PPARγ ligands and 1,490 trypsin inhibitors. The

authors observed a more focused generation toward the

specific targets, indicating the viability of the transfer

learning approach for hit-to-lead optimization. Segler et al.

[208] used 1.4 million molecules from ChEMBL to first

train their LSTM model and produced three different fine-

tuned models with three datasets of different targets: 5-

HT2A, P. falciparum, and Staphylococcus aureus. They

also made a target prediction model, predicting the IC50 of

a molecule to the target to simulate the typical cyclical drug

discovery process. Many other studies followed a similar

framework of generative RNN training, but have used

different target-specific or property-specific small datasets,

such as retinoid X receptor ligands [213] and quasi-

biogenic compounds [214]. Awale et al. [215] performed

transfer learning to a single known drug to obtain new

analogs of the drug. They prepared six different primary

training-sets and performed extensive comparative analysis.

Arús-Pous et al. [211] performed an extensive analysis on

the capability of the generative RNN. To evaluate the

performance of the RNN model, they devised an ideal

model which is an abstract model that samples molecules

from GDB-13 with uniform probability for every molecule

of GDB-13. They concluded that the RNN suffered from

the constraints of SMILES, i.e. complex graph topologies

or not-chemically allowed functional groups are more

difficult to learn with SMILES.

Many studies, introduced in this section, adopt the

canonical SMILES for molecular representation. Note that

one molecule has one specific canonical SMILES format,

while it can have many SMILES strings if it is not

restricted to the canonicalization. Arús-Pous et al. [216]

performed an extensive benchmark of SMILES-based

generative models with different variants of the SMILES

Fig. 5. A high-level conceptual description of inferred distributions of a deep generative model: (A) The virtual chemical space drawn by
the ZINC database (black points). The magenta points are sampled molecules from the distribution (magenta region) of a deep
generative model, which is trained with the ZINC database. (B) The green points are molecules having a quantitative estimate of drug-
likeness (QED) values larger than 0.7 from ZINC. The magenta region indicates the distribution inferred by the fine-tuned generative
model, where it has been further trained with small focused datasets containing molecules of high QED.



912 Biotechnology and Bioprocess Engineering 25: 895-930 (2020)

syntax, comparing canonical, randomized, and DeepSMILES

notations. They demonstrated that randomized SMILES

substantially improve the quality of the generated chemical

space. Pogány et al. [217] explored the applicability of

using Reduced Graph (RG) representation as input to the

generative RNN, though the output is still the translated

SMILES string from the RG. Although RNN is most suited

to sequential data like text sentences, there was a study

using RNN with non-textual representations. Li et al. [218]

proposed a de novo molecular design framework based on

a type of sequential graph generators that do not use symbol-

level recurrent units. Their model learns the parameterized

decoding policy that specifies the probability value for

each graph transition, where the graph transitions include

appending a new atom and connecting to atoms with a new

bond.

RNN language models in de novo design have produced

promising results, but the majority has only shown transfer

learning approaches in terms of a targeted generation with

the property objective. Because of this architectural limitation,

it is hard to enforce a sentence-level (compound-level)

property condition. Unless introducing some additional

modules for the network architecture to incorporate the

chemical property information [218]. The following

autoencoder-based network and reinforcement learning-

based tuning can embed the condition more naturally.

5.2. Generative Autoencoder

The goal of chemical autoencoders is to learn a mapping

from raw compound data to a latent vector as a compressed

representation. The training enables the autoencoder (AE)

to learn the latent space where each compound is

continuously located at the more chemically relevant

position. The main idea in generative autoencoders is to

sample a compound vector from the latent space. Auto-

encoders are widely used in various domains of deep

learning applications for representation learning and dimen-

sionality reduction. The autoencoders in generative models

enable training with conditional properties, by simple joint

learning or more sophisticated disentanglement and enta-

nglement of dependencies [209,219]. This subsection is

dedicated to introducing studies about de novo deep gene-

rative molecular design using autoencoder-based methods,

such as variational autoencoders (VAE) and adversarial

autoencoders.

VAEs have been widely studied in the image generation

domain [203]. Its mathematical foundation is based on the

theory of variational inference. VAE introduces probabilistic

latent space with noise, and regularization of the latent space

learning with a predefined prior, so that the generative

steps are conducted by sampling from the latent prior.

Gómez-Bombarelli et al. [209] pioneered the application of

VAE for exploring chemical space. They used generative

gated recurrent unit (GRU) for the decoder of the AE and

found that CNN performed well for the encoder. They used

two VAE models, trained on QM9 and ZINC, and compared

these models with the genetic algorithm baseline. Then,

they performed joint training for property prediction, by

attaching a separate feedforward network to predict the

molecule’s property. Lim et al. [220] proposed a molecular

design strategy based on conditional VAE. The conditional

VAE has the condition property vector directly embedded

into the latent space and used as an additional input for the

encoder. Kang et al. [210] presented a conditional molecular

design method using a semi-supervised variational auto-

encoder (SSVAE). The SSVAE has three separate modules:

encoder, predictor, and decoder networks. The predictor

network gets the SMILES input and predicts a property

value. An interesting concept of the network design is to

assume the Gaussian distribution on the property; this

concept enabled semi-supervised learning for the VAE.

Harel et al. [221] presented a deep molecular generative

model called prototype-driven diversity networks, which

uses VAE architecture where the encoder receives molecular

prototypes as input.

The studies mentioned thus far all focus on using the

SMILES representation with VAE. Still, there are ongoing

studies in this field venturing toward more diverse repre-

sentations. Skalic et al. [222] devised a deep generative

pipeline that generates new molecules from 3D volumetric

representations. The pipeline comprises two modules: shape

autoencoder, which is a VAE that learns the latent space of

the 3D molecular representation, and shape captioning

network, which is a CNN-LSTM network that translates

the given 3D representation into a SMILES string. The

work by Lim et al. [223] suggests the graph generative

VAE model in which the generation process starts with a

latent vector of an initial scaffold. In the learning phase, the

encoder encodes a “whole-molecule” graph to a latent

vector (scaffold), and the decoder uses the latent vector and

the given desired properties to reconstruct the original

whole-molecule.

Instead of variational inference, an adversarial training

approach can also be used for regularized learning of latent

space. Introducing adversarial networks in generative

modeling has been a key technical advancement in various

fields adopting AI algorithms [203]. The first inception of

adversarial learning was the generative adversarial network

(GAN), where the generator network’s output is discrimi-

nated by a separate discriminator network. There was a

promising attempt to bring this adversarial training scheme

into the autoencoder-based latent representation learning,

called adversarial autoencoder (AAE). In AAE, which is a

variant of generative autoencoder, the latent space regulari-
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zation is conducted with the adversarial training by using a

separate discriminator network that distinguishes whether

the latent vector is from the encoder network or from the

prior distribution. Polykovskiy et al. [219] devised an

entangled conditional AAE, which is an improvement on a

simple supervised AAE architecture. In their work, they

theoretically discussed the disentanglement problem in the

generative autoencoder schemes. Considering the issue,

they designed a novel entangled model that addresses the

dependence between the latent code and the property

values. Kadurin et al. [224] trained the VAE and AAE

models to generate a 166-bit Molecular ACCess System

(MACCS) chemical fingerprints and performed a compa-

rison of the two models on the reconstruction quality and

sampling coverage. Blaschke et al. [225] explored four

different generative AE architectures on the SMILES

generation task: VAEs using teacher forcing or not, and

AAEs where the encoder is trained to follow Gaussian or

Uniform distribution. Prykhdoko et al. [226] proposed a

new molecule de novo design method, by combining a

SMILES heteroencoder and a GAN. After the heteroencoder

is pretrained, the output from the encoder, the latent code,

is used as a true input for the discriminator of the GAN.

GAN generator’s output produced from random uniform

noise is used as a fake input for the GAN training. For the

generation phase, the generator produces a synthetic latent

code, and the code is fed to the decoder to generate a

SMILES string.

Although the introduction of guiding conditional properties

in the AE architecture seems to lead to better latent space

formation, it has been observed that these approaches

generate valid molecules less frequently than others [203].

This implies there is room for improvement in the quality

of learned latent space. Using some manual prior design

could help, but it would be challenging to devise appropriate

prior to the latent representation considering the complexity

of the global chemical space.

5.3. Reinforcement Learning

The alternative approach in conditional molecule generation

is using reinforcement learning (RL). The main idea

behind adopting RL is to construct strategies directly or

indirectly for exploring the constrained chemical space.

Many researches demonstrated the applicability of RL as a

fine-tuning process, where it comes after the pre-training

process with a general-purpose database; though, some

researchers recently pioneered the possibility of a pure-RL

approach [227]. In this subsection, we introduce studies

that used RL as a part of their de novo molecular design

with deep generative modeling. Most works introduced

here have formalized the molecular generation of targeted

property as maximization of the expected return, which is

the accumulated reward throughout one episode [203,228].

In the RL formalization, the current state of the environment

is the SMILES sequence which has been generated

symbol-by-symbol at each step. Action to be taken at a

certain time step, is adding one symbol or deleting an

existing symbol. RL, can be broken into two categories,

value learning and policy learning; the works listed below

adopt different approaches with their own reasoning.

Reward function design is the most important component

of building an RL system, yet it is still a challenging

opportunity for future research to discover the best

rewarding scheme to effectively learn the chemical space.

Olivecrona et al. [228] introduced a deep generative

RNN method for SMILES generation task where, through

RL, the RNN can also learn to generate structures with

certain specified desirable properties. They first trained the

RNN prior network on the training set of 1.5 million

structures from ChEMBL. After they framed the fine-

tuning task within an RL frame, where sampling SMILES

symbols from RNN ends with an EOS token, and the

return is defined by their proposed objective function,

which showed better results than other traditional scorings.

A similar approach was taken by Popova et al. [229],

however, they used a classic policy gradient algorithm

called REINFORCE, and used Stack-RNN as a generator

to address long-term dependencies effectively. Putin et al.

published two studies on deep generative de novo design

using the GAN concept and RL policy gradient [230,231].

In their study on Reinforced Adversarial Neural Computer

(RANC) [230], they adopted a special generator architecture,

called Differentiable Neural Computer (DNC), for tackling

the problem posed by using LSTM under the adversarial

training scheme. For the RL fine-tuning phase, the discri-

minator network was used for evaluation of the reward for

the generator, which is estimated as the likelihood of

fooling the discriminator. In their other work, Adversarial

Threshold Neural Computer (ATNC) [231], the overall

scheme was like the RANC, but it introduces a new block

called adversarial threshold (AT). AT is a copy of the

discriminator, lagging behind the original discriminator for

a certain number of epochs. Liu et al. [232] introduced an

exploration strategy on the RL training phase. Their training

process uses two networks, the exploitation network and

exploration network. Each symbol generation to be

measured is conducted by random selection between the

two networks.

Many different RL learning objectives other than policy

gradients also exist. Ståhl et al. [233] presented a fragment-

based RL approach based on the actor-critic model, where

the policy network (actor) and value function network

(critic) are trained in parallel. They suggested an alternative

way of representing molecules, where molecules are split
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into fragments of predefined fragment set libraries, and

each fragment is represented as a binary vector encoding,

that aims to make similar fragments get similar vectors.

Zhou et al. [227] presented a framework called Molecule

Deep Q-Network (MolDQN), which uses a value learning

algorithm. Their work is notable since it was a pure-RL only

approach with no pre-training process on a large dataset.

Few approaches attempted to combine the variational

autoencoder and RL tuning scheme. Zhavoronkov et al.

[234] combined RL, VAE, and tensor-train decomposition

techniques into a generative two-step machine learning

algorithm. They sampled six candidate compounds targeting

DDR1 kinase, and the compounds were designed, synthe-

sized, and experimentally tested in 46 days; which is quite

an impressive outcome considering the typical timeline of

the drug design process. Kwon et al. [207] presented a

learning method involving a graph variational autoencoder

for the molecular graph generation. Their graph generation

procedure does not add a node or edge one by one, but a

whole graph is generated at once when the network propa-

gation is finished. For the encoder, they used a message

passing neural network, and designed an approximate

graph matching method for calculating reconstruction loss

of the graph autoencoder.

5.4. Limitations and future directions

Although the recent advancements in de novo design with

deep generative methods look promising, there are still

many existing theoretical and practical impediments. First,

there appears to be a lack of standardized benchmarking or

comparative studies tools. It is known that the evaluation of

the generative models is very tricky unlike well-established

supervised learning tasks, and there are still debates on

which measures to use for generative models. It should be

noted that studies in de novo drug design have their own

objectives in focusing on a specific desired target. Still, the

comparative studies between various proposed models using

some standardized benchmark dataset could show the

models’ strengths and weaknesses, which can significantly

benefit the researchers of further studies in this area. There

were two prominent benchmarking platforms released

recently: MOSES [235] and GuacaMol [181]. MOSES

created a refined 2M molecules benchmark dataset based

on ZINC Clean Leads. They suggested various performance

metrics for molecular generative models, including validity,

uniqueness, internal diversity, novelty, filters, Frechet

ChemNet Distance (FCD), similarity to the nearest neighbor,

fragment similarity, and scaffold similarity. They also

implemented several deep learning models appearing in the

previous literatures [185,186,203] and provided a comparison

table between them on the suggested metrics. In contrast,

GuacaMol [181] used ChEMBL 24 database for the

standard dataset. They separated the generative de novo

task into two different categories and proposed the two

benchmark types accordingly: distribution-learning bench-

marks and goal-directed benchmarks. Distribution-learning

benchmarks test for the model’s ability to learn the

distribution of the training set. Goal-directed benchmarks

test for the model to generate the molecules with high

scores based on the desired scoring functions. They

provided a comprehensive list of 20 different optimization

tasks, including the similarity scoring to one or multiple

target molecules, multi-property objectives, and scaffold

hopping. GuacaMol also provided baseline model imple-

mentations, such as SMILES RNN, VAE, and genetic

algorithms, and reported the models’ performance on their

metrics.

Another space for the improvement of the generative de

novo studies is that the previously mentioned studies focused

mostly on models generating SMILES strings. Whether

they are used as input or output of the generative model,

some prospective research may benefit from using other

molecular representations, such as molecular graphs defined

by nodes and edges [207,218,223], or with 3D geometry of

molecules [222].

Although deep generative modeling has been facing a

rapid surge of interest in the field of de novo design for

around 2 to 3 years, it is not the only computational

approach to resolve the problems. Evolutionary algorithms

(EAs) are one of the popular traditional approaches that

researchers have used and improved over about 10 to 20

years. EAs are optimization techniques to find the best

solution set, inspired by biological evolution in nature, such

as reproduction, mutation, genetic recombination, natural

selection, and survival [236]. One recent development using

this approach was conducted by Yoshikawa et al. [237].

They used a grammatical evolution approach, where a

chromosome represents a sequence of translation rules,

defined under a context-free grammar, used to produce a

mapping to a SMILES. Their approach was compared with

other deep learning-based methods [186], and the result

shows the computational efficiency of grammatical evolution

is far better than the deep learning. Jan H. Jensen [238]

presented a graph-based genetic algorithm (GB-GA),

where the mutation and crossover operations are performed

by a graph representation of the molecules. The result

showed the GB-GA’s performance is equal or better than

the recent RNN and VAE methods, in terms of optimization

of log P values. Many other studies also adopted EAs for

their computational de novo design schemes [236,239,240].

EAs are robust and powerful alternatives to deep generative

modeling. Deep generative modeling is not an omnipotent

tool and has its own limitations; researchers and practitioners

need to consider other options like EAs, depending on their
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domain-specific problem settings.

5.5. Public databases for lead optimization

Table 4 describes the databases used by the studies listed in

this subsection. Most of the studies have used large general-

purpose databases, such as ZINC and ChEMBL, for pre-

training the initial generative models. ZINC especially

contains hundreds of millions of molecules, thus the

studies usually randomly sample or filter with specified

criteria from the whole available molecules. GDB databases

are enumerated datasets of all virtually possible molecules

and were used by some studies to evaluate their models’

capability. The studies that aimed to find the activities

against some specific targets usually extract the subsets of

the ChEMBL by the known bioactivities, so they can be

used for fine-tuning the models. Other studies [218,225,

226,228] used the ExCAPE-DB, which is a convenient tool

for filtering bioactivity entries provided by both PubChem

and ChEMBL. The small datasets, used by the studies that

resorted to proprietary data or specific bioassays, are not

listed here.

6. AI-guided Drug Repositioning

Drug repositioning, also known as drug repurposing, is the

process of finding new indications of drugs. This approach

is based on approved drugs or tested compounds and uses

information about their known pharmacology. Therefore,

drug repositioning has an advantage as it significantly

reduces the time and cost than traditional de novo drug

discovery approaches. Previously, most of the drug

repositioning has been serendipitous. For example, sildenafil,

which was developed in 1989 and used to treat angina, was

found to treat erectile dysfunction, and was named Viagra

[241]. In the case of thalidomide, it was first developed for

morning sickness but resulted in severe birth defects with

malformation of the limbs [242-244], and was withdrawn

from the market. Several years later, researchers discovered

the anti-angiogenesis effect of thalidomide and further used

it to treat multiple myeloma and leprosy. Table 5 shows

more successful drug repositioning examples, most of

which were discovered using the understanding of the

pharmacology of each drug. Although drug repositioning is

an essential approach in drug development, the identification

of drugs through experiments remains a challenge. However,

several data-driven computational approaches have been

developed. Here, we review various data types used for

drug repositioning and recent computational approaches

(Fig. 6). Besides, we discuss the advantages and limitations

of each approach, then further provide recommendations

that could facilitate a more informative understanding and

Table 4. Publicly available databases for training deep generative models

Database Name Description Quantity

ChEMBL [311] A curated database of bioactive drug-like small molecules. It mainly contains 2D structures, 
calculated properties, and bioactivities.

2 M molecules

PubChem [310] An integrated chemistry database. It contains from small to large molecules with structures, 
physical properties, bioactivities, patents, etc.

96.5 M molecules

ZINC [324] Virtual molecules that are likely to be synthesizable but have not yet been made 750 M molecules

DrugBank [313] A free, comprehensive drugs and drug targets database. It contains various chemical and 
target information for each drug.

13 K compounds

GDB-13 [325] Fully enumerated virtual database following simple chemical stability and synthetic 
feasibility rules, up to 13 atoms of C, N, O, S, and Cl

977 M molecules

GDB-17 [326] Fully enumerated virtual database following simple chemical stability and synthetic 
feasibility rules, up to 17 atoms of C, N, O, S, and halogens

166 B molecules

QM9 [327] Stable small C, H, O, N, F organic molecules up to 9 atoms, taken from GDB-17 with 
properties calculated from ab initio density functional theory (DFT)

133 K molecules

FDB-17 [328] Subset of GDB-17 consisting of fragment-like molecules 10 M molecules

ExCAPE-DB [329] Chemogenomics dataset of actives and inactives from ChEMBL and PubChem 1 M molecules

Table 5. Examples of repositioned drugs

Drug name Date of approval Original indication Repositioned indication

Minoxidil [330] 1988 Hypertension Hair loss

Sildenafil [241] 1998 Angina Erectile dysfunction

Thalidomide [242-244] 1998 Morning sickness Multiple myeloma

Celecoxib [331] 2000 Inflammation / pain Familial
adenomatous
polyps
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accelerate the process of identifying repositioning candidates.

6.1. Network-based approaches

Network-based approaches are widely used in drug

repositioning since various types of data are involved along

with the increase of high-throughput biological data. These

approaches have advantages in integrating multiple data

and dealing with heterogeneous networks. Interactions or

relationships between various types of node data such as

drugs, diseases, genes, and proteins, as well as each charac-

teristic information of drug and disease, are considered in

heterogeneous networks. These interactions contribute to

identifying drug repositioning candidates from various

perspectives [245]. Thus, most studies first constructed a

heterogeneous network, and then a network-based algorithm

was applied. Several studies have been proposed for decades.

Among them, two types of approaches are reviewed in this

paper: clustering-based and network propagation-based

approaches.

6.1.1. Clustering-based approach

The clustering-based approach aims to discover groups or

subnetworks within biological networks. These approaches

incorporate heterogeneous network construction. Wu et al.

[246] collected disease-gene and drug-target associations

from public databases to generate disease-disease, drug-

drug, and disease-drug pairs considering shared genes for

features such as biological processes and pathways. Then,

they constructed a weighted heterogeneous network and

used graph clustering algorithms to identify drug repositioning

candidates. They applied two graph clustering algorithms

to detect modules, Louvain’s modularity and ClusterONE.

[247,248] The Louvain’s modularity computes the modularity

of iteratively aggregated communities of nodes until the

maximum value is achieved, whereas the ClusterONE

calculates cohesiveness of clusters by weight of edges

within and between groups. The authors found novel drug-

disease associations; for example, vismodegib was predicted

to treat Gorlin syndrome besides its original indication,

basal cell carcinoma. Sun et al. [249] developed a data

fusion model to integrate multiple data types, including

drugs, genes, and diseases, through weighted n-cluster editing.

The approach uses graph clustering methods performed on

n-partite graphs and applied to drug repositioning, to find

novel drug-disease pairs through edge-modification. Chem

et al. [250] proposed a method called heterogeneous-network-

based-inference (HNBI). They collected experimentally

supported drug-miRNA and miRNA-disease associations

from public databases to calculate all pairwise similarities

of associations among drugs, miRNAs, and diseases. Then,

they constructed drug-miRNA-disease heterogeneous net-

works based on each similarity, and calculated strength of

weight between unlinked edges to rank drug-disease

associations as a missing link prediction problem.

6.1.2. Network propagation-based method

Here, information propagates from the source node to all

nodes in a network. Previously, random walk algorithms

Fig. 6. Data types and applied methods in drug repositioning. A heterogeneous network can be constructed with multiple data to
represent drug-disease associations. Features obtained from networks are used to construct prediction models through network analysis
or machine learning/deep learning algorithms.
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were used on a heterogeneous network constructed with

multiple features. Martínez et al. [251] proposed a

network-based method for drug-disease and disease-drug

prioritization based on ProphNet, that implemented a

propagation flow algorithm [252]. They retrieved information

on drugs, proteins, diseases, and associations among them,

and calculated similarities of each pair. The propagation

process flows from query to target networks with query

nodes through a path, including propagation within and

between networks. Vectors of the query and target were

obtained to calculate similarity scores between them.

Because of this query-target propagation step, it enables

both drug-disease and disease-drug prioritization, meaning

that drugs can be queried for new indications and diseases

can be queried for effective medications. Luo et al. [253]

presented a prediction method named MBiRW that applied

a bi-random walk algorithm on the two-layer drug-disease

heterogeneous network constructed by similarity measures,

calculated based on each property. Each random walk

process was conducted for both drug and disease networks,

respectively. Outputs of both walks were averaged to

represent the probability that a drug associates with a

disease. They found novel disease-drug relationships such

as Alzheimer’s and levodopa. Luo et al. [254] constructed

a heterogeneous network of six subnetworks containing

information of drug, disease, target, and each relation

between them. Here, they additionally used target protein

information of which similarities were calculated based on

amino acid sequences. The random walk process was

conducted on the heterogeneous network with multiple

transition matrices, considering a transition from one type

of network to the other, to prioritize candidate drugs for

diseases. Lastly, based on multiple similarities, Yan et al.

introduced similarity selection by information entropy [255].

They analyzed correlations between drug and disease

similarities after calculating similarity fusion through

information entropy of each similarity measure. The final

similarity matrix was calculated after adjusting similarity

values, considering the range of values; they used this to

construct the heterogeneous network. A bi-random walk

algorithm was applied on heterogeneous networks to predict

new drug-disease pairs.

6.2. Machine learning approaches

Machine learning (ML) techniques have been applied for

drug repositioning, giving reliable performance. ML helps

to discover repositioning candidates by learning patterns in

drug-disease associations. There are also various ML

algorithms that are evolving rapidly. Similarities between

drugs and diseases are also commonly combined as features.

Gottlieb et al. [256] conducted multiple drug-drug and

disease-disease similarity measures to construct features

that discriminate and represent drug-disease associations.

They then constructed a classification model named

PREDICT using a logistic regression algorithm. Napolitano

et al. [257] focused on drug-centered repositioning by

predicting therapeutic drug classes. They used gene

expression signatures collected from CMap that show the

use of transcriptomic data in drug repositioning, drug

structures, and target proteins to calculate similarities of

drugs. Then they combined drug similarities to train multi-

class SVM model for drug-disease association prediction.

There is also another SVM based model, constructed with

drug structures, that targets and side effects information.

[258] Kim et al. [259] constructed a drug-disease association

prediction model with five ML algorithms considering

both linear and nonlinear algorithms, using similarities as

features representing drug-disease pairs. Besides supervised

models, there are also studies using unsupervised algorithms

[245]. Hameed et al. used four clustering algorithms on a

drug network to predict drug ATC classes.

Moreover, feature construction using heterogeneous

networks has been conducted for more informative features.

Zhang et al. [260] proposed the network topological

similarity-based inference method to predict new drug-

disease associations by using a novel representation of drugs

and diseases processed from the drug-disease bipartite

network. Three ML algorithms, MLP, SVM, and RF, were

adopted to classify the associations. Le et al. [261] presented

a semi-supervised model using an integrated drug-target-

disease network to overcome the limitation of supervised

models because of uncertain negative associations. They

integrated each similarity network and a bipartite network

of drug-disease associations and then adopted a regularized

least square algorithm. Moreover, matrix factorization

methods were applied to drug-disease association matrices

to find novel associations. Luo et al. [254] proposed a drug

repositioning recommendation system through a hetero-

geneous drug-disease network, and a matrix completion

algorithm was introduced to fill a drug-disease association

matrix and identify potential treatments for diseases. Xuan

[262] presented DisDrugPred using a method based on

non-negative matrix factorization. The method integrates

prior knowledge of drugs and diseases, which were repre-

sented by similarity measures with association information,

then constructed a drug-disease association matrix to predict

novel associations.

6.3. Deep learning approaches

Deep learning (DL), one of the ML approaches, has shown

dramatic performance in various fields. In drug repositioning,

the feature extraction process is needed because of the size

of the feature dimension resulting from large datasets.

However, DL does not require a feature extraction step,
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and has the advantage of discovering latent features in

complex drug-disease networks. DL can be used to construct

either features or prediction models. When constructing

features, DL approaches can be used by embedding

information into latent representations, having the advantage

of low dimension and heterogeneity.

Wei et al. [263] adopted a network embedding algorithm

to learn latent representations from several biomedical

resources. Previously well-studied network embedding

models were applied to reduce the noise and high dimension

caused by adjacency matrices. Then, the SVM model was

trained with constructed features to predict drug-disease

associations. In contrast, Moridi et al. [264] focused on the

construction of efficient representation of drugs by using

various DNN architectures for each feature type. They

used drug structures, targets, related enzymes, and gene

expression profiles for drug features obtained from

DrugBank, PubChem, and CMap. They applied variational

autoencoder [209] and stacked autoencoders [265] on drug

structures, gene expression data, and ProtVec [266] on protein

and enzyme sequences to embed drug-related features.

Donner et al. [267] also proposed a deep embedding

method using LINCS [268] gene expression data. They

used standardized expression values of landmark genes as

input and constructed for various prediction tasks, including

drug repositioning with multiple hidden layers. This study

shows the application of transcriptomic data and DL

approach improved the prediction model performance.

Besides feature processing, recent papers constructed

DNN models for predicting drug-disease associations. You

et al. [269] combined the LASSO model with the DNN

model, each used for feature extraction and prediction of

drug-target interactions. They applied the constructed

model to predict drug repositioning for breast cancer by

identifying drugs that target risk genes of breast cancer.

Aliper et al. [270] constructed a DNN model on large

transcriptional datasets to classify drug therapeutic classes

based on transcriptional profiles. They collected gene

expression data from LINCS focusing on three cell lines

and processed them for pathway level analysis and landmark

gene-level analysis. Compared to an SVM model, the DNN

model outperformed on a multiclass classification problem.

Zeng et al. [271] proposed a method named deepDR that

learns high-level features from a heterogeneous network

generated by integrating 10 networks via a multi-model

deep autoencoder. Learned features were then decoded to

predict repositioning candidates. Xuan et al. [272] presented

a novel model that was based on CNN to capture local

representation from feature matrices and GRU, to learn

path representation from drug-disease paths. The model

outperformed other previous studies.

6.4. Limitations and future directions

A major limitation in in silico drug repositioning is the

quality and quantity of data. The known repositioned drugs

and related information are limited. Most of the research

relied on a relatively small dataset. Moreover, using

heterogeneous data can cause small datasets because not all

drugs or diseases may have information of interest. This

lack of data can induce limited predictions because only

drug-disease associations related to data used for training

can be predicted, especially when using network-based

approaches. For DL approaches, the small data size can

cause an overfitting problem. Therefore, qualitatively and

quantitatively improved multi-omics data are needed for

broader coverage and better model applicability [255,273].

Moreover, multiple network types of data such as signaling

networks and interaction networks need to be provided

[274,275]. To overcome the limitation of available data,

there has been another approach in drug repositioning

using Electronic Health Records (EHR) or patient history,

PubMed abstracts, and ClinicalTrials.gov by using text

mining algorithms [276-279]. Recent DL techniques can

be applied to drug repositioning to discover underlying

drug-disease associations in complex networks [280].

Despite the fast growth of DL, there are few studies

applied elaborate DNN architectures to extract meaningful

results. There have been many efforts in dealing with graph

structures with DNN, and these may help identify novel

drug-disease associations.

6.5. Public databases for drug repositioning

Drug repositioning studies involve a variety of data to

represent drugs and diseases, as do computational approaches

used in drug discovery including genome, proteome, interac-

tome, gene expression, chemical structures, and properties.

To predict novel drug-disease associations efficiently, it is

necessary to represent compounds, diseases, and their

interactions. There are several databases available for drug

repositioning. As drugs and diseases can be represented by

various data types, we categorized databases into two

groups: drug-centric and disease-centric databases. Detailed

data sources are described below and in Table 6.

6.5.1. Drug-centric databases

In computational drug discovery, the similar property

principle is commonly assumed, which means that similar

drugs bind similar proteins and further show similar

biological activities. Under this hypothesis, structural

information is the most used data to represent compounds.

To represent compounds, SMILES string and various

molecular fingerprints are used, indicating substructural

information. Molecular fingerprints are generated by
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cheminformatics software such as RDKit, and are mainly

fragment-based or circular-based, representing overall com-

pound structures [281]. Moreover, 3D molecular structures

can be, although not always available, informative when

focused on binding [282]. Besides, compound properties

are informative features to represent characteristics of

drugs which can be derived from databases and software

[283,284]. Drug-related genes and target proteins are also

used to represent drug properties since multiple genes and

proteins are involved when drugs are taken. Therefore,

drug-target interactions and further genomic network infor-

mation are also commonly adopted in drug repositioning.

The last data type of drug-centric database is the drug side

effects and indication information. These phenotypic data

are also related to diseases, containing pharmacology

information. From DailyMed and DrugCentral, we can

obtain overall drug information, including original drug

indications [285-287]. Side effects are negative effects of

drugs which imply underlying drug mechanisms and

biological pathways. SIDER [288] provides adverse drug

Table 6. List of data resources for drug repositioning

Database Description Quantity

PROMISCOUS [332] Contains information on drugs with related targets and side effects 25 K drugs,
23 K drug-target interactions,
1.4 K side-effects

DPDR-CPI [333] Contains information on drugs and 611 human protein targets
Predicts off-targets and potential indications

2.5 K drugs, 611 targets

repoDB [334] Contains drugs including successes, failures, and 2,051 related diseases 1.5 K drugs, 2 K diseases

RepurposeDB [335] Contains repositioned drugs and diseases 256 drugs, 1.1 K indications

e-Drug3D [282] Contains molecular structures of FDA drugs approved between 1939 and 
2019

19 K molecular structures

PubChem [310] An integrated chemistry database. It contains from small to large molecules 
with structures, physical properties, bioactivities, patents etc.

96.5 M molecules  

ChemSpider [284] Chemical structure database with fast text and structure search access 81 M chemical structures

DrugBank [313] A free, comprehensive drugs and drug targets database. It contains various 
chemical and target information for each drug.

13 K compounds, 5.1 K targets

DrugCentral [285] Comprehensive drug information source for approved drugs including 
indications and drug mode of action

4.5 K active ingredients, 77 K 
FDA drug labels

PharmGKB [301] Comprehensive drug information source for approved drugs including 
indications and drug mode of action

680 drugs, 149 pathways, 22 K 
variant annotations

KEGG [314] Databases resource for understanding high-level functions and utilities of 
biological system

18 K metabolites and small 
molecules, 11 K drugs, 7.7 K 
enzymes.

SIDER [288] A database of marketed medicines and their recorded adverse drug reactions 
(ADRs)

1.4 K drugs, 5.8 K serious 
events

ADReCS [291] Contains 669,104 drugs and ADR pairs mined from the FDA Adverse 
Event Reporting System

2.5 K drugs, 10 K ADRs

TWOSIDES [289] Comprehensive database for drug-drug-effect relationships 3.3 K drugs, 17 K ADR types

CMap [79,292] A library containing gene expression profiles from small molecule 
compounds tested in multiple cell types

1.5 M gene expression profiles, 
5 K small-molecule compounds, 
3 K genetic reagents

Gene Expression 
Omnibus [293]

Database of high throughput gene expression profiles 3.3 M samples

ArrayExpress [295] Database of microarray gene expression profiles 2.4 M assays

Genomics of Drug 
Sensitivity in Cancer 
(GDSC) [296]

Contains screenings of 1,000 human cancer cell lines with over 100 
compounds

809 Cell lines, 175 Compounds, 
118 K IC50s

CCLE [34] Contains mRNA expression and mutation data of over 1,100 cancer cell 
lines

1.4 K cell lines, 84 K genes, 1 M 
mutation data

DGIdb [336] Database for drug-gene interactions and potential druggability 10 K drugs, 40 K genes

DisGeNET [25] Collects disease-gene, disease-variant associations with homogeneous 
annotation

628 K gene-disease associations, 
17 K genes, 24 K diseases, 
210 K variant-disease 
associations

The Human Phenotype 
Ontology (HPO) [337]

The standardized vocabulary of phenotypic abnormalities in human disease 13 K terms, 156 K annotations 
to hereditary diseases
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reactions (ADRs) of marketed drugs, while OFFSIDES

and TWOSIDES [289] provides information on side

effects not listed on the official FDA labels and negative

drug-drug interactions constructed by preprocessing the

FDA Adverse Event Reporting System (FAERS) [290].

There is also another database of ADRs recently updated

by integrating public medical repositories [291].

6.5.2. Disease-centric databases

Drug-GDA are important in drug repositioning because the

repositioning can be conducted by finding novel targets in

terms of both drugs and diseases. Transcriptional signatures

can be used to represent and link drug-disease associations.

The Connectivity Map (CMap) provides gene expression

profiles of over 5,000 small molecule compounds tested on

multiple cell lines [79,292]. CMap data presents drug

effects on various disease conditions. Moreover, the GEO

from NCBI [293,294] and ArrayExpress from EBI [295]

provide gene expression data yielded from hundreds of

disease conditions in various species. These raw expression

data can be processed for disease signatures. Moreover, the

Cancer Cell Line Encyclopedia (CCLE) [34] and Genomics

of Drug Sensitivity in Cancer (GDSC) [296] can be adopted

to drug repositioning studies in cancer. To represent diseases,

Unified Medical Language System (UMLS) IDs [297],

Medical Subject Headings (MeSH) terms [298] or ontologies

are used, and further applied to discriminate between them.

Disease-gene relation data are important to connect drug-

disease associations as with drug-gene relations. DisGeNet

provides information on disease-gene and disease-variant

associations [23,25,299]. Since targeted genes or proteins

interact with other genes and proteins, their interactions are

important. Protein-protein interactions, gene-gene interactions,

and further related pathways carry information on the

biological activities between drugs and diseases [38,300,

301]. Finally, gene mutations and variants can be enlisted,

particularly when studying disease-centric drug repositioning.

COSMIC provides somatic mutations in human cancer,

which can describe cancer-specific disease characteristics

[302]. Other resources dbGAP, dbSNP, and dbVar from

NCBI contain information on human genetic variations

[303-305].

7. Conclusion

AI technology can be applied to a wide range of applications.

The widely used AI algorithms, particularly deep learning-

based algorithms, were primarily developed in the fields of

computer vision, natural language processing, and acoustic

signal processing. However, because of the reasons here,

applying fancy AI techniques to the drug discovery process

is quite challenging. First, the drug discovery process is

very complicated and it involves specialized knowledge in

a variety of fields (biology, chemistry, and medicine; among

others.). Second, the drug discovery process requires

compelling evidence for decision making because it directly

affects public health and the pharmaceutical industry’s net

profits. Nevertheless, many researchers proved the fact that

the future of drug discovery with AI technology is obviously

promising by their tremendous efforts that are covered in

this review. Still, the discrepancy between the two domains

is a big hurdle. Therefore, AI experts and other domain

experts will need to collaborate closely to develop ‘drug-

discovery-specific’ AI technology for real advances in the

current drug discovery. AI experts will need to understand

the characteristics of drug discovery data and make an

effort to develop appropriate and interpretable algorithms

that can explain the modes of action, to provide evidence

for further decision making. Other domain experts will

need to generate biological and chemical data with

minimal experimental errors and store them in unified

platforms for further improvements to the AI systems.

However, the most important thing for both groups is to be

open to working together and actively communicating to

construct a concrete framework for a new revolution in

drug discovery. We hope this review provides a good starting

point for closing this gap.
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