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Abstract
Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that 
integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations 
purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated 
system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span 
over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, 
technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of 
application are explored, and future perspectives are discussed.

1 Introduction

Data science has been the driving force for the dawn of the 
fourth industrial revolution, bringing the big-data concept 
in focus of most science and engineering applications. It 
has been stated that the global datasphere will get as high 
as 175 Zettabytes by the year 2025 while it was merely 33 
Zettabytes in 2018 [1]. As a result, researchers from most 
disciplines have been motivated on exploring ways to deploy 
this vast amount of data. The main idea is the identifica-
tion of patterns and/or hidden equations that govern these 
datasets. Data mining, apart from the exploitation of well-
established statistical and numerical methods, has also been 
directed towards the extraction of mathematical expressions, 
which can be utilized for the establishment of new and the 
verification of existing physical laws. Therefore, the ques-
tion that now arises is: Should we acknowledge the era we 
experience as the era of big data, and if so, what is the effect 
on science and technology?

Novel data-driven approaches are now exploited in mate-
rials science, among others, [2] (see Fig. 1) and have opened 
the road to the introduction of Materials Informatics [3, 
4] and relevant approaches whose primary concern is the 
discovery of novel materials at reasonable computational 
cost. Furthermore, in order to enhance this initiative, there 
exist databases (e.g., Inorganic Crystal Structure Database 
[5], Open Quantum Material Database [6], The Cambridge 
Structural Database [7], AFLOWLIB [8]) to provide ade-
quate support for scientists and engineers. However, mate-
rials science isn’t the only field that has benefited from the 
advent of big data. The fourth paradigm of science, under 
the framework of Artificial Intelligence (AI) to facilitate 
the procedure [9], has substantially evolved in fields such 
as bioinformatics, particle physics, space research, medical 
imaging, construction applications, and more. To support 
this observation, the universal recognition of big data and 
data-driven methods is further becoming clear by the vast 
increase of published articles on the topic [10].

Nevertheless, big data would be hard to handle without 
the incorporation of AI, or, in other words, the assemblage 
of methods and skills that allow humans and machines to 
execute assignments that only intelligent entities can (e.g., 
perceive, reason, and act) [11]. Having been introduced 
as a branch of computer science, AI is further comprised 
of techniques with their own categories of algorithms (for 
example, Machine Learning and Particle Swarm Optimiza-
tion [12]), suggesting a statistical, predictive framework that 
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can be bound to a specific problem both in research and in 
everyday life.

Machine Learning (ML) is an AI technique that has 
acquired major interest for data analysis tasks, based on its 
ability to learn from experience and, therefore, provides 
accurate approximations and/or predictions on the underly-
ing patterns [13]. Oftentimes, common statistical analysis 
has been misidentified to ML, however, the former aims on 
the accurate description of observations while the latter is 
constructing algorithms whose focus lies on successful data 
classification and approximations in order to predict the out-
come [14]. ML is widely recognized as an effective tool for 
research and applied purposes, in fields like additive manu-
facturing [15, 16, 17, 18], materials science [14, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29], autonomous driving [30, 31, 
32], solar cells [33, 34, 35, 36, 37, 38, 39], chemistry [40, 
41, 42], welding industry [43], solar radiation [44, 45, 46, 
47, 48, 49, 50, 51] and many more.

Notwithstanding the data-driven techniques evolution, 
barriers have arisen when it comes to the interpretation of 
the underlying physics, that has somehow to be extracted 
from data patterns. A successful attempt to bind physical 
laws to the solution of partial differential equations has 
been made with the incorporation of Physics-Informed 
Neural Networks (PINNs) [52] and some of their new 
implementations, such as PI-GP [53] and B-PINNs [54]. 
From another point of view, during the development of 
a NN the output triggered by an input value is predeter-
mined, and that means the mapping could be abstract [55]. 
Although this is a procedure that machines can deal with, 
it might be extremely difficult for humans to make a sense 

out of it [56], since this “black-box” model [57] does not 
adhere to the principles of explainable and generalizable 
AI. Several problems may also come up when these mod-
els are used in the field, for instance, when a manufacturer 
of an autonomous car cannot apprehend the choice that the 
car will do in infrequent critical situations (as in protecting 
the driver or pedestrians in an imminent crash), concerns 
might appear on the applicability of the algorithm [58]. 
The absence of a physical interpretation in data-driven 
black-box models, has been the driving force for a change 
of heart.

This review has been focused on presenting an ML-
based method, Symbolic Regression (SR), which has been 
developed on Evolutionary Computing principles. SR is 
differentiated from a purely data-driven black-box model, 
as it is equipped with the ability to generate symbolic 
expressions (analytical equations) without considering 
prior constraints and provides a physics-inspired overlook. 
The ever growing adaptation of SR in various scientific 
fields has been captured by the rapid growth of related 
published papers in the last decade and more (see Fig. 2) 
and it would be beneficial to dive deep into its remarkable 
characteristics that have made it a new trend in physics-
based computations. In the sections that follow, there 
will be a brief introduction on various ML types (Sect. 2) 
adopted in science and engineering, a comprehensive 
analysis of SR and the respective algorithms incorporated 
(Sect. 3), mapping of scientific fields where SR has been 
successfully employed and others that have shown a prom-
ising prospect (Sect. 4) and, finally, we sum up with a 

Fig. 1  The four paradigms of 
science: empirical, theoretical, 
computational and data-driven
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concluding discussion and present the future perspectives 
of SR (Sect. 5).

2  Machine Learning

The present section is organized as follows. Firstly, catego-
ries and useful information about ML will be introduced. 
Secondly, there will be a brief presentation of several ML 
algorithms that researchers are most familiar with. Finally, 
more complex approximations such as Deep Learning will 
be discussed.

2.1  Machine Learning Categories

Machine Learning can be subdivided into three major cat-
egories, (i) Supervised Learning (SL), (ii) Unsupervised 
Learning (UL) and (iii) Reinforcement Learning (RL) [59], 
although the latter isn’t always recognized as a separate divi-
sion. In SL, the training procedure involves data manipula-
tion based on labeled input/output pairs, while the implied 
algorithms seek for determining a hidden function able to 
map input behavior to the desired output. On the other hand, 
in UL, no labels are specified on the input data and the algo-
rithmic procedures urge to reveal the implied data intercon-
nections [60]. In RL, the model does not require input data 
as it constructs its own by self-training and, furthermore, it 
is self-challenged to achieve higher accuracy metrics [61]. 
A combination of SL and UL has also been proposed in 
Semi-Supervised Learning (SSL) in which both labeled and 
unlabeled data are utilized. SSL focuses on the identification 
of how the learning procedure may be affected by a mixture 

of labeled and unlabeled data and the construction of algo-
rithms capable of exploiting this scheme [62].

A successful ML algorithm implementation is tightly 
paired with the quality and quantity of available data. In 
cases where data extracted from various databases and/or 
literature sources poses no viable option, attention is drawn 
into experimental or simulation output (e.g., Density-Func-
tional Theory (DFT), Molecular Dynamics (MD), etc.) [23], 
posing a four-way route to acquire data. Attention has to be 
drawn also on data representation, as it may vary from dis-
crete (e.g., texts) to continuous (e.g., vectors and tensors) or 
weighted graphs [22]. Still, data availability is not enough; 
it is imperative to follow a common format [63] and, most of 
the times, a pre-processing step is required [23].

However, an inherent disadvantage of such approaches is 
bound to the fact that ML methods are prone to overfitting. 
Overfitting occurs when an algorithm is “finely” trained on 
a specific dataset, which in turn results on high statistical 
errors when applied to a different dataset. In such case, the 
proposed algorithm becomes unsuitable for further use, or in 
other words, ungeneralizable. To overcome this issue, vari-
ous techniques have been proposed, such as hold-out, k-fold 
cross-validation, and regularization [16].

2.2  Machine Learning Algorithms

There has been a wealth of ML algorithms being established 
throughout the years, from simple linear models to labori-
ous deep learning architectures. Some of the most widely 
adopted are Artificial Neural Networks (ANN), Support 
Vector Machines (SVM) and Decision Trees (DT) based. 
The idea behind ANN is that it reacts the same way as the 
neural networks of human brain, with its abilities spanning 

Fig. 2  Publications related to 
symbolic regression from 2000 
to 2021
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to applications such as classification, regression, learning 
and generalization [64]. SVM models are utilized for classi-
fication, while its regression counterpart is the Support Vec-
tor Regression (SVR) model [28]. DT methods employ tree-
form graphs and have been utilized for classification tasks. 
DTs are susceptible to complexity and overfitting issues, and 
various alternatives have been constructed, such as Random 
Forest (RF) and Gradient Boost (GB), by employing differ-
ent trees in a forest or a serial weighted manner, respectively 
[14]. There are many references in the literature for these 
models, which are not going to be covered here (see, for 
example, [65]).

Nevertheless, although implementations based on Shal-
low Learning algorithms, such as ANNs, SVMs, and DTs, 
are quite effective in numerous fields (e.g., materials sci-
ence), some issues may occur in demanding applications, 
such as poor accuracy over DFT simulations [22]. This has 
opened the discussion on establishing more robust methods, 
such as Deep Learning (DL).

2.3  Deep Learning

While Shallow Learning methods may be effective and accu-
rate on dealing with data over a small set of computational 
nodes, DL is capable of exploiting big data by mapping it 
to multiple layers in order to extract information and make 
predictions [23], even on noisy data [66]. DL models embed 
mathematical concepts (linear algebra, probability theory) 
and programming techniques in hidden layers that span 
over a number of thousands or more [12, 21], making them 
perfectly fit in applications ranging from processing videos 
and images [67, 68, 69, 70], speech recognition [71], and 
bio-informatics [72], among others. Nevertheless, physical 
interpretation of the outcome still lacks, and this would ben-
efit their application in physical sciences, where interpret-
ability has a central role. In such cases, it would be benefi-
cial to adopt models that produce meaningful results (i.e., 
mathematical expressions), which could spot correlations 
with existing empirical relations and propose an analytical 
approach bound to physical laws.

3  Symbolic Regression

Symbolic Regression is a type of regression analysis in 
which a mathematical function that describes a given data-
set is derived. While conventional regression  methods (e.g., 
linear, quadratic, etc.) have their independent variable(s) pre-
determined and try to adjust a number of numerical coeffi-
cients in order to achieve perfect fit, SR attempts to find the 
parameters and equations simultaneously [55].

Derived from the superset of AI available methods, 
SR is usually implemented by evolutionary algorithms. 

At the same time, the most widely adopted concepts for 
SR construction are adopted from Genetic Programming 
(GP) [73]. In this section, the basic features of GP will 
be  presented, an analytical development of the basic SR 
procedure is to be exemplified, several features that char-
acterize SR superiority will be presented, while available 
SR programming techniques will be evaluated.

3.1  Genetic Programming Fundamentals

Genetic Programming (GP) [74] is an Evolutionary Algo-
rithm (EA) instance [75] which in turn is a subset of Evo-
lutionary Computing (EC) [76] (see Fig. 3). Moreover, GP 
provides the framework to express data behavior through 
mathematical equations, by exploring the available math-
ematical space in an evolutionary process. It is a fact that 
GP can find applicability in most regression-based science 
and engineering problems. The procedure that GP follows, 
includes the construction of different symbolic expres-
sions, on which a comparison is made on its parts. The 
expressions that do not comply with accuracy and com-
plexity measures being set are discarded, while those that 
appear as a potential solution to the problem are combined 
and form an output expression able to produce the desired 
outcome. The most common way to visualize a symbolic 
expression is a tree-structure with nodes and branches. 
Currently there are numerous programming options that 

Fig. 3  From evolutionary computing to symbolic regression
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can implement GP calculations, such as the Glyph pack-
age in Python [77] and GPTIPS toolbox in MatLab [78].

3.2  GP‑SR Procedure

The GP tree-structure scheme consists of primitive functions 
and terminal nodes. While primitive functions could appear 
in any possible form (e.g., +, −, ∗,÷, log , etc.), terminal 
nodes correspond to data inputs (e.g., X,Y) and numeric con-
stants (e.g., 0.1) that may be needed to construct a symbolic 
expression. The final combination gives the desired expres-
sion in the form of a rooted tree. For example, in Fig. 4a, a 
tree-structure that corresponds to the symbolic expression 
S1 is presented. The numbers that appear above each node 
are irrelevant to the procedure and serve only as a reference 
point. Nodes with number 1 and 2 are primitive functions 
(e.g., ÷ , −) while nodes 3,4,5 are filled with a numerical 
constant (e.g., 0.1) and input variables (e.g., X, Y). Con-
figurations of primitive functions and terminals are drawn 
hierarchically in GP, while at the same time they serve as 
“individuals” from a population that contains a plurality of 
those.

The process taking place aims on finding the proper num-
ber of nodes/terminals that achieve the best fit over a given 
dataset and correspond to a final equation. For that reason, 
GP evolves by exploring every possible implementation 

between the primitive functions and terminals. To gain 
insight on the complexity implied, it should be noted that 
the search takes place in an infinite space that includes all 
available mathematical operators and numerical constants. 
Therefore, to search for the optimal fit, comparison meas-
ures are required, and these are related to the nature of the 
problem investigated. During an equation search, each pos-
sible implementation is rated by the number of data it can 
effectively handle, and the one that seems more likely to 
contribute on the final equation is evaluated on the error 
it produces. A common error metric usually incorporated 
in SR algorithms is the sum of the squares (SSE), derived 
from the differences between the predicted outcome and the 
tabulated output value [56], given by:

or due to the fact that the search occurs on various instances, 
the error could be measured as an average (Mean Squared 
Error (MSE)), with a mathematical formula of:

where, n is the total number of inspected situations, i cor-
responds to the individual situation, Ŷ  is the predicted value 
of the configuration and Y is the correct answer.

Starting from the top, from an infinite pool of choices, 
GP creates the first population randomly, while the size of 
the population is predetermined by the user. Each configu-
ration inside the population could possibly contribute as a 
poor fitness parameter, affecting the whole dataset. How-
ever, some configurations might appear more effective than 
others. By continuously examining the effect of each one 
of these implementations, the process discovers promising 
candidates that produce small error, and employs them in 
future implementations, while those with poor performance 
are abandoned. Furthermore, the selection of those parts 
(sub-configurations) are random (e.g., sub-configuration 
2-3-4 from Fig. 4a), resulting that way on a generated sym-
bolic expression that differs in terms of tree shape and depth 
compared to the parental expression.

For instance, let there be another symbolic expression 
S2 as shown in Fig. 4b. Additionally, let S2 be deemed effi-
cient by the comparison on fitness and therefore sustain the 
combination as described above. Finally, let the node with 
number 2 from Fig. 4a (sub-configuration 2-3-4) and the 
node with number 4 from Fig. 4b (sub-configuration 4-5) 
be randomly selected for the combination. Then, the con-
figurations in the symbolic expression S1 and S2 have their 
sub-configurations exchanged. When the exchanging pro-
cedure is completed, two new configurations have emerged 

(1)SSE =

n
∑

i=1

(Y
i
− Ŷ

i
)2 ,

(2)MSE =
1

n

n
∑

i=1

(Y
i
− Ŷ

i
)2 ,

Fig. 4  Symbolic expression examples
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by the parts of their parents, while the parental configura-
tions are concurrently removed from the procedure. Thus, 
new symbolic expressions are obtained, S3 and S4 , which 
are depicted in Fig. 4c and d respectively. Although their 
shape has changed and contributed to the creation of new 
expressions, the fact that their depth remained the same is 
purely coincidental, as the investigation of possible configu-
rations and combination of those, occurs on thousands of 
expressions. It should also be noted that the exchange takes 
place in parallel and by an iterative manner, random parts 
of promising expressions are combined till the final goal of 
obtaining a robust equation.

The evolutionary procedure proceeds step by step, as the 
average error is decreased due to the removal of poor-per-
forming expressions. Eventually, at a predetermined point, 
the GP sequence finalizes, and the equation is exported. 
Reasons for termination could be either the definition of a 
maximum step on the algorithm (i.e., a limit set on the cre-
ated populations by the user), a point where the statistical 
error of an individual equals to zero (optimal equation) or 
a point where the statistical error is lower than a given con-
stant (e.g., 0.01). However, a mixture of those is preferred 
to cover every aspect. Finally, it should be noted that it is 
not mandatory for GP to produce one equation as it can be 
defined to export a number of suggestions, usually with a 
ranging complexity between equations. Here, it has to be 
beard in mind that low complexity might indicate poor error 
performance, while high complexity value could be prone to 
overfitting (Pareto front) [56].

In other words, GP initiates the procedure by creating an 
initial population filled by random symbolic expressions, 

with dimensions that vary according to the user configura-
tion. Random mutations take place to minimize the possibil-
ity of the algorithm being trapped in local minima [79]. A 
way to visualize symbolic expressions is by a tree-structure 
form that contains primitive functions and terminal con-
stants. Additionally, by producing a great number of expres-
sions, GP compares them on the basis of how thy fitting on 
the given dataset. Candidate expressions that achieve small 
error are selected for further investigation. It should be remi-
nisced that the nature of the comparison varies according to 
the problem’s domain, while in the present case, the SSE, 
or the MSE are employed. Furthermore, GP surveys all pos-
sible sub-configurations and combines them in a way that 
creates a combined superset, whereas the parental expres-
sions are discarded, and the final equation(s) are exported. A 
flowchart that employs GP evolution is illustrated in Fig. 5.

3.3  Programming Techniques

During the past decades, the extreme computational cost of 
SR implementations has been the main reason that posed 
barriers on its wide adaptation. Nowadays, as hardware has 
evolved in fast parallel architectures, the road for new SR 
approaches has opened, suggesting both efficiency and cal-
culation speed.

At present, there are ample methods in the literature that 
propose different SR implementations. To mention a few, 
there exist models that employ a Monte Carlo tree search 
(MCTS) algorithm [80], a matrix-based encoding process 
[55], and advanced pre-processing schemes applied before 
algorithmic training [81] or even before regression begins 

Fig. 5  Genetic programming based symbolic regression flowchart
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[82]. Others have generated algorithms such as nearest 
neighbor indexing [83] or non-evolutionary techniques such 
as the FFX algorithm [73]. The latter, although extremely 
fast, produces non-interpretable equations [84]. In addi-
tion, there also exist Mixed-Integer Non-Linear Program-
ming (MINLP) formulations [85, 86], models that identify 
the SR problem as a linguistic [87], others that incorporate 
probabilistic features such as probabilistic framework [88] 
or probabilistic grammars [89], Bayesian approaches [90] 
and more [91, 92].

The concept of increased accuracy is the focal point of GP 
approaches as it constitutes a key element on the applicabil-
ity of ML models [93]. There have been efforts on modifying 
the basic GP-SR procedure [18, 94, 95, 96, 97, 98], while, on 
the other hand, some argue that GP-based procedures lead to 
abstract mathematical formulas that make no sense [83]. An 
intriguing idea that is also supported is the restriction of the 
search space into a set of symbols, by incorporating several 
constraints into the algorithm (usually by accepting prior 
knowledge about the system) [55, 58, 89, 99, 100]. Towards 
this direction, one could enforce a certain pattern to the gen-
erated expressions, such as monotonicity or symmetry and, 
as a result, increase the accuracy, reduce the computational 
cost, while, in parallel, adhere to well-established physical 
empirical or analytical expressions that already exist in the 
literature and need modifications according to the problem 
under investigation [101].

However, researchers should be aware of the limita-
tions implied in such approaches. For instance, a non-GP 
approach [84] which constraints the derived formula to a 
set of mathematical symbols, has produced accurate predic-
tions with low computational cost, but, on the downside, 
the algorithm has shown limited applicability and adapt-
ability, since it cannot employ more complex cases, where 
periodicity [84] or exponentiality is needed. Hybrid meth-
ods have also been proposed, such as Deterministic/GP-SR 
models [102], neural-guided/GP [103] and others [99, 104, 
105, 106]. Moreover, Neural Network based architectures 
have been employed [107, 108], while others have gone a 
step further and merged NN-based models with several DL 
features [109, 110].

Promising results have been obtained through methods 
that incorporate Bayesian Neural Networks (BNN) [111]. 
Bayesian statistics [112] in contrast to conventional statistics 
(also known as frequentist statistics) do not consider a fixed 
parameter, but they rather identify it as a random variable 
which can be described with a probability distribution. BNN 
functions as a typical Neural Network with the exception 
that the parameters are distributions, instead of a fixed value, 
and the training occurs via Bayesian inference. This is an 
important feature of BNN as it provides the ability to quan-
tify uncertainties, meaning that the algorithm incorporates 
confidence intervals instead of a single point. Moreover, 

Bayesian inference considers every plausible scenario that 
could happen, and it marginalizes the parameters over the 
most possible outcome. For example, in image processing, 
if an image appears distorted, frequentist statistical inference 
has no power to rationalize and make a valid sense out of it 
as it has no available space to work. It is what it is. On the 
other hand, Bayesian inference, model the problem by navi-
gating through probabilities. Thus, it overcomes the issue 
generated by the distorted (noisy) image [112].

At present, there are various programming techniques 
to implement SR under GP principles, either heuristic or 

Table 1  List of various SR approaches

a First launched

Short description Year References

Shape-constrained 2022 [100]
PS-Tree (GP modification) 2022 [97]
DoME (deterministic) 2022 [84]
Bayesian 2022 [90]
Tensorial sparse 2022 [92]
Mixed-integer non-linear programming 2022 [86]
Probabilistic framework 2022 [88]
Functional-Hybrid model 2022 [104]
TaylorGP (GP modification) 2022 [96]
GSR (matrix based encoding scheme) 2022 [55]
Symbolic Physics Learner (MCTS) 2021 [80]
Physically constrained 2021 [99]
GP-GOMEA (GP modification) 2021 [116]
Temporal regression 2021 [91]
SymbolicGPT (probabilistic language) 2021 [87]
Large scale pre-training 2021 [81]
Pre-regression 2021 [82]
Hybrid Neural-Guided/GP 2021 [103]
Probabilistic grammars 2021 [89]
Neural Network based 2021 [109]
GP modification 2021 [94]
Bayesian Neural Network 2021 [111]
AI Feynman 2.0 (graph modularity) 2020 [108]
GP modification 2020 [18]
Multi-task SISSO 2019 [117]
AI Feynman (Neural Network) 2019 [107]
DSR (Deep Learning) 2019 [110]
Positional CGP (GP modification) 2018 [95]
IT (search space constrain) 2018 [58]
SISSO 2018 [118]
Mixed-integer non-linear programming 2017 [85]
Hybrid 2013 [102]
FFX (fast & deterministic) 2011 [73]
Nearest Neighbor Indexing 2010 [83]
Eureqa (software) 2009a [113]
HeuristicLab (software) 2002a [114]
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effective only in the implied data region, being presented 
either as stand-alone codes or in user-friendly platforms 
(e.g., Eureqa [113], HeuristicLab [114]), free or commer-
cial. A relevant list is presented in Table 1. Finally, future 
studies on SR can exploit the open-source characteristics of 
SRBench [115] initiative, which is a promising benchmark 
that can provide access in different datasets, perform algo-
rithmic comparisons and result analysis, among others.

3.4  Pros and Cons

In contrast to other non-linear regression methods, SR does 
not require a priori knowledge of the studied system, as it 
is completely data-driven [119]. Of outmost importance is 
the fact that SR can identify ambiguous relations in datasets 
and therefore provide a more profound solution [80]. There 
may be cases that governing equations that describe a sys-
tem are partially known [120], and this is also a field where 
SR can apply, providing a deeper understanding. Towards 
generalizable AI, it provides a closed-form mathematical 
expression easier to incorporate at models similar to the one 
under investigation (e.g., finite element solver) [119].

Equally important is the ability of SR to be bound on 
and validate physical laws [121]. For instance, Newton’s 
law of gravitation was somehow rediscovered [122], while 
another study has focused on rediscovering conservation 
laws [123], validated by a data-driven approach and given 
by a symbolic formula. However, care has to be taken when 
aiming on potential scientific discoveries, as oversimplified 
datasets and lack of evaluation metrics may lead to false 
results [124].

The investigation of complex and nonlinear dynamic sys-
tems demands deep understanding of the physical behavior 
in order to provide a reliable model [125]. Identifying differ-
ential equations via data-driven models, is a way to provide 
governing equations directly from data instead of physical 
laws, as equations in complex physical systems are scarce 
[126]. Nevertheless, issues may arise due to data scarcity or 
low fidelity, as oftentimes noise is present [80]. Noise can 
be, though, anticipated with Bayesian approaches. SR has 
also proven to be more effective than several ML models in 
small datasets [127] and by generating simple and physics-
based relations, has an impact in its employability.

In contrast, the main drawback of SR is by no doubt the 
computational time needed for evaluating thousands or more 
equations [128]. This is one of the reasons that SR is better 
suited in applications where the number of input parameters 
is as small as possible [129]. To confront this barrier, a com-
mon strategy is to first identify the most important factors 
in the dataset (this can be done by other ML models, such 
as RF [101]) and then apply SR. However, this technique 
may affect the obtained results when accuracy is the main 
question.

From another point of view, as interpretability derives 
from the need to understand and trust an ML model, verify 
or manipulate it [130], and SR claims to be interpretable, at 
least compared to other black-box approaches, the degree of 
straightforwardness usually accounts for the size of gener-
ated expressions. Bloat is a common side effect that arises 
by GP, in which the results tend to suffer from a burst of 
complexity, while improvements on achieved fitting remain 
slight [131], though promising [131].

4  Application in Science and Technology

Current computational techniques in most fields of science 
and engineering have been able to find a balance between 
computational efficiency and cost, as the rise of data-driven 
models, along with the introduction of parallel hardware 
architectures, constitute a novel framework that can be 
exploited to obtain accurate results faster. Taking further 
into account the inherent interpretability of SR models, the 
perspective of obtaining meaningful equations is welcomed 
by numerous fields in theoretical and applied science. An 
extended review on materials science applications will be 
made first, as it is an interdisciplinary field that enters most 
science and engineering fields, through material properties 
prediction and novel materials discovery, such as electrical 
and mechanical engineering, construction applications, bio-
physics and energy applications, to mention a few.

4.1  Materials Science

Material science, from the sub-atomic to the macroscopic 
level, is currently undergoing a major shift towards full 
digitalization and automation and has opened new perspec-
tives for innovation. Incorporation of databases, multi-scale 
computations, and experiments are integrated with the aim 
of reducing the time and cost of design and manufacturing 
of materials. AI techniques are now focused on finding new 
and/or predicting the properties of existing materials [25], 
which will make possible the discovery of novel, tailor-made 
materials. As materials investigation has been mainly con-
ducted with expensive and complex experimental methods, 
under the particular researcher’s intuition [132], and theo-
retical analysis is widely based on empirical relations, by 
leveraging big data and AI methods, a new computational 
paradigm emerges, to pose as a catalyst for materials devel-
opment, along with exploiting available simulation tech-
niques. To this end, data from multiple-scales of microstruc-
tures can be embedded with physics-based descriptions, to 
reveal physical concepts such as thermodynamics, kinetics, 
functional and mechanical properties.
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4.1.1  Multiscale Modelling

Research on materials (solids or fluids) takes place at differ-
ent scales of length and time, with each scale incorporating 
features from the former (see Fig 6).

Starting from the atomic scale, ab-initio methods (first 
principles) are performed by quantum mechanics (QM) cal-
culations in order to obtain a form that describes the energy 
of a system, the potential energy surface (PES). Calculations 
are derived directly from physical laws and do not require 
the incorporation of any experimental data or assump-
tions. However, these are based on finding solutions to the 
Schrödinger’s equation, which may not be practical for most 
real-world systems. This can be partly anticipated by the 
incorporation of the density functional theory (DFT) [133]. 
Albeit capable of achieving quantum-accuracy, the usage 
of atomistic methods is limited in terms of the accessible 
computational time and simulation size. To overcome these 
barriers, a number of particle methods have arisen.

Particle methods include, among others, the methods of 
Molecular Dynamics (MD), Dissipative Particle Dynam-
ics (DPD) and Smoothed Particle Hydrodynamics (SPH). 
These methods are appropriate for different size and time 
scales and share the same features with purely meshfree and 
Lagrangian nature. A particle in MD, DPD, and SPH acts as 
both a material point and as an approximation point, that is, 
the particle is regarded as a single atom or molecule in MD 
in atomistic scales, a small cluster of atoms or molecules 
in DPD in meso-scales, and a very small region in SPH in 
macro-scales [134].

By joining multiple techniques and methods, multiscale 
modeling has been developed and, during the past few years, 
it succeeded to integrate ML with simulations to create 
surrogate models [135, 136]. Research has shown that the 

construction of ML interatomic potentials (MLIPs) trained 
over ab-initio MD (AIMD) simulation results, could extend 
the possibilities of materials research by bridging DFT with 
MD and finite element (FE) simulations [137]. Furthermore, 
SR approaches thrive on interatomic potential by provid-
ing simple solutions that significantly decrease the risk of 
overfitting. Specifically, a SR model [138] generates fast and 
accurate many-body interatomic potentials formed by funda-
mental physical principles, which in turn are flexible enough 
to perform in multi-scale.

For example, a novel technique for bridging between 
micro- and macro-scale, Ref. [139], where a combination 
of computer simulations and ML models is suggested. Spe-
cifically, FE simulations were conducted for the generation 
of input data to enter the ML models, and, subsequently, ML 
algorithms develop a macroscopic model trained by a micro-
scopic. The fact that traditional methods work in conjunction 
with ML models, provides the ability to bridge across scales 
and therefore provide more accurate predictions. However, it 
is also stated that analytical functions are appealing for the 
investigation of properties in micro- as well as in macro-
scale [139]. Thus, SR appears as a prominent tool for multi 
scale investigation.

4.1.2  Properties Prediction

The development of material properties databases in a sys-
tematic way has altered materials research, as researchers 
opt for ML models to extract information out of them [26]. 
Both material properties and their relation to processing con-
ditions, are translated to form new computational models 
[140]. There are cases where constitutive models express 
how a material responds in different conditions, which in 

Fig. 6  Multiscale modelling
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turn produces a stress–strain relation to generate the govern-
ing laws [141]. For instance, data-driven plasticity formu-
las were generated in studies [142, 143], while in another 
approach [144], elastic solid models were constructed in 
similar fashion.

Moreover, several applications focus on equation 
generation from scratch towards the prediction of Len-
nard–Jones fluid diffusion [56, 145, 146] or the electri-
cal conductivity of ionic liquids [101]. While others, have 
equipped SR to investigate lattice thermal conductivity 
[147], the critical temperature in superconductors [148] or 
the yield strength of polycrystalline metals by key physical 
quantities [149].

4.1.3  Discovery and Design

A concept familiar with material discovery, is material sta-
bility. There exist abundant element combinations one could 
perform towards information from the periodic table and 
produce a material, at least theoretically, since the additional 
criterion of stability, i.e., a measure to estimate if the hypo-
thetical material is feasible, has to be taken into account. The 
role of SR in materials discovery and design has been evalu-
ated [150] and it has been proven to be a suitable tool for 
the identification of compound representations (also known 
as descriptors [151]) and the creation of new that correlate 
with materials stability [152].

On the other hand, materials discovery and design, aim 
to fully exploit property prediction and produce materials 
with target behavior. Nevertheles, this might be a challeng-
ing task, as the targeted property could appear only in unique 
structures and, in addition, some properties ought to have a 
perfect alignment in order to achieve a high performance 
[153]. Therefore, it is vital to identify the parameters that 
govern the functionality and their dependencies, in order to 
optimize them [154].

A successful example of incorporating SR in such cases 
has been presented ref [152]. Without any prior knowledge 
on the problem’s domain, SR has generated accurate descrip-
tors that define MXene stability. Furthermore, another study 
[155] has implemented SR and generated simple and mean-
ingful descriptors that has ultimately contributed on the 
discovery of new catalysts. These applications illustrate the 
fact that SR can produce accurate descriptors without any 
chemical or other knowledge on the system and eventually 
accelerate the discovery of novel materials.

4.2  Engineering Principles

In this section, various engineering sub-principles are to be 
evaluated on the applicability of SR-related methods, such as 

civil and construction, chemical, petroleum and natural gas 
engineering, mechanical and computer engineering. Main 
focus is the applicability of AI methods, and SR is capable 
to provide symbolic expressions to be used at hand and pose 
as a fast solution to real-life problems.

4.2.1  Construction and Building Materials

Starting from a subset of civil engineering, in hydraulics 
(liquid flows through pipes), the Colebrook equation for 
flow friction is a familiar model among engineers that is 
also being adopted by adjacent engineering disciplines 
[156]. Several models of the Colebrook equation via SR 
were generated in study [156], where the obtained results 
presented to be accurate enough. As the authors state, their 
approaches are only valid for a turbulent regime due to the 
fact that a transition from a laminar to a turbulent regime is 
not efficiently described by the Colebrook equation. They 
supplement, in their previous works, approaches were made 
by genetic algorithms and neural networks to model this 
transition unefficiently. In a subsequent study [157], simpler 
equations were discovered that unify laminar and turbulent 
hydraulic regimes and therefore diminishing the need to 
account for changes in flow patterns at separate laminar or 
turbulent flow models [157]. However, their dataset were 
generated by sampling through already established equations 
and not experimental data and therefore their application is 
hindered [157].

From another point of view, concrete, the main construc-
tion material for most higher-scale applications, has been 
also a popular subject of AI research. A number of published 
papers has been focused on the construction of models to 
estimate the seismic peak drift ratio [158, 159], the penetra-
tion depth into concrete blocks [160], the shear capacity of 
steel fiber-reinforced concrete beams, tracing fire response 
of concrete structures [161] or the seismic response through 
a fragility analysis [162], while others aim on the accurate 
description of remaining fatigue life [163, 164] or bearing-
type bolted connections’ shear resistance. One should note 
that, while the investigation of previously noted instances 
were conducted by modelling measurements, in several 
occasions [160, 163, 165] the generated equations outper-
formed conventional employed formulas.

4.2.2  Chemical Engineering

Drag coefficient has a crucial role in gas-solid flows, as it 
provides an analytical view of the hydrodynamics therein 
[166]. At the industrial scale, Computational Fluid Dynam-
ics (CFD) simulations are being employed towards this 
investigation [167]. Moreover, CFD simulations depend 
on the Euler–Euler or Euler–Lagrange models [167], 
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which both of them need to possess efficient drag correla-
tion models in order to take into consideration gas-particle 
interactions [168]. Current employment of SR techniques, 
are found in studies about the investigation of fundamen-
tal principles in the drag coefficient [169], construction of 
brand new drag correlations which can be used as input to 
CFD models [167] or a simple drag model [166] which have 
proven to outperform standard formulations.

Further notations highlight the prospect of SR employ-
ment to the catalysis field in order to obtain physic-based 
models [79], or its incorporation into a method to obtain 
a whey protein fouling prediction model in plate heat 
exchanger, by formulating a parameter that needs to be re-
adjusted when a slight change on the solution of whey pro-
tein or process conditions take place [170]. Others, have 
successfully identified physical relations of fluids and kinetic 
laws of chemical reactions [171] or generated expression in 
order to predict the particle size distribution during fluidiza-
tion [172].

4.2.3  Petroleum and Natural Gas Engineering

In petroleum engineering, oil viscosity is of significant 
value, with its calculation being conducted by experimental 
measurements or empirical formulas at different pressure 
regions [173]. However, the former occasionally suffer from 
inadequate measurement supply while the latter generates 
insufficiently outcomes [173]. To overwhelm this situation, 
in study [173], there is presented a SR approach in which 
correlation models were constructed across every pressure 
region directly from data points, which in turn managed to 
outperform current models. On the other hand, a SR appli-
cation about predicting the rate of penetration in drilling of 
hydrocarbon reservoirs [174], resulted on an expression to 
be overpowered by RF and ANN estimations [174].

Moreover, foam induced by a surfactant solution and 
nitrogen, finds room of application in tasks such as oil recov-
ery, acid diversion and aquifer remediation, with its mobil-
ity being generally characterized in terms of pressure drop 
[175]. Capturing the physical behavior of the system and 
classifying relative variables according to their significance 
to steady state pressure drop, was accomplished by generat-
ing analytical expressions in study [175], by accepting no 
prior knowledge regarding the underlying physical behavior. 
Others, have focused on modelling oil production [176] or 
estimating the multiple fractured horizontal wells flow per-
formance [177].

In contrast to other hydrocarbon-based materials (e.g., 
oil, coal), natural gas constitutes a cheaper and cleaner 
option [178] to meet our energy demands. Similar to petro-
leum engineering, estimating the viscosity is one of the 
top priorities in natural gas studies, as it can be utilized to 

efficiently synthesize models about production, transpor-
tation or gas storage systems [179]. To this end, SR stud-
ies regarding the prediction of dynamic viscosity [180] or 
pure and impure viscosity [179] appear most appealing. 
Supplementary applications, deal with models construc-
tion towards hydrate formation temperature estimation 
[181], estimation of equilibrium water dewpoint tempera-
ture [182] and the prediction of the gas compressibility 
factor [178].

4.2.4  Mechanical Engineering

Objectives of control systems could be summarized into 
maintaining a process, which could be affected by external 
parameters, and a transition from one process to another 
[183]. In order to do so, the control system often manages 
other parameters (e.g., pressure, temperature, etc.) to reach 
or preserve a certain status [183]. In this regard, several 
studies have equipped SR to generate analytic functions 
towards a control system design [128, 184].

Moreover, SR has been utilized to derive models capa-
ble of describing the underlying connection between alloy 
composition, cooling time and hardness, in welding heat-
affected zone of low alloy steel [185]. Additionally, SR has 
been employed to estimate constitutive model parameters 
in an alloy research [186], or even facilitated to create 
expressions to search for the optimized components during 
machine tool design by finding the modal mass distribu-
tion matrix, which is usually hard to obtain [187].

Furthermore, SR has provided constitutive formulas of 
material behavior in aluminum alloys [119] or been incor-
porated into a mergent of techniques where SR estimated 
the calibration parameters of a physics-based model [188]. 
Calibration of model parameters that depend on processing 
conditions may pose a major obstacle [140]. These param-
eters are occasionally fitted, in order to reach an agree-
ment with measurements; for that reason, the degree of 
importance of other parameters on the calibration param-
eters is not completely established [188]. To overcome this 
issue, two techniques have been proposed, the explicit and 
implicit [140].

In the explicit method, the calibration parameters are 
primarily optimized, while a formula for the prediction of 
the optimized values using SR, is generated next. Then, 
a combination of the generated expressions on calibra-
tion parameters and a physics-based constitutive model 
takes place, in order to create a hybrid approach. In the 
implicit method, no optimization of calibration parameters 
occurs as they undergo a tree-based GP procedure on the 
first steps. In addition, no extra combination of expres-
sions similar to the explicit method are performed, as 
they are already combined in a multi-tree GP, where each 
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individual has a number of trees that correspond to the 
number of calibration parameters. Note, that the authors 
recommend the implicit method for further use, while they 
also note that although the implicit method may be more 
computationally expensive, the remarkably higher accu-
racy cannot be ignored.

4.2.5  Computer Engineering

Computer and Information science has much to offer to SR 
programming, from the view of constructing and suggesting 
new techniques to improve the applicability of the genetic 
algorithms on existing physical and industrial problems. For 
example, a novel fault detection mechanism has been con-
structed with SR symbolic techniques and found to achieve 
better results than traditional methods, such as the support 
vector machine and pattern recognition neural network algo-
rithms [189]. Moreover, another industrial application refers 
to enhancing models of learning behavior that present, bet-
ter learning response than manual and experienced learn-
ers [190]. Techniques such as the narrowing of the search 
space through a semantic cluster library have given promis-
ing results [191], while a statistical-based SR algorithm has 
been proposed that uses statistical information to improve 
its performance [192].

On the other hand, SR improvement may be also achieved 
by decomposing the problem under investigation into several 
subproblems [193]. There are also cases where SR has been 
bound to reinforcement learning, and has been able to deal 
with dynamic tasks, with back-propagation capability [194] 
or even a dynamic process formulation [195]. Finally, since 
GP problems oftentimes require tons of computational time 
to complete, the evaluation time has been used as an esti-
mate of model complexity and a new method is proposed to 
control it [196].

4.3  Other Fields

4.3.1  Physics and Astronomy

Data from astronomical observations is undoubtedly rich 
and AI methods are well-posed to its exploitation. For exam-
ple, galaxy clusters turn out to be the most immense struc-
tures in the universe [197], as they contain several galaxies, 
that further include dark matter, black holes and more [198]. 
Moreover, they operate by mechanisms regarding the evolu-
tion and formation of those, whose details are not yet fully 
understood [198]. Thus, various approaches have emerged 
for their investigation, such as searching of expressions capa-
ble to unify properties of galaxy clusters to their masses 
[197], studying the galaxy-halo connection [199], modelling 
the assembly bias [129] and estimating the total mass of a 
subhalo [198].

In addition, SR has been applied in exoplanet transit 
spectroscopy modelling [200], as observations of planetary 
transits at different wavelengths are often investigated as a 
method to gain knowledge of the structure and composi-
tion of an exoplanet’s atmosphere [200]. Further applica-
tions worth noting, include rediscovering orbital anomalies 
from observations of position and velocity by generating a 
model of dynamics [201], predicting gravitational waveform 
surrogates [202], reconstructing the duality parameter in an 
approach to predict the cosmic distance duality relation with 
strongly lensed gravitational wave events [203], analyzing 
solar activity in a solar cycle and successfully revealing 
underlying governing laws regarding magnetic wave gen-
eration [204].

4.3.2  Energy and the Environment

Green growth is the way towards a sustainable future. 
Although SR cannot be considered as the basic means of 
directing the world towards green transition, it can be easily 
implemented to contribute to a greener environment. For 
example, an SR-based study supports that green transition is 
highly likely to be embraced by developed countries, while 
underdeveloped or still developing countries follow a model 
where they choose economic growth over green [205]. The 
current work avoids classification of countries in developed 
or underdeveloped and focuses on ways to enhance the green 
environment’s harnessing systems and fundamental compo-
nents that it is accounted for.

Energy from the sun is currently covering a substantial 
amount of global energy demands. From a ML point of view, 
applications such as solar radiation prediction [206, 207] and 
photovoltaic power prediction [208] can open the pathway 
towards better energy management. Apart from renewable 
applications that incorporate solar radiation, wind energy 
is also harnessed to produce a significant amount of energy 
resources. Wind speed analysis [209, 210] and wind power 
generation efficiency [211] studies, could eventually produce 
an improved version of wind turbines, by exploiting novel 
computational ML models.

However, from an environmentalist point of view, an 
energy surplus should not lead on an excessive use of avail-
able energy, by continuously increasing the income of gen-
erated power to adhere to our costly way of life; damage 
should be also minimized. Damage minimization can occur 
via energy consumption modelling [90, 212, 213], energy 
management [214], carbon emission studies [215, 216], 
exhaust emission [217] and modelling of air quality [91]. 
All these applications can contribute towards a green energy 
transition and securing a healthier planet.
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4.3.3  Medical Sciences

The majority of SR applications in medical science, follow 
a similar pattern, starting from the identification of impor-
tant features between a dataset (usually measurements or 
patients’ medical history) and followed by the establishment 
of suitable models towards forecasting, prognostication or 
successful diagnosis.

For example, in a study about Parkinson disease [218], 
SR was able to find important features that relate to gait 
changes. Similarly, in study [219], a comprehensible risk 
model was generated to predict survival rate of breast cancer 
patients. Further applications are found in analyzing meas-
urements towards hepatocellular carcinoma diagnosis (liver 
cancer) [220], estimating hemoglobin and glucose levels in 
blood by modelling key features from fingertip videos [221], 
pairing patients that show similar characteristics on the way 
to radiotherapy dose reconstruction and therefore improve 
the design of radiation treatments [222] or analyzing meas-
urements of different body areas towards human walking 
modelling [223].

Additionally, SR incorporation has led to the enhance-
ment of previous estimator models, adding mathematical 
interpretability to previously adopted “black-box” ML mod-
els [224]. More specifically, SR has been exploited to create 
mathematical formulas about transformations of covariates 
from patients’ medical records and then those formulas 
were used in the Cox model [225], resulting in even higher 
prediction accuracy compared to solely applying the Cox 
model. In another study about pregnancies which develop 
pre-eclampsia, SR has outperformed models based on logis-
tic regression by identifying relations between important 
features [226].

4.3.4  Financial

The Covid-19 pandemic wreaked havoc to previous macro-
economic models, and thereupon the need to establish accu-
rate estimates is now, more than ever, evident [227]. Mac-
roeconomic models are often utilized as a means to guide 
political and financial decisions [228] and by integrating 
SR into those approaches, possible relations between vari-
ables might come up to light. Early studies have focused on 
the recognition of those interactions in large datasets that 
contain different observations of several economic quan-
tities [228], while succeeding models are centered in the 
prediction of crude oil price [229] and economic growth 
forecasting by investigating expectations of agents. Agents’ 
expectations regarding the economy’s condition are high-
valued for economic modelling due to the fact that they con-
tain explicit, multi-variate information about market [230] 
and usually obtained via tendency surveys (business and 
consumer surveys) [231]. As a result, approaches are made 

via SR to form a link between survey data and a successful 
economic growth model [227, 232].

Another application of SR via GP has been in econo-
metric modelling [233] where the conventional ”exchange 
equation” was reinvented. However, GP has not revealed its 
full prospective in the field, as being underused in macroeco-
nomic modelling [227]. Researchers think that the polymeric 
generated expressions, who differ by those European Com-
mission presents [232], will eventually escalate the situa-
tion by proving their superiority and update the currently 
equipped models.

5  Conclusion and Future Perspectives

Symbolic Regression has emerged as a method that bridges 
the gap between data, ML models and scientific theories, 
providing analytical equations at hand, and this can be 
specifically applicable in cases where only empirical and 
numerical approaches have been established. Barriers that 
may appear lie in the increased computational cost, equation 
complexity, and efficient programming approaches.

It is imperative that new computational tools be exploited 
in the future in order to reduce the computational cost of SR. 
As advanced NN architectures and functions are constantly 
being proposed for complex DL tasks, they should also be 
embedded in an SR framework. For example, the incorpora-
tion of Generative Adversarial Networks along with the SR 
algorithm, would facilitate the discovery of hidden physics 
in small datasets. Data pre-processing is also an open issue, 
since there is no standard procedure to deal with raw data, 
as is the case with common ML tasks. Moreover, parallel, 
GPU-based implementations would accelerate the SR pro-
cess, reducing computational time, which, in cases of many-
input datasets, is prohibitive.

The transformational impact of SR on science and tech-
nology can be very high. Notwithstanding the fact that 
results coming from SR investigation in various fields, both 
in research and applied sciences, are still preliminary, the 
method has shown great potential, extracting models with 
performance comparable to state-of-the-art empirical rela-
tions widely used in the literature.

Novel algorithms, efficient data preprocessing methods, 
data mining, and new function prediction, bound to physical 
laws and as simple as possible, should be further prospected 
to guide future scientific research. Following disciplines that 
adhere to generalizability, interpretability, and applicabil-
ity, SR is the AI branch that will be on the focus of pri-
mary research in the years to come and its evolution will be 
towards meeting the requirements of practical applications.

We should keep in mind, however, that SR is not 
directed to replace well-established theoretical research and 
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mathematical approaches. It is more likely to be bound on 
data science techniques and suggest an alternative method 
of explaining and discovering hidden patterns and behaviors 
in data coming from various sources. The concept of obtain-
ing an analytical expression to describe physical phenomena 
and processes only by diving into a dataset is practical and 
can be intriguing, but, on the other hand, we believe that 
many things are yet to be done on the direction of ensuring 
that this expression is physically explainable and lie on firm 
basis.
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