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Artificial intelligence (AI) is defined as ‘a field of science
and engineering concerned with the computational

understanding of what is commonly called intelligent
behaviour, and with the creation of artefacts that exhibit
such behaviour’.1 Aristotle attempted to formalise ‘right
thinking’ (logic) through his syllogisms (a three part
deductive reasoning). Much of the work in the modern era
was inspired by this and the early studies on the operation
of mind helped to establish contemporary logical thinking.
Programs which enable computers to function in the ways,
that make people seem intelligent are called artificial
intelligent systems. The British mathematician Alan Turing
(1950) was one of the founders of modern computer science
and AI. He defined intelligent behaviour in a computer as

the ability to achieve human-level performance in cognitive
tasks, this later became popular as the ‘Turing test’.2 Since
the middle of the last century, researchers have explored the
potential applications of intelligent techniques in every field
of medicine.3,4 The application of AI technology in the field
of surgery was first successively investigated by Gunn in
1976, when he explored the possibility of diagnosing acute
abdominal pain with computer analysis.5 The last two
decades have seen a surge in the interest in medical AI.

Modern medicine is faced with the challenge of
acquiring, analysing and applying the large amount of
knowledge necessary to solve complex clinical problems.
The development of medical artificial intelligence has
been related to the development of AI programs intended
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to help the clinician in the formulation of a diagnosis, the
making of therapeutic decisions and the prediction of
outcome. They are designed to support healthcare
workers in their every day duties, assisting with tasks
that rely on the manipulation of data and knowledge.
Such systems include Artificial neural networks (ANNs),
fuzzy expert systems, evolutionary computation and
hybrid intelligent systems.

Artificial neural networks

Judging by the volume of publication in the last two
decades, ANN is the most popular AI technique in
medicine.6 ANNs are computational analytical tools which
are inspired by the biological nervous system. They consist
of networks of highly interconnected computer processors
called ‘neurons’ that are capable of performing parallel
computations for data processing and knowledge
representation. Their ability to learn from historical
examples, analyse non-linear data, handle imprecise
information and generalise enabling application of the
model to independent data has made them a very attractive
analytical tool in the field of medicine.

McCulloch and Pitts (1943) invented the first artificial
neurone using simple binary threshold functions.7 The next
important milestone came when Frank Rosenblatt, a
psychologist, developed the Perceptron in 19588 as a
practical model. Many variations of the basic Perceptron
network have been proposed but the most popular model
has been multilayer feedforward Perceptron (Fig. 1). These
networks are made up of layers of neurons, typically an
input layer, one or more middle or hidden layers and an
output layer, each of which are fully connected to other
layer. The neurons are connected by links, and each link has
a numerical weight associated with it. A neural network
‘learns’ through repeated adjustments of these weights. One
of the important characters of ANNs is that they can learn
from their experience in a training environment. The use of
multilayer feedforward Perceptron was restricted by the
lack of a suitable learning algorithm until Paul Werbos
(1974) a PhD student introduced ‘backpropagation’
learning.9 Some of the other popular network designs
include Hopfield networks,10 Radial Basis Function11 and the
Self-Organizing Feature Map.12

ANNs have already found a wide variety of applications
in the real world. Their ability to classify and recognise
patterns accurately has attracted researchers to apply them
in solving many clinical problems. As we realise that
diagnosis, treatment and predicting outcome in many
clinical situations is dependent on a complex interaction of
many clinical, biological and pathological variables there is a
growing need for analytical tools like ANNs which can
exploit the intricate relationships between these variables.

Baxt was one of the first researchers to explore the clinical
potentials of ANNs.13 He developed a neural network model
which accurately diagnosed acute myocardial infarction and
latter prospectively validated his work with similar
accuracy.14 Since then, ANNs have been applied in almost
every field of medicine.

Diagnosis

ANNs have been used in the clinical diagnosis, image
analysis in radiology and histopathology, data inter-
pretation in intensive care setting and waveform analysis.

Stamey et al.15 developed a neural network derived
classification algorithm called ProstAsure Index which can
classify prostates as benign or malignant. This model which
was subsequently validated in prospective studies had a
diagnostic accuracy of 90%, with a sensitivity of 81% and
specificity of 92%. Some of the other surgically relevant
diagnostic applications of ANNs include abdominal pain
and appendicitis,16 retained common bile duct stones,17

glaucoma,18 and back pain.19

ANNs have also been used in diagnosing cytological
and histological specimens. PAPNET, a computerised
automated screening system based on neural networks,
has been developed to assist the cytologist in cervical
screening and is one of the few ANN models which was
promoted commercially.20 Breast,21 gastric,22 thyroid,23 oral
epithelial cells,24 urothelial cells,25 pleural and peritoneal
effusion cytology26 have all been subjected to analysis by
neural networks with varying degree of success. In
radiology, it is possible to use both human observations
and direct digitised images as inputs to the networks.
ANNs have been used to interpret plain radiographs,27

ultrasound,28 CT,29 MRI,30 and radioisotope scans.31

ANNs pattern recognition ability has been used to
analyse various wave forms including the interpretation
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Figure 1 Multilayered feedforward artificial neural networks.



of ECGs to diagnose myocardial infarction,32 atrial
fibrillation,33 and ventricular arrythmias.34 Analysis of
electro-enchalograms (EEG) by neural networks has led to its
application in the diagnosis of epilepsy35 and sleep
disorders.36 They have also been trained to analyse
electromyographic (EMG)37 and Doppler ultrasound38 wave
forms as well as haemodynamic patterns in intensive care
patients.39

Prognosis

Prognostication is extremely important in planning
appropriate treatment strategies and follow-up. Accurate
identification of high-risk patients may facilitate targeted
aggressive adjuvant therapy which may help cure the
disease and prolong survival. ANNs with their ability to
exploit non-linear relations between variables are
particularly suitable to analyse complex cancer data. It has
been demonstrated that neural networks can predict
survival in patients with breast and colorectal cancer.40,41

ANNs have also shown to perform better than consultant
colorectal surgeons in predicting outcome in patients with
colorectal cancer.42 The authors of this paper have
demonstrated the generalisability of ANNs, once trained on
a particular data, the networks were able to predict outcome
for patients from an independent institution with out
retraining. ANNs have also been used to predict outcome in
lung43 and prostate cancers.44 They have been applied to
predict outcome in intensive care unit and have performed
better than APACHE II severity of illness scoring system.45

Fuzzy expert systems

Fuzzy logic is the science of reasoning, thinking and
inference that recognises and uses the real world
phenomenon – that everything is a matter of degree. Instead
of assuming everything is black and white (conventional
logic), fuzzy logic recognises that in reality most things
would fall somewhere in between, that is varying shades of
grey. It was popularised by Lofti Zadeh (1965) an engineer
from the University of California.46 It uses continuous set
membership from 0 to 1 in contrast to Boolean or
conventional logic which uses sharp distinctions, i.e. 0 for
false and 1 for true. Medicine is essentially a continuous

domain and most medical data is inherently imprecise.
Fuzzy logic is a data handling methodology that permits
ambiguity and hence is particularly suited to medical
applications. It captures and uses the concept of fuzziness in
a computationally effective manner. Zadeh wrote in 1969
that: ‘the most likely area of application for this theory lies in
medical diagnostics and, to a lesser extent, in the description
of biological systems’.47 Fuzzy expert systems have the
structure of a series of ‘if – then’ rules for modelling (Fig. 2).

The techniques of fuzzy logic have been explored in
many medical applications. Schneider et al.48 showed that
fuzzy logic performed better than multiple logistic
regression analysis in diagnosing lung cancer using tumour
marker profiles. Similarly, the application of fuzzy logic has
been explored in the diagnosis of acute leukaemia,49 and
breast50 and pancreatic51 cancer. They have also been applied
to characterise ultrasound images of the breast,52

ultrasound53 and CT scan54 images of liver lesions and MRI55

images of brain tumours. Fuzzy logic has also been used to
predict survival in patients with breast cancer.56 Fuzzy
controllers have been designed for the administration of
vasodilators to control blood pressure in the peri-operative
period.57 They have also been used for the administration of
anaesthetics in the operating room.58

Evolutionary computation

Evolutionary computation is the general term for several
computational techniques based on natural evolution
process that imitates the mechanism of natural selection
and survival of the fittest in solving real-world problems.
The most widely used form of evolutionary computation
for medical applications are ‘Genetic Algorithms’.
Proposed by John Holland (1975),59 they are a class of
stochastic search and optimisation algorithms based on
natural biological evolution. They work by creating many
random solutions to the problem at hand. This population
of many solutions will then evolve from one generation to
the next, ultimately arriving at a satisfactory solution to
the problem. The best solutions are added to the
population while the inferior ones are eliminated. By
repeating this process among the better elements,
repeated improvements will occur in the population,
survive and generate new solutions.

Most medical decisions can be formulated as a search
in a very large and complex space. For example: a
cytologist analysing a cytological specimen to decide
whether they are malignant or not, is searching in the
space of all possible cell features for a set of features
permitting him to provide a clear diagnosis. Genetic
algorithms exploit the mechanism of natural evolution to
search efficiently in a given space. They are applied to
perform several types of tasks like diagnosis and
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Figure 2 A typical fuzzy rule system.



prognosis, medical imaging and signal processing, and
planning and scheduling. The principles of Genetic
algorithms have been used to predict outcome in critically
ill patients,45 lung cancer,60 melanoma61 and response to
warfarin.62 They have also been used in computerised
analysis of mammographic microcalcification,63 MRI
segmentation of brain tumours to measure the efficacy of
treatment strategies64 and for analysing computerised 2-D
images to diagnose malignant melanomas.63,65

Hybrid intelligent systems

Each AI technique has its own strengths and weaknesses.
Neural networks are mainly concerned with learning, fuzzy
logic with imprecision and evolutionary computation with
search and optimisation. The advantages of these technologies
can be combined together to produce hybrid intelligent
systems which can work in a complementary manner. Their
synergy allows a hybrid system to accommodate common
sense, extract knowledge from raw data, use human-like
reasoning mechanisms, deal with uncertainty and impre-
cision, and learn to adapt to a rapidly changing and unknown
environment. There are many different hybrid systems
available and the popular ones are ANNs for designing fuzzy
systems, fuzzy systems for designing ANNs, and Genetic
Algorithms for automatically training and generating neural
network architectures. Once again, the application of hybrid
intelligent systems has been explored in many diverse clinical
scenarios. Some examples include breast cancer diagnosis,66

analysis of microcalcification on digital mammograms,67

diagnosis of coronary artery stenosis,68 assessment of
myocardial viability,69 and control of the depth of anaesthesia.70

Conclusions

There are many different AI techniques available which are
capable of solving a variety of clinical problems. However, in
spite of earlier optimism, medical AI technology has not
been embraced with enthusiasm. One reason for this is the
attitude of the clinicians towards technology being used in
the decision-making process. Paradoxically, there is no
qualm in accepting the biochemical results generated from
an auto-analyser or images produced by magnetic
resonance imaging. However, it is the obligation of
researchers active in this field to produce evidence that these
techniques work on a practical level. The need to undertake
more randomised controlled studies to prove the efficacy of
AI systems in medicine is, therefore, vital.

There is compelling evidence that medical AI can play a
vital role in assisting the clinician to deliver health care
efficiently in the 21st century. There is little doubt that these
techniques will serve to enhance and complement the
‘medical intelligence’ of the future clinician.
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