
Complex & Intelligent Systems (2021) 7:439–457
https://doi.org/10.1007/s40747-020-00212-w

POSIT ION PAPER

Artificial intelligence in recommender systems

Qian Zhang1 · Jie Lu1 · Yaochu Jin2

Received: 26 June 2020 / Accepted: 28 September 2020 / Published online: 1 November 2020
© The Author(s) 2020

Abstract
Recommender systems provide personalized service support to users by learning their previous behaviors and predicting their
current preferences for particular products. Artificial intelligence (AI), particularly computational intelligence and machine
learningmethods and algorithms, has been naturally applied in the development of recommender systems to improve prediction
accuracy and solve data sparsity and cold start problems. This position paper systematically discusses the basic methodologies
and prevailing techniques in recommender systems and how AI can effectively improve the technological development and
application of recommender systems. The paper not only reviews cutting-edge theoretical and practical contributions, but
also identifies current research issues and indicates new research directions. It carefully surveys various issues related to
recommender systems that use AI, and also reviews the improvements made to these systems through the use of such AI
approaches as fuzzy techniques, transfer learning, genetic algorithms, evolutionary algorithms, neural networks and deep
learning, and active learning. The observations in this paper will directly support researchers and professionals to better
understand current developments and new directions in the field of recommender systems using AI.

Keywords Recommender systems · Artificial intelligence · Computational intelligence

Introduction

It is challenging for businesses in a competitive market-
place to offer products and services that appeal directly to
an individual customer’s needs. Personalized e-services help
to solve a major problem—that of information overload-
—thereby making the decision process easier for customers
and enhancing user experience. The recommender systems
used in these personalized e-services were first established
twenty years ago and were developed by employing tech-
niques and theories drawn from other artificial intelligence
(AI) fields for user profiling and preference discovery.
The past few years have seen a huge increase in success-
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ful AI-driven applications. Successes include Deepmind’s
AlphaGo, the AI-driven program that famously won the
game ‘Go’ against a professional human player, and the self-
driving car, as well as others in the areas of computer vision
and speech recognition. These continuing advances in AI,
data analytics and big data present a great opportunity for
recommender systems to embrace the impressive achieve-
ments of AI.

Various AI techniques have more recently been applied
to recommender systems, helping to enhance the user expe-
rience and increase user satisfaction. AI enables a higher
quality of recommendation than conventional recommenda-
tion methods can achieve. This has propelled a new era for
recommender systems, creating advanced insights into the
relationships between users and items, presentingmore com-
plex data representations, and discovering comprehensive
knowledge in demographical, textural, virtual and contex-
tual data.

The aim of this paper is to review the most recent and
cutting-edge theoretical and practical contributions to the
field, to identify limitations, and to indicate new research
directions in the development and application of AI in rec-
ommender systems. Itwill attempt to survey the issues related
to recommender systems using AI, and the capacity of AI to
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aid the understanding of large data sets and convert data into
knowledge. In this paper, we have reviewed the improve-
ments AI has made to recommender systems, such as the
inclusion of fuzzy techniques, transfer learning, neural net-
works and deep learning, active learning, natural language
processing, computer vision and evolutionary computing.
The main contributions of this paper are as follows:

1. A systematic review of eight fields of AI methods and
their applications in recommender systems;

2. An overview of state-of-the-art AI in recommender sys-
tems including models, methods and applications;

3. A discussion of open research issues, revealing the direc-
tions of new trends and future development, expanding
the scope of how AI techniques can be applied in recom-
mender systems.

The remainder of this paper is as follows. Section 2 pro-
vides an introduction to the basics of recommender system
models and methods; Section 3 examines the AI techniques
currently used in recommender systems; Section 4 reviews
how AI techniques are used in recommender systems and
their areas of application; Section 5 considers the challenges
and future directions of research on AI driven recommender
systems. Finally, Section 6 concludes this paper.

Recommender systems: mainmodels
andmethods

The explosive growth in information on theWorldWideWeb
and the rapid increase in e-services has presented users with
a huge number of choices, which often lead to more com-
plex decision-making. Recommender systems are primarily
devised to assist individuals who are short on experience
or knowledge to deal with the vast array of choices they are
presented with [1]. Recommender systems take advantage of
several sources of information to predict the preferences of
users for items of interest [2]. This area of research has been
the focus of great concern for the past twenty years in both
academia and industry, and research in this field is oftenmoti-
vated by the potential profit that recommender systems can
generate for businesses such as Amazon [3]. Recommender
systems were first applied in e-commerce to solve the infor-
mation overload problem caused by Web 2.0, and they were
quickly expanded to the personalization of e-government,
e-business, e-learning, and e-tourism [4]. Nowadays, rec-
ommender systems are an indispensable feature of Internet
websites such as Amazon.com, YouTube, Netflix, Yahoo,
Facebook, Last.fm, and Meetup. In brief, recommender sys-
tems are designed to estimate the utility of an item and predict
whether it is worth recommending. The core element of a
recommender system is [5]:

f : U × I → D.

This is a function to define the utility of a specific item
i ∈ I to a user u ∈ U . D is the final recommendation list
containing a set of items ranked according to the utility of all
the items the user has not consumed. The utility of an item
is presented in terms of user ratings. Recommender systems
find an item for the user by maximizing the utility function,
formulated as follows [5]:

∀u ∈ U , argmax
i∈I

f (u, i).

Predicting the utility of items for a particular user varies
according to the recommendation algorithm selected. Ref-
erencing the classical taxonomies of previous research
[4–6], recommendation techniques fall into three cate-
gories: content-based, collaborative filtering (CF)-based and
knowledge-based approaches. These three categories will be
reviewed in the following subsections.

Content-based recommender systems

As the name suggests, content-based recommender systems
make use of the content of an item’s description to pre-
dict its utility based on a user’s profile [7]. Content-based
recommender systems aim to recommend items that are sim-
ilar to items that have previously interested in a specific
user. First, different item properties are extracted from docu-
ments/descriptions. For instance, a movie can be represented
by attributes such as genre, the director, writer, actors, sto-
ryline, etc. These properties can be obtained directly from
structured data, such as a table, or from unstructured data,
such as an article or news. One of the most commonly used
retrieval techniques in content-based recommender systems
is a keyword-based model known as the vector space model
with term frequency-inverse document frequency weight-
ing [8]. Content-based recommender systems profile a user’s
preferences from items in that user’s consumption records.
The profile usually comprises information about what the
user has liked or disliked in the past. Thus, the profiling pro-
cess can be seen as a typical binary classification problem,
which has been well studied in machine learning and data
mining fields. Classic methods such as Naïve Bayes, nearest
neighbor algorithms and decision trees are used in this step
[9]. Once the user’s profile has been established, the system
compares the item’s attributeswith the user’s profile andfinds
the most relevant items from which to form a recommenda-
tion list. Recommendation in a content-based recommender
system is a filtering and matching process between the item
representation and the user profile, based on the features
acquired in the first two steps. The final result is to forward
the matched items and remove those items the user tends to
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dislike, so the relevance evaluation of the recommendation
is clearly dependent on the accuracy of the item’s represen-
tation and the user’s profile [10].

The content-based recommender system has several
advantages [11, 12]. First, content-based recommendation
is based on item representation and is thus user independent.
As a result, this kind of system does not suffer from the data
sparsity problem. Second, content-based recommender sys-
tems are able to recommend new items to users, which solves
the new item cold-start problem. Finally, content-based rec-
ommender systems can provide a clear explanation of the
recommendation result. The transparency of this kind of
system is a great advantage compared to other techniques
in real-world applications. There are nevertheless several
limitations to content-based recommender systems [5, 13].
Although such systems overcome the new itemproblem, they
still suffer from the new user problem because the lack of
user profile information seriously affects the accuracy of the
recommendation result. Furthermore, content-based systems
always choose similar items for users, leading to overspecial-
ization in the recommendation. Users tend to become bored
with these types of recommendation lists because most users
want to learn about new and fashionable items rather than
being limited to items similar to those they have previously
used. Another issue is that items cannot always be easily
represented in the specific form required by content-based
recommender systems. This kind of system is, therefore,
more suitable for recommending articles or news items rather
than images or music.

Collaborative filtering-based recommender systems

In contrast to content-based recommender systems,which are
independent of other users but dependent on a user’s personal
historical records, CF-based recommender systems infer the
utility of an item according to other users’ ratings [13]. This
technique has been widely researched in academia [14] and
was quickly applied in the industry more than 20 years ago
[15]. Today, CF is still the most popular technique applied
in recommender systems [16]. The basic assumption under-
pinning the CF technique is that users who share similar
interests will consume similar items, so a system using the
CF technique relies on information provided by users who
have similar preferences to the given user. A classic scenario
in CF is to predict a user’s ratings on unconsumed items from
a user-item rating matrix, which is related to the matrix com-
pletion problem [17]. CF-based techniques are classified into
two categories [18]: memory-based CF andmodel-based CF.

Memory-based CF is an early generation CF that uses
heuristic algorithms to calculate similarity values between
users or items, and can therefore be subdivided into two types:
user-based CF and item-based CF [19]. The core algorithm
used in the memory-CF technique is the nearest neighbor

algorithm. The recommendation calculates and ranks the rat-
ing of a target user on different items based on the neighbor
ratings of a user or item. This algorithm is well accepted
because of its simplicity, efficiency and ability to produce
accurate results. Although memory-based CF is well known
for its easy implementation and relatively effective and prac-
tical application, the technique still has some non-negligible
drawbacks [5]. First, it is not able to deal with the cold-start
problem. When a new user/item enters the system, there are
no ratings for the system to use to make predictions. Sec-
ond, if an item is not new but is unpopular with users, it will
receive very few ratings from consumers. Memory-based CF
is unlikely to recommend unpopular items to users; therefore,
the recommendation coverage is limited. Third, it cannot pro-
vide a real-time recommendation. The heuristic process takes
a long time to provide a recommendation result, especially
when the dimension of the user-item rating matrix is high.
This problem can be partially solved by a pre-calculated and
pre-stored weighting matrix in item-based CF [19], but the
scalability is still unable to meet practical needs.

Model-based CF builds a model to predict a user’s rat-
ing on items using machine learning or data mining methods
rather than heuristic methods, as discussed in the previous
section. This technique was originally designed to remedy
the defects in memory-based CF, but it has been widely stud-
ied for solving problems in other domains. In addition to
the user-item rating matrix, side information is used, such
as location, tags and reviews [20]. The model-based CF
technique is a good choice if this ancillary information is
combined with the rating matrix. Matrix factorization was a
product of the Netflix Prize competition of 2009 [21], and
it is still one of the most popular algorithms in this field. It
projects both user space and item space onto the same latent
factor space so that they are comparable. Three advantages
of matrix factorization contribute to its popularity. First, the
dimension of the user-item rating matrix can be reduced sig-
nificantly, so the scalability of the system employing matrix
factorization is secured. Second, the factorization process
makes a dense rating matrix, so that the sparsity problem can
be alleviated [22]. Users who only have a few ratings can
acquire relatively more accurate recommendation through
matrix factorization, which is a significant improvement over
memory-basedmethods. Third,matrix factorization is highly
suitable for integrating a variety of side information [23].
This helps to profile user preferences and improves the per-
formance of recommender systems.

Knowledge-based recommender systems

In knowledge-based recommender systems, recommenda-
tions are based on existing knowledge or rules about user
needs and item functions [6]. Unlike content-based and CF-
based techniques, knowledge-based recommender systems
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retain a knowledge base that is constructed with knowledge
extracted from a user’s previous records. This knowledge-
base contains previous problems, constraints, and corre-
sponding solutions. Knowledge in the knowledge base is
referenced when the system encounters a new recommen-
dation problem [24]. Case-based reasoning uses previous
cases to solve the current problem [25] and is a commonly
used technique for knowledge-based systems. In contrast to
content-based recommender systems, finding the similarities
between products requires more structured representations.
In this process, a comparison of a previous case and the cur-
rent case is made, along with solution adaptation.

The application of the knowledge-based recommendation
technique is of particular value in house sales, financial ser-
vices, and health decision support [26]. These services are
characterized by highly specific domain knowledge, and each
case presents a unique situation. One advantage of this tech-
nique is that the new item/user problem does not exist, since
prior knowledge is acquired and stored in the knowledge
base. Another advantage is that users can impose constraints
on the recommendation results [27]. However, no advan-
tage comeswithout a corresponding disadvantage, and in this
case, the cost of system setup and management in building
and maintaining the knowledge base is usually high.

Artificial intelligence: mainmodels
andmethods

Artificial intelligence is a fast-developing field in which
applications range from playing chess to learning systems
or diagnosing disease [28]. The goal of developing AI tech-
niques is to achieve automationof intelligent behaviorswhich
mainly cover six areas: knowledge engineering, reason-
ing, planning, communication, perception, and motion [29].
Specifically, knowledge engineering refers to techniques that
are used for knowledge representation and modelling to
enablemachines to understand andprocess knowledge;Tech-
niques for reasoning are developed for problem solving and
logical deduction; Planning is to help machines to set and
achieve a goal; Communication aims to understand natural
language and communicate with human; Perception plays
the role of analyzing and processing inputs such as images
or speech; andfinallymotion is aboutmovement andmanipu-
lation. Except for themotion, techniques in the first five areas
can be applied to enhance and boost the development of rec-
ommender systems due to the huge information processing
demands.

In this section, we will introduce eight main models and
methodologies as shown in Fig. 1. Deep neural networks,
transfer learning, active learning, and fuzzy techniques are
representatives for knowledge and reasoning and are inter-
connected with each other. Evolutionary algorithms and

Fig. 1 AI areas and techniques

reinforcement learning are related to reasoning and planning,
while natural language processing is the main technique for
communication and perception, and computer vision is for
the perception of images. Among the eight methods, natural
language processing and computer vision are two application
areas of AI techniques in recommender systems.

Deep neural network

Neural network is inspired by the network of neurons in
the human brain. A neural net consists of a set of neurons
(or nodes) that receive and process signals from connected
neurons/nodes. Each neuron can change its internal state
(activation) according to the signal received so that activa-
tion weights and functions can be learned and modified in
the learning process. In 1980s, neural nets were largely for-
saken and ignored by the machine learning community. By
the late of 1990, however, a particular type of deep feedfor-
ward network called convolutional neural network (CNN)
was developed which is much easier to train [30]. CNN can
also be much better generalized than traditional neural net-
works; they were thus quickly adopted in the areas of speech
recognition and computer vision [31].Deep learning includes
the following diverse types [32]:

Multilayer perceptions (MLP) [33] are feed-forward neu-
ral networks consisting of three or more layers with a
non-linear activation. It allows approximate solutions to be
found for both regression and classification problems.

Autoencoders (AE) [34] are unsupervised neural networks
for learning feature representations where the purpose is
dimensionality reduction, data compression, or data denois-
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ing. It usually consists of two parts, the encoder and the
decoder, which reconstruct the input in the output.

Convolutional neural networks (CNN) [35] are capable of
processing images and visual information. It consists of an
input layer, an output layer and multiple hidden layers, in
which convolutional layers, pooling layers, fully connected
layers or normalization layers are usually contained.

Recurrent neural networks (RNN) [36] are designed to
deal with sequence data since its node connections form
a directed graph. It uses internal states as memory so
that sequence processes can be remembered. Representative
RNN is a long short-term memory (LSTM) network [37]
which is suitable for time series prediction.

Generative adversarial networks (GAN) [38] are used for
unsupervised learning tasks and is implemented by two sets
of models. One is a generative model and the other is a dis-
criminative model. These two models compete to generate
samples that look like the original samples.

Graph neural networks (GNNs) [39] are motivated by
CNN and graph embedding to model the graph structure
between nodes with neighborhood information included.
GNNs have advantages in graph structured data for repre-
sentation learning, link prediction and node classification,
due to their high performance and good interpretability.

Transfer learning

Machine learning has attracted great attention because of
the assumption that trained models can solve problems of
prediction or classification, given that the training data and
test data are under the same distribution. In practice, however,
test data is usually dynamic and diverges from the training
data. This results in the inapplicability of the current model
and requires it to be rebuilt, which takes great effort. It is
not always possible to retrain and build a new learning-based
model since the newly collected datamay be insufficient, and
there are usually not enough labels accompanying the new
data. This problem is extremely serious in many real-world
scenarios.

Unlike traditional machine learning, transfer learning has
developed as a means of transferring knowledge from a
domain with relatively rich data (source domain) to a domain
with scarce data (target domain) [40]. In this definition, trans-
fer learning aims to extract knowledge from one or more
source data to assist a learning task with target data. Transfer
learning techniques can be divided into three main categories
[41]. (1) Inductive transfer learning. The target task is differ-
ent from the source task. When labeled data are available
in the target domain, inductive transfer learning is simi-
lar to multi-task learning [42]. On the other hand, if there
are no labeled data in the target domain, it is known as
self-taught learning. (2) Transductive transfer learning. The
source and target tasks are the same, but the source and target

domains are different. Transductive transfer learning is also
used interchangeably with domain adaptation [43]. For this
type of transfer learning technique, the discrepancy between
the source domain and the target domain can be caused by the
existence of different feature spaces, or the differentmarginal
distribution of feature spaces [44]. (3) Unsupervised transfer
learning. The setting is similar to inductive transfer learn-
ing, but the target tasks are unsupervised learning tasks.
Unsupervised transfer learning is similar to semi-supervised
learning [45], except that there are no labeled data for either
the source domain or the target domain. In the literature,
domain adaptation, covariate shift, sample selection bias,
multi-task learning, robust learning, and concept drift are all
terms which have been used to describe the related scenarios.

Active learning

The basic idea of active learning is to selectively choose
from training data to enable machine learning to perform
better with less information. A system with an active learn-
ing strategy may query users to provide labels for unlabeled
instances [46]. As the labeling process may be expensive,
time-consuming and sometimes impossible, active learning
can usefully be applied to many areas in AI and is espe-
cially suitable for online systems. Many AI areas related to
classification or regression problems, such as speech recogni-
tion, information retrieval and computational biology, benefit
from active learning [47].

Active learning strategies can be roughly divided into
several groups according to their evaluation criteria on
unlabeled instances. They include uncertainty sampling,
query-by-committee, expectedmodel change, expected error
reduction, variance reduction, and density-weightedmethods
[48]. Uncertainty sampling queries instances that are least
confident to be labeled. Query-by-committee is a framework
that aims to minimize the inconsistency of the query to cur-
rent labeled training data. Expected model change selects
those instances that maintain the least change to the estab-
lishedmodel. Expected error reductionmeasures global error
and reduces potential risk to include the queried instance.
Variance reduction follows a similar direction as expected
error reduction but cuts down on variance to increase the sta-
bility of the established model. Density-weighted methods
search for representative instances which are important for
boundary decisions or representing controversial situations.

Reinforcement learning

Reinforcement learning aims to maximize reward in a
sequence of actions of a learning agent to achieve a goal,
while the next situation (input) will be affected by the actions
in an interactiveway [49]. Different from supervised learning
which relies on a labeled training set, reinforcement learning
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is to train an agent that can act in a situation that is not shown
in the training set. It is also different from unsupervised
learning, which mine patterns from unlabeled data whereas
reinforcement learning is to achieve the long-term goal by
interactionwith the environment. The generality of reinforce-
ment learningmakes it widely applied in various aspects such
as game theory [50], optimal control [51], swarm intelligence
[52] and other areas such as healthcare [53] and psychology
[54].

Usually, reinforcement learning follows the definition of
Markov decision process [55] to describe how the agent inter-
acts with the environment: at a step, the agent receives a state,
selects an action according to a policy and receives a reward
for this step, then transit to the next step.A value functionwill
define the long-term reward accumulated during the whole
process containing a series of steps. A unique challenge
that exists in reinforcement learning is the dilemma between
exploration and exploitation [56]. The learning agent is fac-
ing a choice to take actions that it has experienced in the
past or try new actions that may bring more rewards. The
balance of the dilemma lies in whether to exploit actions that
in the historical records or explore new actions that finally
come to a reward maximization. The methods of reinforce-
ment learning can be divided according to value function,
policy, and model in value-based or policy-based, off-policy
or on-policy, model-based or model-free and hybrids of the
above [57]. Recently, the combination of deep neural net-
works and reinforcement learning becomes popular with two
well-known and successful works: deep Q-network [58] and
AlphaGo [59]. Deep neural networks significantly boosted
reinforcement learning in dealing with high dimensional
states or/and actions and make it as an indispensable compo-
nent in future AI systems.

Fuzzy techniques

Fuzzy techniques can be used to model real-world concepts
that cannot be represented in a precise way; thus, it is widely
used in the AI area. Fuzzy techniques have attracted con-
siderable attention in the literature; for example, researchers
have applied fuzzy sets to represent linguistic variables when
feature values cannot be precisely described in numerical
values, and to describe fuzzy distance for the retrieval of
similar cases [60]. Knowledge extracted from data is hidden
and uncertain by nature, so using fuzzy logic and fuzzy rule
theory to handle the associated vagueness and uncertainty is
apt and can improve the accuracy of both classification and
regression [61]. Fuzzy techniques facilitate data and knowl-
edge sharing between businesses where knowledge can be
used to build data analytics models efficiently [62]. This has
the advantage of significantly reducing the computational
expense incurred by businesses, particularly in data-shortage

and rapidly-changing environments, and provides outstand-
ing benefit to their business intelligence systems.

Evolutionary algorithms

Evolutionary algorithms (EAs) are a sub-area of AI research
that form a class of nature-inspired, population-based search
algorithms for global optimization. An evolutionary algo-
rithm starts with an initial population, known as the parent
population, which is a set of candidate solutions to a problem
to be solved. New solutions, called offspring, are generated
by applying genetic operators such as crossover and muta-
tion to parent individuals. Offspring individuals are selected
according to their fitness to become the parents of the next
generation. This process continues until certain termination
conditions are met.

There are three independently developed streams of evo-
lutionary algorithms: the genetic algorithm [63], evolution
strategies [64], and genetic programming [65]. Other pop-
ular EAs include estimation of distribution algorithms [66]
and differential evolution [67]. Several other nature-inspired
meta-heuristic algorithms have also been developed, such
as particle swarm optimization [68] and ant colony opti-
mization [69], which are sometimes categorized as EAs in
a very loose sense. Although they were designed to solve
a wide range of problems, EAs have been shown to be
very powerful in solving complex optimization problems that
are difficult for traditional mathematical programming tech-
niques to solve. Evolutionary algorithms (EAs) are divided
into single-objective and multi-objective EAs [70] according
to the number of objectives to be optimized. Multi-objective
EAs that have more than three objectives are also termed
many-objective EAs [71].

Natural language processing

Natural language processing is a traditional research area in
AI that dates back to the 1950s. Its origins lie in the recog-
nition of hand-written image analysis, and it entered a new
era with the development of machine learning [72]. Text data
are different from other kinds of structured data; their most
important characteristics are sparsity and high dimensional-
ity. They can be analyzed at different levels of representation,
such as bag-of-words, topics or embedded vectors. Many
machine learning algorithms, such as support vectormachine
and Bayesian network [73], can be applied to a wide range
of natural language processing areas, as detailed below.

To illustrate the broad reach of natural language pro-
cessing, the various tasks are clustered but not limited to
the following aspects. Information extraction aims to extract
structured information from unstructured text and includes
entity extraction and relationship extraction [74]. Text sum-
marization analyzes the importance of sentences, then scores

123



Complex & Intelligent Systems (2021) 7:439–457 445

and selects the set of best sentences to compose a summary.
Text classification is widely used in data mining research to
label text and relate it to multiple applications, such as cus-
tomer segmentation, document organization, and CF [75].
Sentiment analysis extracts hidden opinion, sentiment and
subjective information from the text to assist with classifica-
tion or prediction [76]. Dimensionality reduction techniques
such as latent semantic indexing, topic modeling, and latent
Dirichlet allocation are widely used in natural language pro-
cessing to reduce the number of variables and obtain a set
of principal variables [77]. The evolution of text corpus and
its interactions with other context data or heterogeneous data
have also been well researched in AI.

Computer vision

Humans can directly recognize an object by discerning its
shape, color, motion and related characteristics. As increas-
ing amounts of data with images and video accumulate, it
is desirable for machines to obtain high-level understand-
ing from vision through such techniques as object capture,
recognition or tracking [78]. A number of models have been
established that describe and process images or videos to
effectively contribute to classification, detection, and seg-
mentation problems. Recent developments in deep learning
have revolutionized the computer vision research area, given
the ability of deep learning methods to extract features [79].
This has prompted their use in computer vision tasks for ana-
lyzing, processing and describing digital images and videos.
In particular, CNN has been widely adopted for recognition
and detection tasks [80], which has resulted in huge changes
being made in image processing, not only in academia but
also in industry.

Recommender systems with artificial
intelligence

Multiple artificial intelligent techniques have been intro-
duced and applied to recommender systems to meet the
increased recommendation demands of the big data informa-
tion explosion. In this section, we highlight six AI techniques
that have enhanced recommender systems.

Deep neural networks in recommender systems

Neural network is rarely used in recommender systems since
the task of recommendation concerns the ranking of items
rather than classification. In an early work, Salakhutdinov
et al. proposed a two-layer restricted Boltzmann machine
(RBM) to explore the ordinal property of ratings. This
method attracted great attention in the 2009 Netflix Prize
competition [81], but there has been little follow-up work

apart from research by Truyen et al., who extended this work
by studying the parameterization options of RBM in recom-
mendation [82]. In contrast, deep learning has achieved great
success in the fields of natural language processing, speech
recognition and computer vision [31]. With the availability
of more data (e.g., user-generated comments or visual photos
of items), the need to integrate all the information and pro-
vide recommendation for multi-media items, such as images
or videos, prompted the development of deep learning-based
recommender systems [83]. In this sub-section, we divide
deep learning-based recommender systems according to the
different types of deep neural networks applied in recom-
mender systems.

Multi-layer perceptron-based recommender systems

Multi-layer perceptron is used in factorization machines to
help with feature engineering. It combines the advantages
of linear and non-linear modeling in one recommendation
framework [84]. Guo et al. improved the wide and deep
model in [84] as the proposed factorization machines can be
trained without feature engineering [85]. He et al. proposed
neural collaborative filtering (NCF) to model the non-linear
relationship between users and items in conjunction with
matrix factorization to model the linear relationship [86].
NCF, which is based on multi-layer perceptrons, is widely
used in recommender systems as a general model for user-
item interactions.

Autoencoder-based recommender systems

AutoRec integrates an autoencoder with matrix factorization
with the aim of learning non-linear latent representations of
users or items [87].AutoSVD++ is a hybridmethod that fuses
a contractive autoencoder and matrix factorization to gener-
ate item feature representations from item content [88]. Strub
et al. improved AutoRec by boosting its robustness through
the use of denoising techniques and integrating such side
information as item content or user-contributed tags [89].
Autoencoder serves as a basic building block for representa-
tion learning which is well suited for user profiling and item
representation learning in recommender systems.

Convolutional neural network-based recommender
systems

By integrating two parallel neural networks, DeepCoNN
jointly models users and items through reviews [90]. The
two CNNs are connected by a shared layer facilitated by
factorization machines. To exploit the information in user-
contributed reviews and address the data sparsity problem,
ConvMF integratesCNN intomatrix factorization to improve
rating prediction accuracy [91]. CNN has also been used for
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the hashtag recommendation task in microblogging by intro-
ducing the attention mechanism in the process of selecting
the hashtags [92].

Recurrent neural network-based recommender systems

Since RNN is suitable for sequential data, it is mainly used to
model and analyze the evolution of user interests or item fea-
tures. Dai et al. applied RNN and proposed a co-evolutionary
latent feature process for modeling the temporal dynamics of
user-item interactions [93]. Wu et al. used an LSTM-based
model to capture the dynamics of user behavior to predict
whether or not to inherit existing user behavior in the future
[94]. LSTM is also used in recommender systems to make
in-time music recommendations, to predict when users will
return to a music system and what their interest will be at
that time [95].

RNNs have emerged as a new direction known as session-
based recommender systems or sequential recommender
systems where the real-time recommendation is refined
according to the historical sequential data [96, 97]. In [98],
the most recent states are modelled by an RNN to predict the
next item that may attract the interests of users. The early
works did not take into consideration of the short-term and
long-term user interests in the sequence. Later, the current
state is modelled as a short-term user preference and the ses-
sion state is modelled by RNNs with an attention mechanism
as the long-term preference. They are equally integrated and
matched with an item through a bi-linear scheme [99]. The
short-termuser preference is enhanced in [100] and user pref-
erence drift is also taken into consideration. Further, the two
kinds of preferences are fine-tuned by a hierarchical attention
network [101]. Sequential recommender systems are gain-
ing more attention in research dealing with the relationship
between short-term and long-term interests as well as inte-
grating contextual information and preference dynamics.

Generative adversarial network-based recommender
systems

Wang et al. integrated GAN to a unified information retrieval
framework. It contains a generative retrieval model that
learns the distribution over documents and try to generate
relevant documents that look like the ground truth to fool the
discriminativemodel, and a discriminativemodel that aims to
classify the ground-truth documents from the generated ones
as an opponent to the generative model [102]. This approach
shows that GAN-based information retrieval systems offer
promise, and further effort is needed specifically in the rec-
ommender system area. He et al. introduced perturbations
on the user and item embedding as an adversarial regularizer
under the frameworkofBayesian personalized ranking [103].
A GAN is used to learn robust user/item representations not

only from user-item interactions but also from knowledge
graph [104], tags and images [105].

Graph neural network-based recommender systems

The ability of GNNs to learn feature for nodes from the infor-
mation of neighborhoods in the graph is highly desired for
recommender systems, as the user-item relationships are usu-
ally represented as a bipartite graph. The feature embedding
by a GNN and random walk are incorporated in [106] and a
highly scalable and efficient recommendation method is pro-
posed and deployed in Pinterest. This work shows the great
potential of GNNs to improve the productivity of recom-
mender systems. A generalized graph neural network-based
CF framework is proposed in [107] with attention-based
massage-passing method for information propagation. GNN
is also suited for sequential recommender systems to model
the item sequences as a graph [108]. It is superior as user-
item interactions are considered in the sequence while an
RNN can onlymodel one-side item information. GNN-based
recommender systems are just emerging and more studies
in social recommendation, sequential recommendation and
cross-domain recommendation are expected.

Current trends of application of deep neural networks in
recommender systems are towards addressing more com-
plex situations such as dynamic environments, multiple data
sources and heterogeneous data representations. They aim to
develop methods and build models with hybrids of different
types of deep neural networks to comprehensively model the
user preferences.

Transfer learning in recommender systems

Transfer learning has demonstrated great success and a
promising future in the machine learning field. In the field of
recommender systems, transfer learning extends recommen-
dation requests from a single domain tomultiple domains. By
exploiting the correlation of several domains, all domains can
benefit from mining user preferences that cannot be found
with single domain data. For example, an active user in a
movie domain is likely to be interested in books and music
related to movies they like. Another reason to exploit multi-
ple domains is to solve the data sparsity or cold-start problem,
as there may be insufficient data in one domain but relatively
rich data in another domain. For example, a user may have
few records in a book category in an online review and rating
system butmay have a large number ofmovie ratings, thus an
abundance of data in a secondary domain can assist recom-
mendation in the target domain. This demand for a rich and
diverse recommendation, together with the ability to allevi-
ate the data sparsity problem, has driven the development of
cross-domain recommender systems (CDRS).
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The biggest difference between CDRS and other transfer
learning methods is that there is no explicit feature space in
CDRS. This means that CDRS cannot be classified as a sin-
gle type of transfer learningmethod, because they involve the
practical application ofmultiple transfer learning techniques.
From the practical perspective, CDRS provide multi-domain
recommendation for online shopping retailers selling a vari-
ety of goods while at the same time offering a solution to the
data sparsity problem. Some methods connect two domains
through auxiliary information other than preference data
[20], while CDRS based on preference data can be strate-
gically designed according to the overlap of users and items,
the form the data takes, or the tasks the systemneeds to handle
[109]. We classify CDRS according to these three different
scenarios and review them below.

CDRS with side information

For this type of recommender system, it is assumed that
some side information on entities is available, such as user-
generated information, social information or item attributes.
Collectivematrix factorization (CMF) is designed for scenar-
ios in which a user-item rating matrix and an item-attribute
matrix for the same group of items are available [110].
CMF collectively factorizes these two matrixes by sharing
item parameters, since the items are the same. Other meth-
ods have since been developed that exploit social network
information to assist cross-domain recommender systems.
Yang et al. used a bipartite graph to represent the relation-
ships between entities across heterogeneous domains and
exploit hidden similarity to help recommendations in two
domains [111]. Excluding social network information, many
user-generated tags in online systems provide auxiliary data
for CDRS. Abel et al. used both a form-based user profile
and a tag-based profile to investigate how the social web
can be connected with recommender systems to assist with
cross-system user modeling [112]. Tag-informed collabora-
tive filtering (TagiCoFi) is a proposed method in which a
user-item rating matrix and a user-tag matrix for the same
group of users are used [113]. User similarities extracted
from shared tags are used to assist the matrix factorization of
the original rating matrix. Tag cross-domain CF (TagCDCF)
extends TagiCoFi to two domain scenarios each containing
data from these two matrixes [114]. By simultaneously inte-
grating intra-domain and inter-domain correlations to matrix
factorization, TagCDCF improves recommender system per-
formance in the target domain.

CDRS with non-overlapping entities

Methods that handle two domainswith non-overlapping enti-
ties transfer knowledge at group-level. Users and items are
clustered into groups andknowledge is shared throughgroup-

level rating patterns; for example, codebook transfer (CBT)
clusters users and items into groups and extracts group-
level knowledge as a “codebook” [115]. A probabilistic
model named rating matrix generated model (RMGM) was
extended from CBT which relaxes the hard group member-
ship to soft membership [116]. However, these two methods
are unable to ensure that the information in the two groups
from two different domains is consistent, and the effective-
ness of the knowledge transfer is not guaranteed. Zhang et al.
[117] used a domain adaptation technique to extract consis-
tent knowledge from the source domain, which proved to be a
more superiormethod, especiallywhen the statistics between
the source domain data and the target domain data are diver-
gent. Zhang et al. [118] extended RMGM with an active
learning strategy in a multi-domain scenario, which enables
queries to be made across several domains by considering
both domain-specific and domain-independent knowledge
and benefits recommendation in each of these domains.

CDRS with partially or fully overlapping entities

Given the assumption that entities between two domains
overlap, the source domain and target domain are bridged by
constraints on the overlapping entities. Methods to handle
data where the user and/or item in both domains partially or
fully corresponds usually collectively factorize two matrixes
in each domain by sharing some part of the factorization
parameters. Transfer collective factorization (TCF) [119] has
been developed to use implicit data in the source domain to
help the prediction of explicit feedback, i.e., ratings in the
target domain. Cross-domain triadic factorization (CDTF)
models a user-item-domain tensor to integrate both explicit
and implicit user feedback [120]. Users are fully overlapped,
and the user factor matrix is the same, thus bridging all the
domains. Cluster-based matrix factorization (CBMF) tries
to boost CDTF to partially-overlapping entities [121]. Since
entity correspondence is not always fully available, some
strategies have been developed that match users or items in
two domains. Unknown user/item mappings are identified
in [122] using latent space matching. The identification of
the mapping is time-consuming, so an active-learning frame-
work is sometimes developed to identify the most valuable
entity correspondences in the source domain [123]. Zhang
et.al proposed a kernel-induced knowledge transfer method
for cross-domain recommender systems with partially over-
lapped entities where alignment on heterogeneous latent
feature spaces between two domains is taken into consid-
eration [124].

The above mentioned CDRSs are mainly based on shal-
low learning methods. The recent developments of deep
neural networks are also applied in knowledge transfer and
cross-domain recommendation. A framework for CDRS
on partially overlapping entities with a deep neural net-
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work is proposed in [125]. Knowledge transfer between
two domains in this framework is achieved by mapping the
user/item features in the target domain with the combined
features obtained from both domains. Hu et al. also propose
a cross-domain recommendation method by sharing the hid-
den layers between two domains [126]. GAN is applied with
an additional objective function to discriminate user/item
embedding features into different domains [127]. A general
CDRS framework with a GAN is proposed in [128] to deal
with all the three scenarios above. The application of deep
neural networks in CDRS is well received due to their power
of robust feature extraction and their capability of sharing
knowledge in different levels of granularity. Knowledge is
transferred through the overlapped entities as a bridge with
both rating and content information and benefits both the
source and the target domains in [129]. As the data are accu-
mulated from multiple sources, further studies of CDRS that
is able to deal with multi-domain knowledge transfer are
needed.

Active learning in recommender systems

Each user-item correlation in a recommender system—espe-
cially one based on explicit ratings or implicit interactions
between users and items—is crucial for profiling user pref-
erences and substantially affects system performance. The
challenge of data sparsity in recommendation reveals that the
greater the number of ratings acquired from users, the better
a system will perform in providing a recommendation. How-
ever, it is time-consuming, labour-intensive, and therefore
almost impossible to query users to rate all, or most, items.
Active learning has been introduced to help recommender
systems select themost representative items and deliver them
to users to rate [130]. As user experience is valued and user
interactionswith systems are desirable in the information era,
active learning techniques have been adopted that improve
both the efficiency and the accuracy of recommender sys-
tems.

Active strategies that used pre-computed bounds on the
value of information were employed in early works to reduce
the online computation time in recommender systems [131],
but academics soon found that the item selection greatly
influences rating prediction. There are many different active
learning strategies, such as rating impact analysis [132]
and bootstrapping [133], and such active learning strategies
have been integrated with common recommendation mod-
els such as the aspect model [134], decision trees [135], and
matrix factorization [136]. Complex factors such as naturally
acquired ratings by users [137], the probability of a user
being able to provide a rating for the system query [138],
the influence of items [139] and the item attributes [140]
have been added to the active learning strategy. The active
learning strategies are also brought to a multi-domain rec-

ommendation scenario in rating selection [141] and entity
correspondence selection [123].

Active learning is mostly used in the early work for
item selection in recommender systems. Its combination
with more advanced model-based recommendation methods
may lead to novel directions. Although many factors have
been considered as we reviewed above, still active learning
for contextual information selection is rare. The combina-
tion of active learning and reinforcement learning is another
direction that worth more attention, as its application in rec-
ommender systems will further enhance their performance.

Reinforcement learning in recommender systems

The nature of using recommender system is an interactive
process between the user and the systemwith a series of states
and action, which is in accordance with reinforcement learn-
ing. Different from traditional recommender systems, which
usually focus on predicting interests of users at a specific
time point, the reinforcement learning-based recommender
systems aim to maximize the engagement and satisfaction of
users in a long term. Under the framework of reinforcement
learning, the recommender system is treated as a learning
agent, the user behaviours correspond to the states and the
actions are recommendations generated by the system. The
reward is the feedback of the users on the recommendation
results, such as the click through the rate or the time duration
on the webpage. The target is to find a policy or a value func-
tion for the users to maximize the long-term rewards. The
challenge of reinforcement learning lies in the large num-
ber of items that are available to users, which creates a large
action space for learning agents and increases the complexity
of the system.

The early work studies mainly the balance of exploration
and exploitation, which is also known as bandit problems
[142]. A direct implementation ofMDP to recommender sys-
tems without considering the balance is proposed in [143]
to recommend the next item with the previous k consumed
items. Later, the trade-off between exploration and exploita-
tion is addressed with linear reinforcement learning with
theoretical guarantee [144]. There is also some work which
treats the interactive process between the user and the rec-
ommender system as a multi-arm bandit problem [145] and
later extended with contextual information [146, 147].

Researches reviewed above mostly focus on the imme-
diate rewards and ignores the long-term rewards. Recently,
deep reinforcement learning has gained more attention with
the breakthrough of deep Q-network and deep determin-
istic policy gradient, which have advantages in addressing
the immediate and long-term rewards simultaneously [148].
The challenge of large and dynamic actions is tackled in
[149] with Actor-Critic architecture to reduce the computa-
tional complexity. Negative feedback of the user is taken into
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consideration to boost deep reinforcement learning-based
recommendation with a pair-wise regularization [150]. The
current trend in this direction is to take into account com-
plex user behaviours and knowledge graph information to
achieve high efficiency with a large amount of data and large
number of items [151]. The application of reinforcement
learning techniques in industrial recommender systems is
also prevalent, such as in YouTube [152] and Alibaba [153].
The development of deep reinforcement learning-based rec-
ommender systems will continue to be a hot area and will be
more heavily driven by real-world industrial applications.

Fuzzy techniques in recommender systems

Item features and user behaviors in real-world recommender
systems are usually subjective, incomplete and vague. Fuzzy
set and fuzzy relation theories offer an effective way to
deal with information uncertainty problems, and can also be
adopted in recommender systems [154]. In this section, three
groups of fuzzy recommendation approaches are discussed
based on the classification of recommender systemmethods:
(1) Content-based recommender systems with fuzzy tech-
niques, (2) memory-based CF recommender systems with
fuzzy techniques, and (3)model-basedCF recommender sys-
tems with fuzzy techniques.

In content-based recommender systems, fuzzy techniques
are applied to two phases of the process: profiling and
the matching of appropriate items. Fuzzy sets are used to
express the uncertainty in item features, especially vague and
incomplete item descriptions, as well as the subjective user
feedback on those items. Recommendation approaches are
developed using fuzzy set theories to discover user prefer-
ences and create item representations [155, 156]. As product
information often takes the form of tree-structured content
information, and because user preferences are vague and
fuzzy, a number of fuzzy tree-based recommender systems
have been developed for e-commerce [157], business-to-
business e-services [158] and e-learning systems [158].

In memory-based CF recommender systems, fuzzy set
theories are used to profile the uncertainty in customer
preferences [159]. By matching customer interests with the
service provided and managing the natural noise of uncer-
tainty, these methods can improve accuracy in certain areas
[160]. Cornelis et al. [161] extended the CF framework to
make one-and-only item recommendation for personalized
e-government by modeling user preferences and similarities
with fuzzy relationships. Son et al. [162] used intuitionistic
fuzzy recommender systems to enhance diagnoses in clini-
cal medicine. Zhang et al. [163] built a fuzzy user-interest
drift detection approach to deal with dynamic user prefer-
ences in rapidly changing big data, using fuzzy relationships
to measure user-interest consistency.

Several different techniques have been applied in model-
based CF recommender systems, including fuzzy network,
fuzzy clustering, and fuzzy Bayesian. In fuzzy network
techniques, fuzzy rules are extracted using the adaptive
neuro-fuzzy inference system (ANFIS) to alleviate the data
sparsity issue in CF and predict user preferences, especially
for multi-criteria CF [164]. Nilashi et al. [165] used ANFIS
for recommender systems with a hybrid of self-organizing
map (SOM), based on several fuzzy-based distance mea-
sures and similarities. In fuzzy clustering, compared with
CFmethodswith singular value decomposition (SVD)which
only allows hard membership clustering, fuzzy C-means is
a soft clustering and allows users/items to belong to sev-
eral groups [166]. Xu et al. transformed user profiles by
fuzzifying rating records and clustering them to exclude
the noise of uncertainty to improve the accuracy and scal-
ability of item-based CF recommender systems [167]. With
regard to fuzzy Bayesian technique, Kant et al. proposed a
fuzzy naïve Bayesian classifier whichwas extendedwith CF-
based, reclusive-based and hybrid recommendation methods
[168]. Campos et al. modeled uncertainty in the probabil-
ity of related users and the description of ratings, combining
Bayesian network, soft computing and CF techniques [169].
Fuzzy-based recommendationmethods have also been devel-
oped for new applications. For example, a recommender
system for digital libraries has been developed that suggests
useful resources for researchers by using Google Wave tech-
nology and integrating fuzzy linguistic modeling [170]. In
addition, Bedi et al. used fuzzy logic to measure the agree-
ment of arguments and enhance recommendation with trust,
as well as adding an explanation of the recommendation
results [171].

Fuzzy techniques are well suited for handling imprecise
user preference descriptions (e.g. linguistic terms), knowl-
edge description, and the gradual accumulation of user
preference profiles. A future trend is to integrate fuzzy pro-
filing and fuzzy relationship into advanced recommendation
methods, including the development of fuzzy neural net-
works to enhance the performance of recommender systems.

Evolutionary algorithms in recommender systems

Evolutionary algorithms (EAs) are used to combine the
outputs of multiple recommendation algorithms when the
recommendation is treated as a multi-objective optimization
problem.They are also used to generate user/itemprofiles and
are employed to handle ratings in the recommendation. The
application of EAs in recommender systems can be broadly
divided into the following three categories.
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Multi-objective recommender systems

Evolutionary algorithms (EAs) are used to optimize these
recommender systems by considering multiple performance
indicators, e.g., accuracy, novelty and diversity [172–174].
To achieve accurate and diverse recommendations,Karabadji
et al. [175] improved a memory-based CF method by using
multi-objective optimization to find neighbors. A new proba-
bilistic multi-objective evolutionary algorithm was proposed
in [118] that strikes a good balance between accuracy and
diversity, in which a new crossover operator called multi-
parent probability genetic operator and a new topic diversity
indicator were introduced.

Evolutionary optimization of user/item profiles

To achieve accurate personalized recommendation, Mu et al.
[176] proposed a novel EA with elite population to find the
information core, i.e., core users. In the proposed algorithm,
an elite population with a new crossover, termed “ordered
crossover”, is adopted to accelerate the evolution. To address
changing user profiles in recommender systems, Rana and
Jain [177] developed a dynamic recommender system that
uses an evolutionary clustering algorithm to identify similar
users. Chen et al. [178] proposed an interactive estimation of
distribution algorithm to offer users recommendations in an
interactive manner. The algorithm quantitatively expresses
user preference based on human–computer interactions and
trains an RBF neural network as the preference surrogate.

Evolutionary optimization of ratings

Adomavicius et al. [5, 179] discussed how to integrate multi-
criteria ratings into recommender systems. This category of
algorithms engages multi-criteria ratings in recommenda-
tions, which leverages more sophisticated user preferences.
Like evolutionary optimization, multi-criteria approach sup-
ports decision-making by aggregating a multi-objective
optimization problem into a single-objective problem, by
searching for Pareto optimal recommendations, or by tak-
ing the multiple criteria as the constraints. To handle the data
sparsity problem, Hu et al. [65] utilized a genetic algorithm
to optimize the weights of the domains to weight their influ-
ences within the framework called generalized cross-domain
triadic factorizationmodel over the triadic relation user-item-
domain.

One future trend of EA applications will be to develop
secure federated recommender systems and interactive rec-
ommender systems. Federated learning [180] is able to
preserve privacy by sending model parameters to a server
instead of storing data in a central server. To reduce com-

munication overheads, it is important to reduce the number
of parameters in a model, thus EAs can be used to optimize
models in federated learning. Additionally, they can play an
important role in creating secure recommender systems in
which themodel is less vulnerable to adversarial attacks, e.g.,
malicious manipulation of the data [181], because they can
be used to generatemodels that are less sensitive tomalicious
data manipulation. Due to its capability of handling multi-
ple objectives, new requirements can be taken into account
in designing recommender systems, in addition to accuracy
and diversity [182]. These requirements can also be produced
from an interactive process, where EAs can be used to fulfill
user requirements in each state.

Natural language processing in recommender
systems

Recent developments in deep neural networks exploit the
structure of natural language and vision, especially in the
RNN, CNN and GNN-based methods. In addition to the
reviews, we did in Sect. 4.1, the following two sections
will introduce how recommender systems can benefit from
natural language processing and computer vision with the
integration of free text (e.g. reviews) and visual images (e.g.
photo of items).

Recommender systems in the movie and star rating
domains are well developed, but a huge amount of text infor-
mation such as item metadata, item description text, user-
generated tags or reviews is not taken into account. Many
fine-grained opinion mining and topic modeling methods
have already been established in natural language process-
ing, and efforts are increasingly being made to connect these
two areas to extract information from the text and incorpo-
rate it into the recommendation process. Most recommender
systems benefit from review information extracted by natu-
ral language processing to complement the rating matrix and
alleviate the data sparsity problem. In extreme conditions
when ratings are not available, virtual ratings are generated
by sentiment polarity gained fromreviewclassification [183].
Itemmetadata in “bag-of-words” representation are analyzed
by topic models, which are integrated with matrix factor-
ization methods to manage both cold-start and warm-start
scenarios [184]. By mining feature-based product descrip-
tions from reviews, Dong et al. enhanced recommendation
with feature sentiment and product experience to provide
superior products according to user query [185]. In a similar
case, user expertise was evaluated and the evolution of user
experience was tracked through online reviews, suggesting
that similar users with an equivalent level of experience are
likely to respond similarly to the same product [186].
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Free-text information is still of great value even when
data are not sparse. User reviews are required to discover
and interpret latent user features and improve the quality of
recommendation in both accuracy and transparency [187].
Ling et al. extended this method to make the learnt latent
topic interpretable, thus enabling the recommendation of
completely “cold” items [188]. Review text has been incor-
porated in cross-domain recommendation methods where
user vectors are mapped through non-linear functions [189].
The neural embedding algorithm,which has recently become
popular in natural language processing, has also been linked
with a CF framework to infer item similarity correlations
[190], and multi-level item organization has been learnt and
applied to personalized ranking [191].

Previous works mostly focus on static data of reviews,
text content or item descriptions. As the digital voice sys-
tems such as Siri, Google home are becomingmore andmore
mature [192], an interactive recommender system with voice
feedback is a new direction where natural language process-
ing techniques will play an important role.

Computer vision in recommender systems

Recommender systems have benefited from the develop-
ment of computer vision technologies, especially in the areas
of fashion analysis and products that are highly related to
visual appearance, such as clothes, jewellery, and images.
The combinationof image recognition anddeep learningneu-
ral networks in recommender systems produces outstanding
results.

One direct application is used in image recommenda-
tion. A duel-net deep network was proposed in [193] that
directly applies computer vision to image recommendation
to map images and user preferences. Early works in other
e-commerce recommendation areas take advantage of the
features extracted from images using deep neural networks
and integrate themwith existingmethods for clothing recom-
mendation [194]. Extended research in this area has added
low-level features that mimic aspects of the human vision
system, such as color characteristics, into this framework
[195]. Zhao et al. integrated the visual features extracted from
movie posters and still frames with a matrix factorization
model to understand user preferences in movie recommen-
dation from a new aspect [196]. Visual content has also
been used in point of interest recommendations since photos
and user-posted images contain large numbers of landmarks
[197]. To reveal evolving fashion trends among users, He
et al. modeled non-visual and visual dimensions with tempo-
ral dynamics and deep convolutional networks [198]. Jaradat
proposed the transfer of knowledge between domains using
two convolutional neural networks, one each for image and
text, thus exploiting user preferences hidden in social media
platforms such as Instagram [199].

Recommender system is required to be capable of pro-
filing users from multimedia data, where visual information
will be a significant component. Applications ofmulti-model
fusion and multi-task learning in recommender systems are
needed to comprehensively model user preferences. New
functions such as cloth design and collocation are highly
demanded in future fashion recommender systems.

Future directions

Current developments in recommender systems focus on pro-
viding decision support with a wide range of information
related to themetadata of items, images, social networks, and
user-contributed reviews. In this paper, we have reviewed the
various areas of AI that relate to such systems and chronicled
their development. Given that the anticipated recommenda-
tion should alwaysmeet user requirementswhile also gaining
a better understanding of what interests a broad range of
users, we identify several emerging research aspects that will
benefit from future research on recommender systems.

Concept drift detection and reaction
in recommender systems

Although recommender systems have achieved great success
in the past, the complex and dynamic characteristics that are
a feature of big data are not handled well in these systems
[200]. Traditional recommender systems assume that user
preference is relatively static over a period of time, so users’
history records are weighted equally. However, user prefer-
ences change because of the gradual evolution of individual
tastes, personal experiences or popularity-driven influences.
This is a phenomenon commonly seen in Big Data streams
and widely known as concept drift [201]. As a user’s his-
tory records accumulate, older records may be inconsistent
with the user’s new requests. Using all the available data
indiscriminately jeopardizes prediction accuracy, and recom-
mender systems that fail to take this into consideration run
the risk of performance degradation.

Time-aware recommender systems were developed to
address this issue [202]. Most of the methods used in
time-aware recommender systems tried to accommodate
user-preference drift in their models without detecting the
drift. Time-window and instance decay approach determine
the weights of data instances along the timeline according
to the principle that old data weighs less [203]. Besides
penalizing the old data, some methods used dynamic matrix
factorization, in which time is considered to be one more
dimension of the data [204]. However, since these methods
fail to detect the change, they cannot determine the direction
of the change either, resulting in bias in the proposed adap-
tation and weighting decay. In the big data era, methods that
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canmanage temporal dynamics and can describe changes are
required.

Long tail in recommender systems (imbalanced
data)

Long-tail items are items that are unpopular and seldom
noticed by users. More attention should be paid by recom-
mender systems to long-tail items, to help users discover
them. Long-tail items are noticed less by users precisely
because fewer data about them are collected, which results in
these items being forgotten by users and e-commerce com-
panies. When exploited, however, long-tail items can bring
huge benefits to both customers and companies [205]. Cross-
domain recommender systems offer a potential means to
solve the long tail item problem because of their ability to
transfer knowledge from related but different data from one
domain to another domain even when the data are scarce.
Therefore, recommender systems for long-tail items present
great opportunities for future study.

Privacy-preserving and secure recommender
systems

The use of recommender systems grows widely into vari-
ous application areas, which lead users to more concerns
about their privacy. As a result, users are reluctant to pro-
vide authentic information and preferences when using the
system, which on the other hand, impairs the performance
of the recommender systems. The capability of evolution-
ary algorithms of covering multiple objectives enables its
application in developing privacy-preserving recommender
systems.Oneway to implement privacyby encryptions on the
user profile, such as a distributed CF model with encrypted
data [206]. The main concern of this method is its high com-
putational cost. Another way is to transform user profiles and
prevent the possible inference of user data. In [207] random-
ness is added to user data by perturbation so that privacy is
preserved while keeping the accuracy of recommendation.
How to preserve privacy is also studied on the CF method
where similar users are clustered by data-independent hash-
ing [208]. With more cross-platform systems developed, the
development of privacy-preserving and secure recommender
systems is intensively needed. The application of recom-
mender systems in domains with high privacy risks such
as healthcare or banking will prompt the development of
privacy-preserving techniques.

Recommender system visualization

Many recommender systems focus on methods and accuracy
but lack adequate explanation. Although the performance of
recommender systems is very good, users find them difficult

to trust due to opacity and privacy concerns. This is a chal-
lenging limitation in many recommender systems, especially
those that are combined with complex artificial intelligence
techniques such as deep learning or natural language pro-
cessing.

Visualization is incorporated into recommender systems
to provide a means for users to quickly and easily understand
and interact with the system. Interactive and non-interactive
strategies are compared in [209], illustrating how a visual
interface can improve user satisfaction by providing explana-
tory notes. Several works have discussed possible options for
visualizing and explaining the recommendation entity or pro-
cess to users in traditional recommendation methods [210,
211], but the interpretation of how a system works for hybrid
methods inwhichAI techniques are integrated is still lacking.
It is necessary for systems to include a deeper illustration of
the process and enhanced user interaction so that more works
on recommender system visualization can be developed in
the future.

Summary

In this position paper, we review eight fields of AI, intro-
duce their applications in recommender systems, discuss the
open research issues, and give directions of possible future
research on how AI techniques will be applied in recom-
mender systems. This paper highlights how the recommender
system can be enhanced by AI techniques and aims to pro-
vide guidance for researchers and practitioners in the area of
recommender systems.
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