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Artificial intelligence (AI) can support clinical decisions and provide quality assurance

for images. Although ultrasonography is commonly used in the field of obstetrics and

gynecology, the use of AI is still in a stage of infancy. Nevertheless, in repetitive ultrasound

examinations, such as those involving automatic positioning and identification of fetal

structures, prediction of gestational age (GA), and real-time image quality assurance, AI

has great potential. To realize its application, it is necessary to promote interdisciplinary

communication between AI developers and sonographers. In this review, we outlined

the benefits of AI technology in obstetric ultrasound diagnosis by optimizing image

acquisition, quantification, segmentation, and location identification, which can be helpful

for obstetric ultrasound diagnosis in different periods of pregnancy.

Keywords: artificial intelligence, obstetric ultrasound, automatic measurement, segmentation, classification,

ultrasound telemedicine

INTRODUCTION

Ultrasound is utilized throughout the entire process of pregnancy. It is critical in the observation
of fetal growth and development as well as the diagnosis and treatment of disease. It can provide
detailed information on fetal anatomy with high-quality images and improved diagnostic accuracy
(1). At present, two-dimensional (2D) imaging and three-dimensional (3D) ultrasound are widely
used to measure fetal structures, assess organ functions, and diagnose diseases (2, 3). Access to
quality obstetric ultrasound imaging is important of accurate diagnosis and treatment. However, it
is easily subjected to involuntary fetal movements at the early stage of pregnancy, and the structures
of interest are almost always occluded at the second- and last trimester, which may cause difficulties
for examination and mis-diagnosis. The subjectivity of measurements and observation were also
influencing factors for the acquirement of high-quality ultrasound images, standardmeasurements,
and precise diagnosis.

In the last decade, to reduce intra- and inter-observer measurement variations and to improve
diagnostic accuracy, automatic measurements, and assessments based on artificial intelligence (AI)
have been introduced (4, 5). The application of AI in accuracy improvement of obstetric ultrasound
includes three aspects: structure identification, automatic and standardize measurements, and
classification diagnosis (Table 1). Since obstetric ultrasound is time-consuming, the use of AI could
also reduce examination time and improve workflow (6, 7). Although lots of AI-aided techniques
and commercial software have been launched to provide high resolution imaging and precise
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TABLE 1 | The application of AI in accuracy improvement of obstetric ultrasound.

First trimester Second- and last-trimester

Structure

identification

Detection of fetal

limbs

Recognition of facial structure

Recognition of abdominal organs

Calculation of ventricular volume and the

thickness of ventricular wall

Automatic

measurement

Measurement of NT

and crown-rump

length automatically

Estimate the AC/HC automatically

Estimate the volume of fetal head and its

internal structures

Estimate the volume of fetal stomach and

bladder

Classification

and diagnosis

Assessment of fetal

development

Neurodevelopmental maturity prediction

Diagnosis of growth restriction

Diagnosis of Craniocerebral malformation

Assessment of fetal lung maturity

Diagnosis of congenital heart disease

Evaluation and prediction of premature

birth by cervical ultrasound

Evaluation of fetal weight and gestational

age

measurement for obstetric ultrasound, majority of the related
researches are still in early stages. Promotion of interdisciplinary
communication is one of the important steps toward establishing
validity and clinical applicability of AI algorithms (8). Here,
we systematically review and discuss the application as well
as the advantages and disadvantages of AI in obstetrics
ultrasound. Since the concern of ultrasound examination varies
in different phases of pregnancy, AI-aided obstetric ultrasound
can be divided into first trimester and second- and last
trimester. The future outlook of obstetric ultrasound like
telemedicine or telediagnosis service and virtual reality (VR)
learning are also be concerned. We believe that the cooperative
effort of researches from various disciplines will facilitate the
translation of algorithms to the clinical application for AI-aided
obstetric ultrasound.

APPLICATION OF AI IN FIRST TRIMESTER

Automatic Assessment of Fetal Growth
and Development
Assessment of fetal growth and development in first trimester
is critical for the diagnosis and intervention of pregnancy
complications such as premature delivery and low birth weight.
The routine method of fetal growth assessment was to measure
crown-rump length by two-dimensional ultrasonography (2D-
US). However, there was subjective dependence on single-
section measurements by 2D-US, which may show no significant
difference in the crown-rump length between normal and
abnormal fetuses in first trimester. Three-dimensional-image
volume measurements may provide more information on
fetal development compared with 2D-image measurements,
except that 3D imaging was time-consuming and the volume
measurements could be underestimated. For this reason, a
semi-automatic 3D-image volume calculation method based

on pixel extraction and point-of-interest detection has been
introduced. Using a 12-week-old fetus, this method recognized
the fetal contours and calculated the fetal volume, thereby
verifying the effectiveness of 3D imaging for accuracy of
identification (9). Even so, the semi-automatic algorithm
was unable to identify irregular items, and some faults
of segmentation required manual amendment. In a recent
study, the volume measurements of 104 fetuses and fetal
appendages in first trimester (10–14 weeks) were determined
using a 3D convolutional neural network (CNN) algorithm
to realize the synchronous fully automatic segmentation of
multiple anatomical structures, including the fetus, gestational
sac, and placenta (10). Another study proposed an image
processing solution based on 3D ultrasound, which contained
segmentation of the fetus, estimation of standard biometry views,
automatic measurements of biometry, and detection of fetal
limbs (11). Since the fetus and fetal appurtenances were closely
related, these algorithms can lead to a more systematic and
comprehensive assessment.

Assessment of Nuchal Translucency
Thickness
The measurement of NT thickness by 2D ultrasonography
is critical for the detection of chromosomal malformations
in the first trimester. The NT, which represents the maximal
thickness between the fetal skin and the subcutaneous soft
tissue at the level of the cervical spine, should be measured
using a standard median sagittal image. However, this requires
a high degree of accuracy and expertise. Due to small fetal
structures, frequent fetal movements, and poor image quality,
the measurement of the NT thickness usually requires multiple
attempts. To decrease measurement errors and to reduce
measurement difficulties, the fetal NT thickness was measured
using semi-automated tools and the results were compared
with manual measurements (12). In another study, the fetal
NT thickness was measured using a standard median sagittal
image combined with Deep Belief Networks that provided
a prior knowledge for NT structure determination (13).
Therefore, an automatic recognition model was constructed
by combining sagittal plane information and complete
3D-image data, which achieved a detection accuracy of
88.6% (Figure 1).

APPLICATION OF AI-AIDED ULTRASOUND
IN SECOND- AND LAST TRIMESTER

Fetal Head
Prenatal ultrasonography is critical for the assessment of fetal
growth and development, detection of fetal abnormalities, and
treatment of prenatal conditions to reduce the mortality rate.
However, the fetal brain is one of the most difficult organs to
evaluate by prenatal ultrasonography. The application of AI-
aided ultrasound in the fetal brain consists of various aspects,
such as fetal head biometry, measurement of cranial capacity,
fully automatic segmentation of fetal head circumference (HC)

Frontiers in Medicine | www.frontiersin.org 2 August 2021 | Volume 8 | Article 733468

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Artificial Intelligence in Obstetric Ultrasound

FIGURE 1 | AI in measurement of NT thickness (12, 13). (a) Original image, (b) after histogram equalization, (c–e) detection results of different methods (directional

edge image, SRAD edge image, and KAD edge image), (f) binary the direction edge image.

and internal structure, and classification of normal and abnormal
ultrasound features.

Automatic Segmentation of Fetal Head and Its

Internal Structure
The HC is a major indicator of fetal growth, where abnormal
values could indicate growth restriction. The measurement
of this and other related indicators, such as the biparietal
diameter, can also predict the gestational age (GA). In addition,
prenatal ultrasonography can accurately assess craniocerebral
development and detect intracranial malformations using
multiple measurements and sections. However, the number
of trained sonographers are inadequate in most developing
countries, and inexperienced sonographers may find it difficult
to obtain high-quality standard plane images, which can affect
the determination of the GA and the assessment of fetal growth
and development. Currently, the majority of ultrasonic machines
have configured semi-automatic measurement software for the
measurement of HC, which requires localization of two points
(generally for the short diameter locating point on the section
of biparietal diameter), and this may lead to measuring error.
Previous studies have utilized various traditional methods to
measure HC, such as randomized Hough transform, active
contouring, etc. (6). In recent years, new methods were
investigated based on deep learning methods (14). One of the
studies have used the obstetric sweep protocol to achieve fully
automatic analysis without the acquisition of a standard plane.
The method was based on two full CNN s, where HC could be
estimated from prior information, and GA could be determined
by the curve of Hadlock. It was a great advancement that
the errors made by standard plane scanning could be partly
avoided (15). Another study had presented a CAD system based
on random forest algorithm to automatically extract HC. The
research included data from all trimesters, established the growth
curve, and confirmed that evaluating results for each trimester
separately was necessary, which was cost-effective and suitable
for clinical settings which lacked experienced sonographers
(16). On the other hand, to provide a basis of extraction of

representative biometrics in the fetal head, Yang et al. proposed
a fully automated solution to segment the whole fetal head
based on 3D ultrasound, which achieved a Dice Similarity
Coefficient of 96% (17). The research team further investigated a
general framework for automatically segmenting fetal anatomical
structures in 2D ultrasound images and thus made objective
biometric measurements available. It showed a great ability on
both the segmentation of fetal HC and abdominal circumference
(AC) (18). Apart from HC, research was also concentrated on
the accurate segmentation of internal structures of the fetal head.
Common measurement items included fetal lateral ventricles,
transcerebellar, cisterna magna, and posterior horn of the lateral
ventricle, etc. (19, 20). The methods were not very different from
those of neonates, except for the image quality (the fetal head
was further from the ultrasound probe, and sheltered by adjacent
tissue or anatomical structures) and the difficulties of location
caused by the fetal activity. Most of these research was based on
deep learning algorithms or other commercial software.

Automatic Recognition and Auxiliary Assessment of

Fetal Facial Structures
Ultrasound imaging of fetal facial structures is routinely
performed during prenatal ultrasonography to detect
malformations. However, the usefulness of this method
was limited by the expertise of sonographers. Imaging was
also time consuming due to the length of time required for
correct positioning. Furthermore, the limbs or umbilical
cord could easily obstruct the facial structures. Although
most facial deformities could be detected by 2D imaging
with supplementation by 3D imaging if needed, it was still
difficult to detect slight facial deformities. Artificial intelligence
has an auxiliary role in fetal facial recognition, craniofacial
development, and the detection of congenital malformations.
In a previous study, the deep CNN method was applied to
realize the automatic recognition of axial, coronal, and sagittal
planes of the face, which effectively shortened the time of
section recognition, and the recognition efficiency was 96.99%
(21, 22). In another study, image registration technology was
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FIGURE 2 | Optimization of fetal facial 3D ultrasound imaging. (A) Facial occlusion with umbilical cord, (B) elimination of facial occlusion, (C) facial edge incomplete

reconstruction, (D) facial imaging optimization.

used to eliminate variations in fetal position, orientation, and
size by taking the central areas of the head and eyes as feature
points. Subsequently, craniofacial structures were automatically
delineated using the segmentation method, and five craniofacial
diameter lines (biparietal diameter, occipito-frontal diameter,
interorbital diameter, bilateral orbital diameter, and orbital-
calvaria diameter) were accurately measured to realize the
intelligent diagnosis and evaluation of the fetal face (23).

In addition to assessing facial development and
malformations, AI can also improve diagnostic efficiency
through pre-processing of the ultrasound images. For example,
the automatic fetal face navigation system Smart Face (Resona 7,
Mindary, Shenzhen, China) could automatically recognize the
main facial features in 3D-image volume measurement data, as
well as remove facial occlusions and optimize visual angles with
one click, thereby rendering 3D imaging to be fast, convenient,

and effective. Optimization involves acquisition of multi-frame
sections of the fetal head image, facial edge detection through AI,
recognition of facial contours, and elimination of facial occlusion
to obtain a 3D image of facial contours. The fetal face model
could also be used to calculate the direction of the face. It could
also be rotated to a desired angle for further analysis (Figure 2).

Automatic Recognition of the Fetal Brain for the

Diagnosis and Prognosis of Related Diseases
The final goal of AI in the medical field is to aid diagnosis
and treatment. Image segmentation and recognition is an
effective way to improve the reliability and accuracy of
ultrasonography. In the diagnosis of growth restriction, 3D
image of the fetal brain was produced using artificial boundaries
and the fetal craniocerebral volume (including the cerebellum,
brain, and frontal region) was measured. It was reported

Frontiers in Medicine | www.frontiersin.org 4 August 2021 | Volume 8 | Article 733468

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Artificial Intelligence in Obstetric Ultrasound

that the craniocerebral volume of abnormally small fetuses
was smaller than that of normal fetuses. However, this
study cannot reach fully automatic cerebral segmentation and
the recognition of the shape (24). Due to the inaccurate
prediction of the GA, which depended on the expertise
of sonographers, differences in individual skull size due to
ethnicity and the subjective acquisition of 2D diagnostic planes,
another study constructed a semi-automated learning-based
framework to identify age-related areas and signs from fetal
craniocerebral ultrasound sections and associated them with
neurodevelopmental maturity to provide new indicators of fetal
development by simply observing craniocerebral morphological
changes by ultrasonography (25). To make the evaluation more
systematic, a study has created a classification tool for the
diagnosis of intrauterine growth restriction. Besides the features
of HC and GA, AC, BPD, and femur length (FL) were also
used for ANN classification. This approach could help solve the
problems of inter-and intra-observer variability (26). Recently,
the application of AI in the diagnosis of fetal craniocerebral
malformations is gradually increasing. Such advanced techniques
have been loaded onto commercial ultrasound equipment, where
“Smart plan” (Resona 7, Mindary, Shenzhen, China) is one of the
representations. It could not only achieve automatic recognition
of craniocerebral internal structures, but also helped with the
diagnosis of diseases (27). It is possible for the system to use
these measurements and recognition information to diagnose
partial agenesis of the corpus callosum (identifying its structure),
Dandy-Walker malformation (DWM), and other cerebellum-
related diseases. Recent research has reported combinational
algorithms (algorithm based on U-net for segmentation,
and algorithm based on VGG-net for classification) for the
diagnosis of fetal brain diseases, including ventriculomegaly,
hydrocephalus, Blake pouch cyst (BPC), DWM, and cerebellar
vermis hypoplasia (CVH). It showed that these algorithms were
helpful for craniocerebral region segmentation, classification,
and lesion localization in ultrasound diagnosis of fetal brain
abnormalities, which might improve the diagnostic efficiency of
for junior doctors (28).

Accurate Recognition and Measurement of
Fetal Abdominal Structures
The AC is the most valuable predictor of fetal weight. Standard
abdominal sections can be used to determine the AC and
evaluate fetal growth and development. Due to the low contrast
of the fetal abdomen in acoustic images and the presence of
irregular abdominal echoes, the measurement of the AC is
more challenging compared to that of the HC. However, in
applications involving AI, the identification of the abdomen
and the measurement of the AC were similar to those of the
head, and the main differences were in the anatomical structures
to be identified (i.e., the presence, position, direction, and
distance of nearby organs such as the spinal cord, gallbladder,
and stomach) and the effect of the amniotic fluid sac on
boundary recognition (29). Chen et al. reduced model overfitting
through transfer learning and established a recognition system
based on deep learning to standardize measurements of the

AC. The model could also realize the automatic positioning of
standard abdominal sections in the ultrasound dynamic image
and the measurement of the fetal AC. Based on this, another
study has divided the whole process into initial AC estimation,
measurement, and plane acceptance checking (30). Every process
consisted of a CNN and U-Net, which improved the accuracy of
measurements and location. Shortcomings in image recognition
and automatic measurement have been overcome by repeated
updates of the algorithm and data volume amplifications. On the
other hand, based on the limitation that 2D-imagemeasurements
of the long diameter and area could not recognize the viscera,
3D reconstruction can help to measure the volume of the hollow
viscera. Therefore, presently, this method is used to measure the
fetal stomach and bladder.

Quantitative Texture Analysis of Fetal Lung
Ultrasound Images
Poor lung development is themost common cause of prematurity
and neonatal death. Although GA is one index of fetal lung
maturity, assessment using GA alone has obvious individual
variance. Amniotic fluid can provide information on the ratio
of lecithin to sphingomyelin with high accuracy; however, this
method involves puncture and is invasive. Therefore, it is
critical to identify non-invasive methods that can accurately
quantify fetal lung maturity. Recently, the application of
ultrasonography in the assessment of fetal lung maturity has
attracted attention. Generally, the evaluation of fetal pulmonary
maturity using ultrasonography was obtained by comparison
with the echogenicity of the liver, intestine, and placenta.
However, it has a low inter-observer agreement and the
diagnostic accuracy of this approach was not very acceptable.
Based on this, texture analysis has been useful in the evaluation
of fetal lung maturity by ultrasound. For example, Automatic
Quantitative Ultrasonic Analysis (AQUA) software was reported
to obtain texture images of the fetal lung in DICOM format,
analyze the features, extract 30 features with the best correlations,
and verify the correlations between features and GA (31). Lung
texture was not affected by region-of-interest positioning, lung
size, lung orientation, and the specific ultrasonic instrument or
its frequency, and an image of another area was not required
as a reference. Therefore, the feasibility and repeatability of
the method was acceptable. In another study using the AQUA
software, the sensitivity, specificity, and accuracy of software
analysis in assessment of fetal pulmonary maturity were 95.1,
85.7, and 90.3%, respectively, compared with the lecithin-
sphingomyelin ratio (32). Other researchers also established
a similar system of texture analysis (e.g., QuantusFLM for
quantitative ultrasound analysis of fetal lung maturity) to
identify preterm fetal lungs or predict the occurrence of
neonatal respiratory diseases (33, 34). By texture heterogeneity
analysis, it was reported that the heterogeneity of fetal lungs
on ultrasound images in premature infants was decreased,
whereas the heterogeneity of fetal lungs in full-term infants was
increased, which was conducive to the early diagnosis of fetal
lung dysplasia. Also, the feasibility of these software was validated
in different clinical situation including proximal/distal lungs and
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US machines of different brands, etc. (35). The common thread
was that the analysis was not affected by the adjustment of
the gray value of the instrument. The system also had good
applicability. However, limitations such as the limited amount
of data needed for system construction and the lack of sample
representation of single center data should not be ignored.
To realize the clinical application, these limitations should be
addressed in follow-up studies.

Intelligent Analysis and Disease Diagnosis
by Fetal Echocardiography
Fetal echocardiography is challenging because the fetal heart
is complex and small, and the fetal heartbeat is very fast.
The diagnosis of heart disease in fetuses mainly relies on
the experience of the sonographer and overall observations.
Presently, AI is useful in the acquisition of fetal heart
volume, atrioventricular recognition, ventricular wall thickness
measurement, diseases diagnosis as well as in the establishment
of the heart intelligent navigation system. With continuous
improvements of the algorithm, the automatic and accurate
identification of the fetal heart can be realized. The accurate
recognition and segmentation of the cardiac cavities by AI can
assist in the detection of congenital heart diseases (CHD) such
as hypoplastic left heart syndrome, endocardial cushion defects,
and large atrial/ventricular septal defects. A recent big data
research developed an ensemble of neural networks to identify
recommended cardiac views and diagnose complex CHD, which
achieved a 95% sensitivity and 96% specificity. This research also
demonstrated that the classifier made the decisions based on
clinically relevant image features, and overcoming the problems
of lack of experience as well as the poor quality of images were
the key points in AI-aided diagnosis of CHD (36). However,
artifacts, contour loss, noise, and uneven intensities always affect
the feature recognization and analysis of fetal heart images (37).
Artificial intelligence technique is expected contribute to the
standardization and optimization of fetal echocardiography (38).

Image quality and quality control were essential factors for
the evaluation of fetal echocardiography. Previous studies have
used various algorithms to achieve accurate segmentation and
recognition of the structure of the fetal heart, no matter from
images or videos. The visibility, position, orientation, and the
viewing plane of the fetal heart in ultrasound images were
parameters which required attention (39). Good results of
segmentation was the basis of accurate assessment. Xu et al.
proposed an algorithm for the segmentation of apical four-
chamber view in fetal echocardiography. An end-to-endDW-Net
(consisted of DCC and W-Net) was used for accurate location
and refining of precise boundaries. This approach was helpful
for solving the problems of artifacts, speckle noise, and missing
boundaries, and it finally reached a Dice similarity coefficient
of 0.827 (40). In Dong et al.’s research, they proposed a deep
learning framework based on a basic CNN (segmentation of
the four-chamber plane), a deeper CNN (determination of the
zoom and gain) and ARVBNet (detection of key structures)
for quality assessment of fetal echocardiography. This method
could recognize the internal structures of the fetal heart, estimate
whether the recognition was true, and provide a score (41).

Although many studies aimed to improve the diagnostic
efficiency of CHDs, its abnormal anatomical morphological
changes limit the probability, especially for those complex CHDs.
One solution was detecting indirect signs, such as assessment
of ventricular volumes and the thickness of ventricular walls
(42, 43). Another way was to implement more comprehensive
detection of anatomical structure. The intelligent fetal heart
imaging system was based on spatiotemporal image correlation
(STIC), which identifies the fetal arterial duct arch and then
gradually realizes the imaging of the fetal heart screening
sections. VOCAL software was based on STIC, and it is used
to measure the ventricular septal volume by 3D imaging,
and the correlation between the ventricular septal volume
and the GA was then evaluated (44). For the diagnosis of
cardiac malformations, several investigators have developed an
AI diagnosis system for fetal heart malformations. The system
uses big datasets of confirmed normal and abnormal fetal
heart images in combination with cloud computing to detect
fetal heart malformations. Another typical example was the
software named Fetal Intelligent Navigation Echocardiography
(FINE), which utilizes intelligent navigation technology on STIC
datasets (45). Once the tags were completed, nine standard
fetal echocardiography views were automatically generated and
simultaneously. These views included a four-chamber view, a
five-chamber view, a section of the left ventricular outflow tract,
a short axis of the aorta/section of the right ventricular outflow
tract, a section of the three-vessel view, an abdomen/stomach
bubble section, an arterial ductal arch section, an aortic arch
section, and a superior and inferior vena cava section. Several
studies have used FINE technology to arrive at a diagnosis of fetal
tetralogy of Fallot combined with pulmonary atresia. In addition,
Mindray has developed an intelligent fetal heart imaging system
for standard sections of fetal 3D volume measurement data. The
system could semi-automatically identify six standard sections
commonly used in fetal heart examinations according to the
position of the four-chamber reference point, which was input
by the user to improve the inspection efficiency. Based on
the big database of characteristics of fetal heart structures, it
adopted deep learning to construct an intelligent fetal heart
structure recognition system that could distinguish different
anatomical structures, combine the information with the user’s
input to determine the search range of the fetal heart structures,
identify the positions of the main anatomical structures in the
volume measurement data, and generate a standard section of
the fetal heart according to the positions of the main anatomical
structures. Nevertheless, the current fetal heart intelligent
imaging system was still susceptible to interference from the
fetus, whose movement cannot be controlled. Therefore, suitable
algorithms, matrix probe, and real-time 3D ultrasonography are
still required.

Evaluation and Prediction of Cervical
Function
Cervical insufficiency is the main factor leading to recurrent
abortion and spontaneous preterm birth in the second trimester.
It is also one of the causes of neonatal death. Transvaginal
ultrasonography is widely used in the evaluation of cervical
function during pregnancy. Through the observation and
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evaluation of cervical length, cervical funnel formation, and other
indicators, the development of cervical insufficiency could be
predicted andmonitored to some extent. However, the specificity
and sensitivity of existing techniques and single indicators, such
as cervical length, to predict the risk of preterm birth were
low, and some systematic assessment software packages could
only obtain semi-quantitative assessment indicators, namely, the
risk stratification of preterm birth. The lack of practical tools
for the evaluation of cervical function always leads to excessive
examinations and overtreatment.

Quantitative analysis of tissue texture in images was the main
application point of AI in the evaluation of cervical insufficiency.
Investigators from Spain applied the quantitative analysis of
cervical texture in the evaluation of cervical tissue changes during
pregnancy (46). A total of 18 features were extracted from
each ultrasound image and area of interest, and a prediction
model of GA based on features from the cervical image was
established through data segmentation, feature transformation,
and model calculation, which indicated that there was a strong
correlation between cervical ultrasound images and GA. Based
on the low specificity of cervical length for the assessment
of cervical function, these investigators adopted the feature
combination learning algorithm based on feature transformation
and regression, selected the area of interest in the middle of the
labium anterius, established the CTx score, and confirmed that
the CTx score of pregnant women with a short cervix and term
delivery was higher than that of pregnant women with a short
cervix and premature delivery (47). This technique provided
support for predicting the risk of premature birth in pregnant
women with a short cervix.

In addition to texture analysis, the application of omics to
predict premature birth has also been useful. A previous study
combined AI, proteomics, metabolomics, and ultrasonography,
and used a variety of machine learning technologies, which
included deep learning, to predict preterm birth, preterm latency,
and neonatal treatment time in the NICU during the second
trimester (48). Despite the small sample size, the study confirmed
that deep learning had an advantage over other types of machine
learning in the processing of complex data in the multifactorial
prediction of cervical insufficiency.

Evaluation of Fetal Weight and Gestational
Age
Artificial intelligence technique demonstrated its possibility for
the accurate generation of fetal weight, which was mainly based
on the gestational weeks and the biparietal diameter, AC, and
femur length, especially for extreme fetal weights. Yasunari et al.
reported that they developed an AI method for estimating
the fetal weight. A neural network architecture was trained
by deep learning with a dataset that was consisted of ± 2
standard deviation (SD), ± 1.5 SD, and ± 0 SD categories of the
approved standard values of ultrasonic measurements of the fetal
weights (49).

Preterm birth is a major global health challenge, which is
the leading cause of death in children under 5 years of age.
Current methods for estimating fetal GA were often inaccurate.

For example, at 20–30 weeks of gestation, the width of the 95%
prediction interval around the actual GA is approximately 18–36
days. To solve this problem, Russell et al. developed a machine-
learning approach to accurately estimate GA using ultrasound-
derived and fetal biometric data. The accuracy of the method was
determined by reference to exactly known facts pertaining to each
fetus specifically, intervals between ultrasound visits, rather than
the date of the mother’s last menstrual period. The generalization
of the algorithm was shown with data from a different and
more heterogeneous population. In the context of two large
datasets, they estimated the GA to within 3 days between 20
and 30 weeks of gestation with a 95% CI, using measurements
made in a 10-week window spanning the second and third
trimesters, hence fetal GA can be estimated in the 20–30 weeks
GA window with a prediction interval 3–5 times better than
with any previous algorithms (50). This would enable improved
management of individual pregnancies and help identify at-risk
fetusesmore accurately than currently possible. At the population
level, the higher accuracy was expected to improve fetal growth
charts and population health assessments. Machine learning
could circumvent long-standing limitations in determining fetal
GA and future growth trajectories without recourse to often
inaccurately known information, such as the date of the mother’s
last menstrual period. Using this algorithm in clinical practice
could facilitate the management of individual pregnancies and
improve population-level health.

DISCUSSION AND FUTURE
PERSPECTIVES

The combination of AI and ultrasonography is assisting clinicians
in the diagnosis of a variety of conditions and diseases, as it can
improve efficiency, reduce the rates of misdiagnosis and missed
diagnosis, effectively improve the quality of medical services, and
ultimately benefit patients. Presently, significant achievements
have been made in the application of AI in the fields of obstetrics
and gynecology, but the universality and effectiveness of many
models still require further studies. Lots of skills have been
investigated in current reports to overcome the dilemma of
limited accuracy, such as developing ensemble algorithms (51),
using ultrasound videos or time-series information as validation
set (52, 53), or considering features in complementary imaging
modalities (54), etc. In addition, with the constant optimization
and modification of algorithms, not only algorithm engineer,
but clinicians should have knowledge so that they can eliminate
or standardize subjective bias to avoid misdiagnosis in order to
achieve objective, fair, and unified generalization standards.

On the other hand, AI related obstetric ultrasound techniques
are gradually playing a part in education and social service.
For example, fetal ultrasound telemedicine service can link up
the specialist fetal medicine center and the remote obstetric
unit, which can provide high quality ultrasound diagnosis and
specialist consultation as well as reducing the family costs and
journey times significantly (55). Furthermore, this technique was
proved to be useful in transnational consultation. Since obstetric
ultrasound remains unavailable in many developing countries
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and rural areas, telemedicine/telediagnostic service can increase
access to diagnostic obstetric ultrasound in low-resource setting.
It had been proved to have excellent agreement with standard
of care ultrasound (56). In obstetrics and gynecology education,
VR is becoming a new way of simulation-based ultrasound
training, which significantly improves learning efficiency and
knowledge retention in fetal ultrasound teaching [such as
recognizing fetal brain anomalies on ultrasound imaging (57)
or studying fetal development (58)]. We believe that with the
development of techniques and interdisciplinary integration,
there will be a lot more that AI can offer in the field of
obstetric ultrasound.
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