
NARRATIVE REVIEW Open Access

Artificial intelligence in medical imaging:
threat or opportunity? Radiologists again at
the forefront of innovation in medicine
Filippo Pesapane1†, Marina Codari2*† and Francesco Sardanelli2,3

Abstract

One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical

imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration

of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008

to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for

more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal,

cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible

increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human

eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on

the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced

because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical

judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided

by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital

role in multidisciplinary clinical teams.
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Key points

� Over 10 years, publications on AI in radiology have

increased from 100–150 per year to 700–800 per

year

� Magnetic resonance imaging and computed

tomography are the most involved techniques

� Neuroradiology appears as the most involved

subspecialty (accounting for about one-third of the

papers), followed by musculoskeletal, cardiovascular,

breast, urogenital, lung/thorax, and abdominal

radiology (each representing 6–9% of articles)

� Radiologists, the physicians who were on the

forefront of the digital era in medicine, can now

guide the introduction of AI in healthcare

Introduction
One of the most promising areas of health innovation is

the application of artificial intelligence (AI) in medical im-

aging, including, but not limited to, image processing and

interpretation [1]. Indeed, AI may find multiple applica-

tions, from image acquisition and processing to aided

reporting, follow-up planning, data storage, data mining,

and many others. Due to this wide range of applications, AI

is expected to massively impact the radiologist’s daily life.

This article provides basic definitions of terms com-

monly used when discussing AI applications, analyses

various aspects related to the integration of AI in the

radiological workflow, and provides an overview of the

balance between AI threats and opportunities for radiol-

ogists. Awareness of this trend is a necessity, especially

for younger generations who will face this revolution.

Artificial intelligence: definitions
The term AI is applied when a device mimics cognitive

functions, such as learning and problem solving [2].
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More generally, AI refers to a field of computer science

dedicated to the creation of systems performing tasks

that usually require human intelligence, branching off

into different techniques [3]. Machine learning (ML), a

term introduced by Arthur Samuel in 1959 to describe a

subfield of AI [4] that includes all those approaches that

allow computers to learn from data without being expli-

citly programmed, has been extensively applied to med-

ical imaging [5]. Among the techniques that fall under

the ML umbrella, deep learning (DL) has emerged as

one of the most promising. Indeed, DL is a technique

belonging to ML, which in turn refers to a broader AI

family (Fig. 1). In particular, DL methods belong to

representation-learning methods with multiple levels of

representation, which process raw data to perform clas-

sification or detection tasks [6].

ML incorporates computational models and algorithms

that imitate the architecture of the biological neural net-

works in the brain, i.e., artificial neural networks (ANNs)

[7]. Neural network architecture is structured in layers

composed of interconnected nodes. Each node of the net-

work performs a weighted sum of the input data that are

subsequently passed to an activation function. Weights

are dynamically optimised during the training phase.

There are three different kinds of layers: the input layer,

which receives input data; the output layer, which pro-

duces the results of data processing; and the hidden

layer(s), which extracts the patterns within the data. The

DL approach was developed to improve on the perform-

ance of conventional ANN when using deep architectures.

A deep ANN differs from the single hidden layer by hav-

ing a large number of hidden layers, which characterise

the depth of the network [8]. Among the different deep

ANNs, convolutional neural networks (CNNs) have

become popular in computer vision applications. In this

class of deep ANNs, convolution operations are used to

obtain feature maps in which the intensities of each pixel/

voxel are calculated as the sum of each pixel/voxel of the

original image and its neighbours, weighted by convolu-

tion matrices (also called kernels). Different kernels are ap-

plied for specific tasks, such as blurring, sharpening, or

edge detection. CNNs are biologically inspired networks

mimicking the behaviour of the brain cortex, which con-

tains a complex structure of cells sensitive to small regions

of the visual field [3]. The architecture of deep CNNs al-

lows for the composition of complex features (such as

shapes) from simpler features (e.g. image intensities) to

decode image raw data without the need to detect specific

features [3] (Fig. 2).

Despite their performance, ML network architecture

makes them more prone to fail in reaching the conver-

gence and overfit training dataset. On the other hand,

the complexity of deep network architectures makes

them demanding in terms of computational resources

and dimension of the training sample.

Success in DL application was possible mainly due to

recent advancements in the development of hardware

technologies, like graphics processing units [5]. Indeed,

the high number of nodes needed to detect complex re-

lationships and patterns within data may result in bil-

lions of parameters that need to be optimised during the

training phase. For this reason, DL networks require a

huge amount of training data, which in turn increase the

computing power needed to analyse them. These are

also the reasons why DL algorithms are showing in-

creased performance and are, theoretically, not suscep-

tible to the performance plateau of the simpler ML

networks (Fig. 3).

Fig. 1 Deep learning as a subset of machine learning methods, which represent a branch of the existing artificial intelligence techniques. Machine

learning techniques have been extensively applied since the 1980s. Deep learning has been applied since the 2010s due to the advancement of

computational resources

Pesapane et al. European Radiology Experimental  (2018) 2:35 Page 2 of 10



Radiologists are already familiar with computer-aided

detection/diagnosis (CAD) systems, which were first in-

troduced in the 1960s in chest x-ray and mammography

applications [5]. However, advances in algorithm devel-

opment, combined with the ease of access to computa-

tional resources, allows AI to be applied in radiological

decision-making at a higher functional level [7].

The wind of change
The great enthusiasm for and dynamism in the develop-

ment of AI systems in radiology is shown by the increase

in publications on this topic (Figs. 4 and 5). Only 10

years ago, the total number of publications on AI in

radiology only just exceeded 100 per year. Thereafter, we

had a tremendous increase, with over 700–800

publications per year in 2016–17. In the last couple of

years, computed tomography (CT) and magnetic reson-

ance imaging (MRI) have collectively accounted for more

than 50% of articles, though radiography, mammography,

and ultrasound are also represented (Table 1). Neuroradi-

ology (here evaluated as imaging of the central nervous

system) is the most involved subspecialty (accounting for

about one-third of the papers), followed by musculoskel-

etal, cardiovascular, breast, urogenital, lung/thorax, and

abdominal radiology, each representing between 6 and 9%

of the total number of papers (Table 2). AI currently has

an impact on the field of radiology, with MRI and neuro-

radiology as the major fields of innovation.

Recent meetings have also proven the interest in AI

applications. During the 2018 European Congress of

Radiology and the 2017 Annual Meeting of the Radio-

logical Society of North America, AI represented the

focus of many talks. Studies showed the application of

DL algorithms for assessing the risk of malignancy for a

lung nodule, estimating skeletal maturity from paediatric

hand radiographs, classifying liver masses, and even ob-

viating the need for thyroid and breast biopsies [9–11];

at the same time, the vendors showed examples of AI

applications in action [9, 10].

AI in radiology: threat or opportunity?
A motto of radiology residents is: “The more images you

see, the more examinations you report, the better you

get”. The same principle works for ML, and in particular

for DL. In the past decades, medical imaging has evolved

from projection images, such as radiographs or planar

scintigrams, to tomographic (i.e. cross-sectional) images,

such as ultrasound (US), CT, tomosynthesis, positron

Fig. 2 Comparison between classic machine learning and deep learning approaches applied to a classification task. Both depicted approaches

use an artificial neural network organised in different layers (IL input layer, HL hidden layer, OL output layer). The deep learning approach avoids

the design of dedicated feature extractors by using a deep neural network that represents complex features as a composition of simpler ones

Fig. 3 Graphical representation of the different relationship between

the amount of data given to traditional ML or DL systems and their

performance. Only DL systems continue to increase their performance
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emission tomography, MRI, etc., becoming more

complex and data rich. Even though this shift to

three-dimensional (3D) imaging began during the 1930s,

it was not until the digital era that this approach allowed

high anatomic detail to be obtained and functional infor-

mation to be captured.

The increasing amount of data to be processed can in-

fluence how radiologists interpret images: from inference

to merely detection and description. When too much time

is taken for image analysis, the time for evaluating clinical

and laboratory contexts is squeezed [12]. The radiologist

is reduced to being only an image analyst. The clinical in-

terpretation of the findings is left to other physicians. This

is dangerous, not only for radiologists but also for patients:

non-radiologists can have a full understanding of the clin-

ical situation but do not have the radiological knowledge.

In other words, if radiologists do not have the time for

clinical judgement, the final meaning of radiological exam-

inations will be left to non-experts in medical imaging.

In this scenario, AI is not a threat to radiology. It is in-

deed a tremendous opportunity for its improvement. In

fact, similar to our natural intelligence, AI algorithms

look at medical images to identify patterns after being

trained using vast numbers of examinations and images.

Those systems will be able to give information about the

characterisation of abnormal findings, mostly in terms of

conditional probabilities to be applied to Bayesian

decision-making [13, 14].

Fig. 4 Number of publications indexed on EMBASE obtained using the search query (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR

‘machine learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’) AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic

imaging’/exp. OR ‘diagnostic imaging’) AND ([english]/lim). EMBASE was accessed on April 24, 2018. For each year the number of publications

was stratified for imaging modality. US ultrasound, MRI magnetic resonance imaging, CT computed tomography, PET positron emission tomography,

SPECT single-photon emission tomography. Diagnostic modalities different from those listed above are grouped under the “other topic” label (e.g.

optical coherence tomography, dual-energy x-ray absorptiometry, etc.)

Table 1 Number of articles on AI in radiology indexed on

EMBASE, stratified by imaging modality

Imaging modality 2015 2016 2017

Magnetic resonance imaging 164 230 235

38% 42% 37%

Computed tomography 123 117 177

29% 21% 28%

Ultrasound 27 32 33

6% 6% 5%

Radiography 14 14 26

3% 3% 4%

Mammography and breast tomosynthesis 23 12 18

5% 2% 3%

Positron emission tomography and single-photon
emission tomography

1 7 5

0% 1% 1%

Other 79 139 134

18% 25% 21%

Total 431 551 628

100% 100% 100%

Search query: (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR ‘machine

learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’)

AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic imaging’/exp. OR ‘diagnostic

imaging’) AND ([english]/lim). Values were obtained including only “article”,

“article in press” and “conference paper” as publication type. EMBASE was

accessed on April 24, 2018
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This is crucial because not all abnormalities are repre-

sentative of disease and must be actioned. AI systems

learn on a case-by-case basis. However, unlike CAD sys-

tems, which just highlight the presence or absence of

image features known to be associated with a disease state

[15, 16], AI systems look at specific labelled structures and

also learn how to extract image features either visible or

invisible to the human eye. This approach mimics human

analytical cognition, allowing for better performance than

that obtained with old CAD software [17].

With the irreversible increase in imaging data and the

possibility to identify findings that humans can or can-

not detect [18], radiology is now moving from a subject-

ive perceptual skill to a more objective science [12]. In

fact, the radiologist’s work is currently limited by sub-

jectivity, i.e. variations across interpreters, and the

adverse effect of fatigue. The attention to inter- and

intra-reader variability [19] and the work committed to

improve the repeatability and reproducibility of medical

imaging over the past decades proves the need for repro-

ducible radiological results. In a broader perspective, the

trend toward data sharing also works in this case [20].

The key point is that AI has the potential to replace

many of the routine detection, characterisation and

quantification tasks currently performed by radiologists

using cognitive ability, as well as to accomplish the inte-

gration of data mining of electronic medical records in

the process [1, 7, 21].

Moreover, the recently developed DL networks have led

to more robust models for radiomics, which is an emerging

field that deals with the high-throughput extraction of

quantitative peculiar features from radiological images

[22–26]. Indeed, data derived from radiomics investigation,

such as intensity, shape, texture, wavelength, etc., can be

extracted from medical images [23, 27–31] and extracted

by or integrated in ML approaches, providing valuable

information for the prediction of treatment response, differ-

entiating benign and malignant tumours, and assessing

cancer genetics in many cancer types [23, 32–34]. Because

of the rapid growth of this area, numerous published radio-

mics investigations lack standardised evaluation of both the

scientific integrity and the clinical relevance [22]. However,

despite the ongoing need for independent validation data-

sets to confirm the diagnostic and prognostic value of

radiomics features, radiomics has shown several promising

applications for personalised therapy [22, 23], not only in

oncology but also in other fields, as shown by recent

original articles that have proved the value of radiomics in

the cardiovascular CT domain [35, 36].

Finally, AI applications may enhance the reproducibil-

ity of technical protocols, improving image quality and

decreasing radiation dose, decreasing MRI scanner time

[39] and optimising staffing and CT/MRI scanner util-

isation, thereby reducing costs [1]. These applications

will simplify and accelerate technicians’ work, also

resulting in an average higher technical quality of exami-

nations. This may counteract one of the current limita-

tions of AI systems, i.e. the low ability to recognise the

effects of positioning, motion artefacts, etc., also due to

the lack of standardised acquisition protocols [15, 33,

34]. In other words, AI needs high-quality studies, but

its application will lead towards better quality. The holy

grail of standardisation in radiology may become attain-

able, also increasing productivity.

The quicker and standardised detection of image

findings has the potential to shorten reporting time

and to create automated sections of reports [2]. Struc-

tured AI-aided reporting represents a domain where

AI may have a great impact, helping radiologists use

relevant data for diagnosis and presenting it in a con-

cise format [40].

Recently, the radiological community has discussed

how such changes will alter the professional status of ra-

diologists. Negative feelings were expressed, reflecting

the opinions of those who are thinking that medicine

will not need radiologists at all [21, 41, 42]. Should we

consider closing postgraduate schools of radiology, as

someone suggested [12, 21]? No. Healthcare systems

Table 2 Number of articles indexed on EMBASE stratified by

radiology subspecialty/body part

Body parts 2015 2016 2017

Central nervous system 163 235 211

38% 43% 34%

Bone, spine and joints 29 37 54

7% 7% 9%

Cardiovascular 24 32 49

6% 6% 8%

Breast 41 39 50

10% 7% 8%

Urogenital 40 25 52

9% 5% 8%

Thorax and lungs 36 21 46

8% 4% 7%

Abdomen 28 27 36

6% 5% 6%

Other 70 135 130

16% 25% 21%

Total 431 551 628

100% 100% 100%

Search query: (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR ‘machine

learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’)

AND (‘radiology’/exp. OR ‘radiology’ OR ‘diagnostic imaging’/exp. OR ‘diagnostic

imaging’) AND ([english]/lim) stratified by radiology subspeciality/body parts.

Values were obtained including only “article”, “article in press” and “conference

paper” as publication type. EMBASE was accessed on April 24, 2018
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would not be able to work without radiologists, particu-

larly in the AI era. This answer is not based on a prejudi-

cial defence of radiology as a discipline and profession.

Two main ideas should guide this prediction: first, “The

best qualification of a prophet is to have a good memory”

(attributed to Marquis of Halifax) [43]; and second, “One

way to predict the future is to create it” (attributed to

Abraham Lincoln) [44].

Radiologists were on the forefront of the digital era in

medicine. They guided the process, being the first med-

ical professionals to adopt computer science, and are

now probably the most digitally informed healthcare

professionals [45]. Although the introduction of new

technologies was mostly perceived as new approaches

for producing images, innovation also deeply changed

the ways to treat, present and store images. Indeed, the

role of radiologists was strengthened by the introduction

of new technologies. Why should it be different now?

The lesson of the past is that apparently disrupting tech-

nologies (e.g. non-x-ray-based modalities, such as ultra-

sound and MRI) that seemed to go beyond radiology

were embraced by radiologists. Radiology extended its

meaning to radiation-free imaging modalities, now

encompassing almost all diagnostic medical imaging, as

demonstrated by the presence of the word “radiology” in

numerous journals titles. This historical effect resulted

from the capacity of radiologists to embrace these

radiation-free modalities. In addition, electronic systems

for reporting examination and archiving images were

primarily modelled to serve radiologists.

The reasonable doubt is that we are now facing

methods that not only cover the production of medical

images but also involve detection and characterisation,

properly entering the diagnostic process. Indeed, this

is a new challenge, but also an additional value of AI.

The professional role and satisfaction of radiologists

will be enhanced by AI if they, as in the past, embrace

this technology and educate new generations to use it

to save time spent on routine and monotonous tasks,

with strong encouragement to dedicate the saved time

to functions that add value and influence patient care.

This could also help radiologists feel less worried

about the high number of examinations to be reported

and rather focus on communication with patients and

interaction with colleagues in multidisciplinary teams

[46]. This is the way for radiologists to build their

bright future.

We are at the beginning of the AI era. Until now, the

clinical application of ML on medical imaging in terms of

detection and characterisation have produced results lim-

ited to specific tasks, such as differentiation of normal

from abnormal chest radiographs [41, 42, 47] or mammo-

grams [48, 49]. The application of AI to advanced imaging

modalities, such as CT and MRI, is now in its first phase.

Examples of promising results are the differentiation of

malignant from benign chest nodules on CT scans [50],

Fig. 5 Number of publications indexed on EMBASE obtained using the search query (‘artificial intelligence’/exp. OR ‘artificial intelligence’ OR

‘machine learning’/exp. OR ‘machine learning’ OR ‘deep learning’/exp. OR ‘deep learning’) AND (‘radiology’ OR ‘diagnostic imaging’). EMBASE was

accessed on April 24, 2018. For each year, the number of publications was subdivided separating opinion articles, reviews and conference

abstracts from original articles in seven main subgroups considering subspecialty or body part. Other fields of medical imaging different

from those listed above are grouped under the “other topics” label (e.g. dermatology, ophthalmology, head and neck, etc.)
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the diagnosis of neurologic and psychiatric diseases [51,

52], and the identification of biomarkers in glioblastoma

[53]. Interestingly, MRI has been shown to predict survival

in women with cervical cancer [54, 55] and in patients

with amyotrophic lateral sclerosis [56].

However, AI could already be used to accomplish tasks

with a positive, immediate impact, several of them

already described by Nance et al. in 2013 [57]:

1. Prioritisation of reporting: automatic selection of

findings deserving faster action.

2. Comparison of current and previous examinations,

especially in oncologic follow-up: tens of minutes are

needed for this currently; AI could do this for us;

we will supervise the process, extracting data to be

integrated into the report and drawing conclusions

considering the clinical context and therapy regimens;

AI could also take into account the time interval

between examinations

3. Quick identification of negative studies: at least in

this first phase, AI will favour sensitivity and

negative predictive value over specificity and

positive predictive value, finding the normal studies

and leaving abnormal ones for radiologists [36].

This would be particularly useful in high-volume

screening settings; this concept of quick negative

should also represent a helpful tool for screening

programmes in underserved countries [10, 37].

4. Aggregation of electronic medical records, allowing

radiologists to access clinical information to adapt

protocols or interpret exams in the full clinical

context.

5. Automatic recall and rescheduling of patients: for

findings deserving of an imaging follow-up.

6. Immediate use of clinical decision support systems

for ordering, interpreting, and defining further

patient management.

7. Internal peer-review of reports.

8. Tracking of residents’ training.

9. Quality control of technologists’ performance and

tracked communication between radiologists and

technologists.

10. Data mining regarding relevant issues, including

radiation dose [38].

In the mid-term perspective, other possibilities are

open, such as:

1. Anticipation of the diagnosis of cancerous lesions in

oncologic patients using texture analysis and other

advanced approaches [58].

2. Prediction of treatment response to therapies for

tumours, such as intra-arterial treatment for

hepatocellular carcinoma [59].

3. Evaluation of the biological relevance of borderline

cases, such as B3-lesions diagnosed at pathology of

needle biopsy of breast imaging findings [60].

4. Estimation of functional parameters, such as the

fractional flow reserve from CT coronary

angiography using deep learning [61].

5. Detection of perfusion defects and ischaemia, for

example in the case of myocardial stress perfusion

defects and induced ischaemia [62].

6. Segmentation and shape modelling, such as brain

tumour segmentation [63] or, more generally, brain

structure segmentation [64].

7. Reducing diffusion MRI data processing to a single

optimised step, for example making microstructure

prediction on a voxel-by-voxel basis as well as

automated model-free segmentation from MRI

values [39].

The radiologists’ role and cooperation with
computer scientists
The key point is the separation of diagnosis and predic-

tion from action and recommendation. Radiologists will

not be replaced by machines because radiology practice

is much more than the simple interpretation of images.

The radiologist’s duties also include communication of

diagnosis, consideration of patients’ values and prefer-

ences, medical judgment, quality assurance, education,

policy-making, interventional procedures, and many

other tasks that, so far, cannot be performed by com-

puter programmes alone [2].

Notably, it must be understood that the clinical role of

radiologists cannot be “saved” only by performing inter-

ventional procedures. Even though interventional radi-

ology is a fundamental asset to improve the clinical profile

of radiology [45, 65–67], radiologists must act more as cli-

nicians, applying their clinical knowledge in answering

diagnostic questions and guiding decision-making, which

represent their main tasks. Radiologists should keep their

human control in the loop, considering clinical, personal

and societal contexts in ways that AI alone is not able to

do. So far, AI is neither astute nor empathic. Thus, physi-

cians (i.e., we say here radiologists) remain essential for

medical practice, because ingenuity in medicine requires

unique human characteristics [40, 68]. If the time needed

for image interpretation were shortened, radiologists

would be able to focus on inference to improve patient

care. If AI is based on a huge increase in information, the

hallmark of intelligence is in reducing information to what

is relevant [69].

However, it is impossible to exclude that the efficiency

gain provided by AI may lead to a need for fewer radiolo-

gists. Of note, in the United States the competition for

residency positions in radiology has decreased over time

[70], potentially allowing for a better match between
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supply and demand for residency positions. However, also

the opposite hypothesis cannot be excluded: AI-enhanced

radiology may require more professionals in the field, in-

cluding radiologists. In general, the history of automation

shows that jobs are not lost. Rather, roles are reshaped;

humans are displaced to tasks needing a human element

[12]. The gain in efficiency provided by AI will allow radi-

ologists to perform more value-added tasks, such as inte-

grating patients’ clinical and imaging information, having

more professional interactions, becoming more visible to

patients and playing a vital role in integrated clinical teams

[46]. In this way, AI will not replace radiologists; yet, those

radiologists who take advantage of the potential of AI will

replace the ones who refuse this crucial challenge.

Finally, we should remember that AI mimics human

intelligence. Radiologists are key people for several

current AI challenges, such as the creation of

high-quality training datasets, definition of the clinical

task to address, and interpretation of obtained results.

Many labelled studies and findings provided by experi-

enced radiologists are needed; those datasets are diffi-

cult to find and are time-consuming, implying high

costs [3]. However, even if crucial, the radiologist’s role

should not be confined to data labelling. Radiologists

may play a pivotal role in the identification of clinical

applications where AI methods may make the difference.

Indeed, they represent the final user of these technologies,

who knows where they can be applied to improve patient

care. For this reason, their point of view is crucial to opti-

mise the use of AI-based solutions in the clinical setting.

Finally, the application of AI-based algorithms often leads

to the creation of complex data that need to be inter-

preted and linked to their clinical utility. In this scenario,

radiologists may play a crucial role in data interpretation,

cooperating with data scientists in the definition of useful

results.

Radiologists should negotiate the supply of these valu-

able datasets and clinical knowledge with a guiding role in

the clinical application of AI programmes. This implies an

increasing partnership with bioengineers and computer

scientists. Working with them in research and develop-

ment of AI applications in radiology is a strategic issue

[45]. These professionals should be embedded in radio-

logical departments, becoming everyday partners. Creating

this kind of “multidisciplinary AI team” will help to ensure

patient safety standards are met and creates judicial trans-

parency, which allows legal liability to be assigned to the

radiologist component human authority [71].

Another topical issue that needs to be faced are the

legal implications of AI systems in healthcare. As soon

as AI systems start making autonomous decisions about

diagnoses and prognosis, and stop being only a support

tool, a problem arises as to whether, when something

‘goes wrong’ following a clinical decision made by an AI

application, the reader (namely, the radiologist) or the

device itself or its designer/builder is to be considered at

fault [72]. In our opinion, ethical and legal responsibility

for decision making in healthcare will remain a matter

of the natural intelligence of physicians. From this view-

point, it is probable that the multidisciplinary AI team

will take responsibility in difficult cases, considering

relevant, but not always conclusive, what AI provided. It

has been already demonstrated that groups of human

and AI agents working together make more accurate

predictions compared to humans or AI alone, promising

to achieve higher levels of accuracy in imaging diagnosis

and even prognosis [71].

Although the techniques of AI differ from diagnosis to

prognosis, both applications still need validation, and

this is challenging due to the large amount of data

needed to achieve robust results [73]. Therefore, rigor-

ous evaluation criteria and reporting guidelines for AI

need to be developed in order to establish its role in

radiology and, more generally, in medicine [22].

Conclusions
AI will surely impact radiology, and more quickly than

other medical fields. It will change radiology practice

more than anything since Roentgen. Radiologists can

play a leading role in this oncoming change [74].

An uneasiness among radiologists to embrace AI may

be compared with the reluctance among pilots to em-

brace autopilot technology in the early days of auto-

mated aircraft aviation. However, radiologists are used to

facing technological challenges because, since the begin-

nings of its history, radiology has been the playfield of

technological development.

An updated radiologist should be aware of the basic

principles of ML/DL systems, of the characteristic of

datasets to train them, and their limitations. Radiologists

do not need to know the deepest details of these sys-

tems, but they must learn the technical vocabulary used

by data scientists to efficiently communicate with them.

The time to work for and with AI in radiology is now.
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