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Abstract

This paper reviews the current state of the art in artificial intelligence (AI) technologies 
and applications in the context of the creative industries. A brief background of AI, and 
specifically machine learning (ML) algorithms, is provided including convolutional neu-
ral networks (CNNs), generative adversarial networks (GANs), recurrent neural networks 
(RNNs) and deep Reinforcement Learning (DRL). We categorize creative applications into 
five groups, related to how AI technologies are used: (i) content creation, (ii) information 
analysis, (iii) content enhancement and post production workflows, (iv) information extrac-
tion and enhancement, and (v) data compression. We critically examine the successes and 
limitations of this rapidly advancing technology in each of these areas. We further differen-
tiate between the use of AI as a creative tool and its potential as a creator in its own right. 
We foresee that, in the near future, ML-based AI will be adopted widely as a tool or collab-
orative assistant for creativity. In contrast, we observe that the successes of ML in domains 
with fewer constraints, where AI is the ‘creator’, remain modest. The potential of AI (or its 
developers) to win awards for its original creations in competition with human creatives 
is also limited, based on contemporary technologies. We therefore conclude that, in the 
context of creative industries, maximum benefit from AI will be derived where its focus 
is human-centric—where it is designed to augment, rather than replace, human creativity.

Keywords Creative industries · Machine learning · Image and video enhancement

1 Introduction

The aim of new technologies is normally to make a specific process easier, more accu-
rate, faster or cheaper. In some cases they also enable us to perform tasks or create things 
that were previously impossible. Over recent years, one of the most rapidly advancing 
scientific techniques for practical purposes has been Artificial Intelligence (AI). AI tech-
niques enable machines to perform tasks that typically require some degree of human-like 
intelligence. With recent developments in high-performance computing and increased 

 * Nantheera Anantrasirichai 
 n.anantrasirichai@bristol.ac.uk

 David Bull 
 dave.bull@bristol.ac.uk

1 Bristol Vision Institute, University of Bristol, Bristol, UK

http://orcid.org/0000-0002-2122-5781
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-021-10039-7&domain=pdf


590 N. Anantrasirichai, D. Bull 

1 3

data storage capacities, AI technologies have been empowered and are increasingly being 
adopted across numerous applications, ranging from simple daily tasks, intelligent assis-
tants and finance to highly specific command, control operations and national security. AI 
can, for example, help smart devices or computers to understand text and read it out loud, 
hear voices and respond, view images and recognize objects in them, and even predict what 
may happen next after a series of events. At higher levels, AI has been used to analyze 
human and social activity by observing their convocation and actions. It has also been 
used to understand socially relevant problems such as homelessness and to predict natural 
events. AI has been recognized by governments across the world to have potential as a 
major driver of economic growth and social progress (Hall and Pesenti 2018; NSTC 2016). 
This potential, however, does not come without concerns over the wider social impact of 
AI technologies which must be taken into account when designing and deploying these 
tools.

Processes associated with the creative sector demand significantly different levels of 
innovation and skill sets compared to routine behaviours. While AI accomplishments rely 
heavily on conformity of data, creativity often exploits the human imagination to drive 
original ideas which may not follow general rules. Basically, creatives have a lifetime of 
experiences to build on, enabling them to think ‘outside of the box’ and ask ‘What if’ ques-
tions that cannot readily be addressed by constrained learning systems.

There have been many studies over several decades into the possibility of applying AI 
in the creative sector. One of the limitations in the past was the readiness of the technology 
itself, and another was the belief that AI could attempt to replicate human creative behav-
iour (Rowe and Partridge 1993). A recent survey by Adobe1 revealed that three quarters of 
artists in the US, UK, Germany and Japan would consider using AI tools as assistants, in 
areas such as image search, editing, and other ‘non-creative’ tasks. This indicates a gen-
eral acceptance of AI as a tool across the community and reflects a general awareness of 
the state of the art, since most AI technologies have been developed to operate in closed 
domains where they can assist and support humans rather than replace them. Better col-
laboration between humans and AI technologies can thus maximize the benefits of the syn-
ergy. All that said, the first painting created solely by AI was auctioned for $432,500 in 
2018.2

Applications of AI in the creative industries have dramatically increased in the last 
five years. Based on analysis of data from arXiv3 and Gateway to Research,4 Davies et al. 
(2020) revealed that the growth rate of research publications on AI (relevant to the creative 
industries) exceeds 500% in many countries (in Taiwan the growth rate is 1490%), and the 
most of these publications relate to image-based data. Analysis on company usage from 
the Crunchbase database5 indicates that AI is used more in games and for immersive appli-
cations, advertising and marketing, than in other creative applications. Caramiaux et  al. 
(2019) recently reviewed AI in the current media and creative industries across three areas: 
creation, production and consumption. They provide details of AI/ML-based research and 
development, as well as emerging challenges and trends.

1 https:// www. pfeiff erre port. com/ wp- conte nt/ uploa ds/ 2018/ 11/ Creat ivity_ and_ AI_ Report_ INT. pdf.
2 https:// editi on. cnn. com/ style/ artic le/ obvio us- ai- art- chris ties- aucti on- smart- creat ivity/ index. html.
3 https:// arxiv. org/.
4 https:// gtr. ukri. org/.
5 https:// www. crunc hbase. com/.

https://www.pfeifferreport.com/wp-content/uploads/2018/11/Creativity_and_AI_Report_INT.pdf
https://edition.cnn.com/style/article/obvious-ai-art-christies-auction-smart-creativity/index.html
https://arxiv.org/
https://gtr.ukri.org/
https://www.crunchbase.com/
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In this paper, we review how AI and its technologies are, or could be, used in applica-
tions relevant to creative industries. We first provide an overview of AI and current tech-
nologies (Sect. 1), followed by a selection of creative domain applications (Sect. 3). We 
group these into subsections6 covering: (i) content creation: where AI is employed to gen-
erate original work, (ii) information analysis: where statistics of data are used to improve 
productivity, (iii) content enhancement and post production workflows: used to improve 
quality of creative work, (iv) information extraction and enhancement: where AI assists in 
interpretation, clarifies semantic meaning, and creates new ways to exhibit hidden informa-
tion, and (v) data compression: where AI helps reduce the size of the data while preserving 
its quality. Finally we discuss challenges and the future potential of AI associated with the 
creative industries in Sect. 4.

2  An introduction to arti�cial intelligence

Artificial intelligence (AI) embodies a set of codes, techniques, algorithms and data that 
enables a computer system to develop and emulate human-like behaviour and hence make 
decisions similar to (or in some cases, better than) humans (Russell and Norvig 2020). 
When a machine exhibits full human intelligence, it is often referred to as ‘general AI’ 
or ‘strong AI’ (Bostrom 2014). However, currently reported technologies are normally 
restricted to operation in a limited domain to work on specific tasks. This is called ‘nar-
row AI’ or ‘weak AI’. In the past, most AI technologies were model-driven; where the 
nature of the application is studied and a model is mathematically formed to describe it. 
Statistical learning is also data-dependent, but relies on rule-based programming (James 
et al. 2013). Previous generations of AI (mid-1950s until the late 1980s (Haugeland 1985)) 
were based on symbolic AI, following the assumption that humans use symbols to repre-
sent things and problems. Symbolic AI is intended to produce general, human-like intel-
ligence in a machine (Honavar 1995), whereas most modern research is directed at specific 
sub-problems.

2.1  Machine learning, neurons and artificial neural networks

The main class of algorithms in use today are based on machine learning (ML), which 
is data-driven. ML employs computational methods to ‘learn’ information directly from 
large amounts of example data without relying on a predetermined equation or model 
(Mitchell 1997). These algorithms adaptively converge to an optimum solution and gener-
ally improve their performance as the number of samples available for learning increases. 
Several types of learning algorithms exist, including supervised learning, unsupervised 
learning and reinforcement learning. Supervised learning algorithms build a mathematical 
model from a set of data that contains both the inputs and the desired outputs (each out-
put usually representing a classification of the associated input vector), while unsupervised 
learning algorithms model the problems on unlabeled data. Self-supervised learning is a 
form of unsupervised learning where the data provide the measurable structure to build 
a loss function. Semi-supervised learning employs a limited set of labeled data to label, 

6 While we hope that this categorization is helpful, it should be noted that several of the applications 
described could fit into, or span, multiple categories.
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usually a larger amount of, unlabeled data. Then both datasets are combined to create a 
new model. Reinforcement learning methods learn from trial and error and are effectively 
self-supervised (Russell and Norvig 2020).

Modern ML methods have their roots in the early computational model of a neuron pro-
posed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in (1943). This is 
shown in Fig. 1a. In their model, the artificial neuron receives one or more inputs, where 
each input is independently weighted. The neuron sums these weighted inputs and the 
result is passed through a non-linear function known as an activation function, represent-
ing the neuron’s action potential which is then transmitted along its axon to other neurons. 
The multi-layer perceptron (MLP) is a basic form of artificial neural network (ANN) that 
gained popularity in the 1980s. This connects its neural units in a multi-layered (typically 
one input layer, one hidden layer and one output layer) architecture (Fig. 1b). These neural 
layers are generally fully connected to adjacent layers, (i.e., each neuron in one layer is 
connected to all neurons in the next layer). The disadvantage of this approach is that the 
total number of parameters can be very large and this can make them prone to overfitting 
data.

For training, the MLP (and most supervised ANNs) utilizes error backpropagation to 
compute the gradient of a loss function. This loss function maps the event values from 
multiple inputs into one real number to represent the cost of that event. The goal of the 
training process is therefore to minimize the loss function over multiple presentations of 
the input dataset. The backpropagation algorithm was originally introduced in the 1970s, 
but peaked in popularity after (1986), when Rumelhart et al. described several neural net-
works where backpropagation worked far faster than earlier approaches, making ANNs 
applicable to practical problems. 

2.2  An introduction to deep neural networks

Deep learning is a subset of ML that employs deep artificial neural networks (DNNs). The 
word ‘deep’ means that there are multiple hidden layers of neuron collections that have 
learnable weights and biases. When the data being processed occupies multiple dimensions 
(images for example), convolutional neural networks (CNNs) are often employed. CNNs 
are (loosely) a biologically-inspired architecture and their results are tiled so that they over-
lap to obtain a better representation of the original inputs.

The first CNN was designed by Fukushima (1980) as a tool for visual pattern recogni-
tion (Fig. 2a). This so called Neocognitron was a hierarchical architecture with multiple 
convolutional and pooling layers. LeCun et al. (1989) applied the standard backpropaga-
tion algorithm to a deep neural network with the purpose of recognizing handwritten ZIP 
codes. At that time, it took 3 days to train the network. Lecun et al. (1998) proposed LeNet5 
(Fig.  2b), one of the earliest CNNs which could outperform other models for handwrit-
ten character recognition. The deep learning breakthrough occurred in the 2000s driven 
by the availability of graphics processing units (GPUs) that could dramatically accelerate 
training. Since around 2012, CNNs have represented the state of the art for complex prob-
lems such as image classification and recognition, having won several major international 
competitions.

A CNN creates its filters’ values based on the task at hand. Generally, the CNN learns 
to detect edges from the raw pixels in the first layer, then uses those edges to detect simple 
shapes in the next layer, and so on building complexity through subsequent layers. The 
higher layers produce high-level features with more semantically relevant meaning. This 
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means that the algorithms can exploit both low-level features and a higher-level under-
standing of what the data represent. Deep learning has therefore emerged as a powerful 
tool to find patterns, analyze information, and to predict future events. The number of lay-
ers in a deep network is unlimited but most current networks contain between 10 and 100 
layers.

Goodfellow et al. (2014) proposed an alternative form of architecture referred to as a 
Generative Adversarial Network (GAN). GANs consist of 2 AI competing modules where 
the first creates images (the generator) and the second (the discriminator) checks whether 
the received image is real or created from the first module. This competition results in the 
final picture being very similar to the real image. Because of their performance in reducing 
deceptive results, GAN technologies have become very popular and have been applied to 
numerous applications, including those related to creative practice.

While many types of machine learning algorithms exist, because of their prominence 
and performance, in this paper we place emphasis on deep learning methods. We will 
describe various applications relevant to the creative industries and critically review the 
methodologies that achieve, or have the potential to achieve, good performance.

2.3  Current AI technologies

This section presents state-of-the-art AI methods relevant to the creative industries. For 
those readers who prefer to focus on the applications, please refer to Sect. 3.

2.3.1  AI and the need for data

An AI system effectively combines a computational architecture and a learning strategy 
with a data environment in which it learns. Training databases are thus a critical compo-
nent in optimizing the performance of ML processes and hence a significant proportion of 
the value of an AI system resides in them. A well-designed training database with appro-
priate size and coverage can help significantly with model generalization and avoiding 
problems of overfitting.

In order to learn without being explicitly programmed, ML systems must be trained 
using data having statistics and characteristics typical of the particular application domain 
under consideration. This is true regardless of training methods (see Sect. 2.1). Good data-
sets typically contain large numbers of examples with a statistical distribution matched to 
this domain. This is crucial because it enables the network to estimate gradients in the data 
(error) domain that enables it to converge to an optimum solution, forming robust decision 
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boundaries between its classes. The network will then, after training, be able to reliably 
match new unseen information to the right answer when deployed.

The reliability of training dataset labels is key in achieving high performance super-
vised deep learning. These datasets must comprise: i) data that are statistically similar to 
the inputs when the models are used in the real situations and ii) ground truth annotations 
that tell the machine what the desired outputs are. For example, in segmentation applica-
tions, the dataset would comprise the images and the corresponding segmentation maps 
indicating homogeneous, or semantically meaningful regions in each image. Similarly for 
object recognition, the dataset would also include the original images while the ground 
truth would be the object categories, e.g., car, house, human, type of animals, etc.

Some labeled datasets are freely available for public use,7 but these are limited, espe-
cially in certain applications where data are difficult to collect and label. One of the largest, 
ImageNet, contains over 14 million images labeled into 22,000 classes. Care must be taken 
when collecting or using data to avoid imbalance and bias—skewed class distributions 
where the majority of data instances belong to a small number of classes with other classes 
being sparsely populated. For instance, in colorization, blue may appear more often as it is 
a color of sky, while pink flowers are much rarer. This imbalance causes ML algorithms to 
develop a bias towards classes with a greater number of instances; hence they preferentially 
predict majority class data. Features of minority classes are treated as noise and are often 
ignored.

Numerous approaches have been introduced to create balanced distributions and these 
can be divided into two major groups: modification of the learning algorithm, and data 
manipulation techniques (He and Garcia 2009). Zhang et al. (2016) solve the class-imbal-
ance problem by re-weighting the loss of each pixel at train time based on the pixel color 
rarity. Recently, Lehtinen et  al. (2018) have introduced an innovative approach to learn-
ing via their Noise2Noise network which demonstrates that it is possible to train a net-
work without clean data if the corrupted data complies with certain statistical assumptions. 
However, this technique needs further testing and refinement to cope with real-world noisy 
data. Typical data manipulation techniques include downsampling majority classes, over-
sampling minority classes, or both. Two primary techniques are used to expand, adjust and 
rebalance the number of samples in the dataset and, in turn, to improve ML performance 
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and model generalization: data augmentation and data synthesis. These are discussed fur-
ther below.

2.3.1.1 Data augmentation Data augmentation techniques are frequently used to increase 
the volume and diversity of a training dataset without the need to collect new data. Instead, 
existing data are used to generate more samples, through transformations such as crop-
ping, flipping, translating, rotating and scaling (Anantrasirichai et  al. 2018; Krizhevsky 
et al. 2012). This can assist by increasing the representation of minority classes and also 
help to avoid overfitting, which occurs when a model memorizes the full dataset instead 
of only learning the main concepts which underlie the problem. GANs (see Section 2.3.3) 
have recently been employed with success to enlarge training sets, with the most popular 
network currently being CycleGAN (Zhu et al. 2017). The original CycleGAN mapped one 
input to only one output, causing inefficiencies when dataset diversity is required. Huang 
et al. (2018) improved CycleGAN with a structure-aware network to augment training data 
for vehicle detection. This slightly modified architecture is trained to transform contrast CT 
images (computed tomography scans) into non-contrast images (Sandfort et al. 2019). A 
CycleGAN-based technique has also been used for emotion classification, to amplify cases 
of extremely rare emotions such as disgust (Zhu et al. 2018). IBM Research introduced a 
Balancing GAN (Mariani et al. 2018), where the model learns useful features from majority 
classes and uses these to generate images for minority classes that avoid features close to 
those of majority cases. An extensive survey of data augmentation techniques can be found 
in Shorten and Khoshgoftaar (2019).

2.3.1.2 Data synthesis Scientific or parametric models can be exploited to generate syn-
thetic data in those applications where it is difficult to collect real data, and where data 
augmentation techniques cannot increase variety in the dataset. Examples include signs of 
disease (Alsaih et al. 2017) and geological events that rarely happen (Anantrasirichai et al. 
2019). In the case of creative processes, problems are often ill-posed as ground truth data or 
ideal outputs are not available. Examples include post-production operations such as deblur-
ring, denoising and contrast enhancement. Synthetic data are often created by degrading the 
clean data. Su et al. (2017) applied synthetic motion blur on sharp video frames to train the 
deblurring model. LLNet (Lore et al. 2017), enhances low-light images, and is trained using 
a dataset generated with synthetic noise and intensity adjustment, while LLCNN (Tao et al. 
2017) employs a gamma adjustment technique.

2.3.2  Convolutional neural networks (CNNs)

2.3.2.1 Basic CNNs Convolutional neural networks (CNNs) are a class of deep feed-forward 
ANN. They comprise a series of convolutional layers that are designed to take advantage of 
2D structures, such as found in images. These employ locally connected layers that apply 
convolution operations between a predefined-size kernel and an internal signal; the output of 
each convolutional layer is the input signal modified by a convolution filter. The weights of 
the filter are adjusted according to a loss function that assesses the mismatch (during train-
ing) between the network output and the ground truth values or labels. Commonly used loss 
functions include �

1
 , �

2
 , SSIM (Tao et al. 2017) and perceptual loss (Johnson et al. 2016)). 

These errors are then backpropagated through multiple forward and backward iterations and 
the filter weights adjusted based on estimated gradients of the local error surface. This in 
turn drives what features are detected, associating them to the characteristics of the train-
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ing data. The early layers in a CNN extract low-level features conceptually similar to visual 
basis functions found in the primary visual cortex (Matsugu et al. 2003).

The most common CNN architecture (Fig.  3a8) has the outputs from its convolution 
layers connected to a pooling layer, which combines the outputs of neuron clusters into a 
single neuron. Subsequently, activation functions such as tanh (the hyperbolic tangent) or 
ReLU (Rectified Linear Unit) are applied to introduce non-linearity into the network (Ago-
stinelli et al. 2015). This structure is repeated with similar or different kernel sizes. As a 
result, the CNN learns to detect edges from the raw pixels in the first layer, then combines 
these to detect simple shapes in the next layer. The higher layers produce higher-level fea-
tures, which have more semantic meaning. The last few layers represent the classification 
part of the network. These consist of fully connected layers (i.e. being connected to all the 
activation outputs in the previous layer) and a softmax layer, where the output class is mod-
elled as a probability distribution - exponentially scaling the output between 0 and 1 (this is 
also referred to as a normalised exponential function).

VGG (Simonyan and Zisserman 2015) is one of the most common backbone net-
works, offering two depths: VGG-16 and VGG-19 with 16 and 19 layers respectively. 
The networks incorporate a series of convolution blocks (comprising convolutional lay-
ers, ReLU activations and a max-pooling layer), and the last three layers are fully connec-
tion with ReLU activations. VGG employs very small receptive fields (3 × 3 with a stride 
of 1) allowing deeper architectures than the older networks. DeepArt (Gatys et al. 2016) 
employs a VGG-Network without fully connected layers. It demonstrates that the higher 
layers in the VGG network can represent the content of an artwork. The pre-trained VGG 
network is widely used to provide a measure of perceptual loss (and style loss) during the 
training process of other networks (Johnson et al. 2016).

2.3.2.2 CNNs with reconstruction The basic structure of CNNs described in the previous 
section is sometimes called an ‘encoder’. This is because the network learns a representa-
tion of a set of data, which often has fewer parameters than the input. In other words, it 
compresses the input to produce a code or a latent-space representation. In contrast, some 
architectures omit pooling layers in order to create dense features in an output with the same 
size as the input.

Alternatively, the size of the feature map can be enlarged to that of the input via 
deconvolutional layers or transposed convolution layers (Fig.  3b9). This structure is 
often referred to as a ‘decoder’ as it generates the output using the code produced by the 
encoder. Encoder-decoder architectures combine an encoder and a decoder. Autoencoders 
are a special case of encoder-decoder models, where the input and output are the same 
size. Encoder-decoder models are suitable for creative applications, such as style transfer 
(Zhang et al. 2016), image restoration (Nah et al. 2017; Yang and Sun 2018; Zhang et al. 
2017), contrast enhancement (Lore et al. 2017; Tao et al. 2017), colorization (Zhang et al. 
2016) and super-resolution (Shi et al. 2016).

Some architectures also add skip connections or a bridge section (Long et al. 2015) so 
that the local and global features, as well as semantics are connected and captured, provid-
ing improved pixel-wise accuracy. These techniques are widely used in object detection 
(Anantrasirichai and Bull 2019) and object tracking (Redmon and Farhadi 2018). U-Net 

9 https:// uk. mathw orks. com/ solut ions/ image- video- proce ssing/ seman tic- segme ntati on. html.

8 https:// uk. mathw orks. com/ solut ions/ deep- learn ing/ convo lutio nal- neural- netwo rk. html.

https://uk.mathworks.com/solutions/image-video-processing/semantic-segmentation.html
https://uk.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
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(Ronneberger et al. 2015) is perhaps the most popular network of this kind, even though 
it was originally developed for biomedical image segmentation. Its network consists of a 
contracting path (encoder) and an expansive path (decoder), giving it the u-shaped archi-
tecture. The contracting path consists of the repeated application of two 3 × 3 convolutions, 
followed by ReLU and a max-pooling layer. Each step in the expansive path consists of a 
transposed convolution layer for upsampling, followed by two sets of convolutional and 
ReLU layers, and concatenations with correspondingly-resolution features from the con-
tracting path.

2.3.2.3 Advanced CNNs Some architectures introduce modified convolution operations for 
specific applications. For example, dilated convolution (Yu and Koltun 2016), also called 
atrous convolution, enlarges the receptive field, to support feature extraction locally and 
globally. The dilated convolution is applied to the input with a defined spacing between the 
values in a kernel. For example, a 3 × 3 kernel with a dilation rate of 2 has the same recep-
tive field as a 5 × 5 kernel, but using 9 parameters. This has been used for colorization by 
Zhang et al. (2016) in the creative sector. ResNet is an architecture developed for residual 
learning, comprising several residual blocks (He et al. 2016). A single residual block has 
two convolution layers and a skip connection between the input and the output of the last 
convolution layer. This avoids the problem of vanishing gradients, enabling very deep CNN 
architectures. Residual learning has become an important part of the state of the art in 
many application, such as contrast enhancement (Tao et al. 2017), colorization (Huang et al. 
2017), SR (Dai et al. 2019; Zhang et al. 2018a), object recognition (He et al. 2016), and 
denoising (Zhang et al. 2017).

connected
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Traditional convolution operations are performed in a regular grid fashion, leading to 
limitations for some applications, where the object and its location are not in the regu-
lar grid. Deformable convolution (Dai et al. 2017) has therefore been proposed to facili-
tate the region of support for the convolution operations to take on any shape, instead of 
just the traditional square shape. This has been used in object detection and SR (Wang 
et  al. 2019a). 3D deformable kernels have also been proposed for denoising video con-
tent, as they can better cope with large motions, producing cleaner and sharper sequences 
(Xiangyu Xu 2019).

Capsule networks were developed to address some of the deficiencies with traditional 
CNNs (Sabour et al. 2017). They are able to better model hierarchical relationships, where 
each neuron (referred to as a capsule) expresses the likelihood and properties of its fea-
tures, e.g., orientation or size. This improves object recognition performance. Capsule 
networks have been extended to other applications that deal with complex data, including 
multi-label text classification (Zhao et  al. 2019), slot filling and intent detection (Zhang 
et al. 2019a), polyphonic sound event detection (Vesperini et al. 2019) and sign language 
recognition (Jalal et al. 2018).

2.3.3  Generative adversarial networks (GANs)

The generative adversarial network (GAN) is a recent algorithmic innovation that employs 
two neural networks: generative and discriminative. The GAN pits one against the other 
in order to generate new, synthetic instances of data that can pass for real data. The gen-
eral GAN architecture is shown in Fig. 4a. It can be observed that the generative network 
generates new candidates to increase the error rate of the discriminative network until the 
discriminative network cannot tell whether these candidates are real or synthesized. The 
generator is typically a deconvolutional neural network, and the discriminator is a CNN. 
Recent successful applications of GANs include SR (Ledig et  al. 2017), inpainting (Yu 
et al. 2019), contrast enhancement (Kuang et al. 2019) and compression (Ma et al. 2019a).

GANs have a reputation of being difficult to train since the two models are trained 
simultaneously to find a Nash equilibrium but with each model updating its cost (or error) 
independently. Failures often occur when the discriminator cannot feedback information 
that is good enough for the generator to make progress, leading to vanishing gradients. 
Wasserstein loss is designed to prevent this (Arjovsky et al. 2017; Frogner et al. 2015). A 
specific condition or characteristic, such as a label associated with an image, rather than 
a generic sample from an unknown noise distribution can be included in the generative 
model, creating what is referred to as a conditional GAN (cGAN) (Mirza and Osindero 
2014). This improved GAN has been used in several applications, including pix2pix(Isola 
et al. 2017) and for deblurring (Kupyn et al. 2018).

Theoretically, the generator in a GAN will not learn to create new content, but it will 
just try to make its output look like the real data. Therefore, to produce creative works 
of art, the Creative Adversarial Network (CAN) has been proposed by Elgammal et  al. 
(2017). This works by including an additional signal in the generator to prevent it from 
generating content that is too similar to existing examples. Similar to traditional CNNs, a 
perceptual loss based on VGG16 (Johnson et al. 2016) has become common in applications 
where new images are generated that have the same semantics as the input (Antic 2020; 
Ledig et al. 2017).

Most GAN-based methods are currently limited to the generation of relatively small 
square images, e.g., 256 × 256 pixels (Zhang et al. 2017). The best resolution created up 
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to the time of this review is 1024 × 1024-pixels, achieved by NVIDIA research. The team 
introduced the progressive growing of GANs (Karras et  al. 2018) and showed that their 
method can generate near-realistic 1024 × 1024-pixel portrait images (trained for 14 days). 
However the problem of obvious artefacts at transition areas between foreground and back-
ground persists.

Another form of deep generative model is the Variational Autoencoder (VAE). A VAE 
is an autoencoder, where the encoding distribution is regularised to ensure the latent space 
has good properties to support the generative process. Then the decoder samples from 
this distribution to generate new data. Comparing VAEs to GANs, VAEs are more stable 
during training, while GANs are better at producing realistic images. Recently Deepmind 
(Google) has included vector quantization (VQ) within a VAE to learn a discrete latent 
representation (Razavi et al. 2019). Its performance for image generation are competitive 
with their BigGAN (Brock et al. 2019) but with greater capacity for generating a diverse 
range of images. There have also been many attempts to merge GANs and VAEs so that the 
end-to-end network benefits from both good samples and good representation, for example 
using a VAE as the generator for a GAN (Bhattacharyya et  al. 2019; Wan et  al. 2017). 
However, the results of this have not yet demonstrated significant improvement in terms of 
overall performance (Rosca et al. 2019), remaining an ongoing research topic.

A review of recent state-of-the-art GAN models and applications can be found in Foster 
(2019).

2.3.4  Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) have been widely employed to perform sequential rec-
ognition; they offer benefits in this respect by incorporating at least one feedback connec-
tion. The most commonly used type of RNN is the Long Short-Term Memory (LSTM) 
network (Hochreiter and Schmidhuber 1997), as this solves problems associated with 
vanishing gradients, observed in traditional RNNs. It does this by memorizing sufficient 
context information in time series data via its memory cell. Deep RNNs use their inter-
nal state to process variable length sequences of inputs, combining across multiple levels 
of representation. This makes them amenable to tasks such as speech recognition (Graves 
et  al. 2013), handwriting recognition (Doetsch et  al. 2014), and music generation (Briot 
et al. 2020). RNNs are also employed in image and video processing applications, where 
recurrency is applied to convolutional encoders for tasks such as drawing sketches (Ha and 
Eck 2018) and deblurring videos (Zhang et al. 2018). VINet (Kim et al. 2019) employs an 
encoder-decoder model using an RNN to estimate optical flow, processing multiple input 
frames concatenated with the previous inpainting results. An example network using an 
RNN is illustrated in Fig. 4b.

CNNs extract spatial features from its input images using convolutional filters and 
RNNs extract sequential features in time-series data using memory cells. In extension, 3D 
CNN, CNN-LSTM and ConvLSTM have been designed to extract spatial-temporal fea-
tures from video sequences. The 3D activation maps produced in 3D CNNs are able to 
analyze temporal or volumetric context which are important in applications such as medi-
cal imaging (Lundervold and Lundervold 2019) and action recognition (Ji et al. 2013). The 
CNN-LSTM simply concatenates a CNN and an LSTM (the 1D output of the CNN is the 
input to the LSTM) to process time-series data. In contrast, ConvLSTM is another LSTM 
variant, where the internal matrix multiplications are replaced with convolution operations 
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at each gate of the LSTM cell so that the LSTM input can be in the form of multi-dimen-
sional data (Shi et al. 2015).

2.3.5  Deep reinforcement learning (DRL)

Reinforcement learning (RL) is an ML algorithm trained to make a sequence of decisions. 
Deep reinforcement learning (DRL) combines ANNs with an RL architecture that enables 
RL agents to learn the best actions in a virtual environment to achieve their goals. The RL 
agents are comprised of a policy that performs a mapping from an input state to an output 
action and an algorithm responsible for updating this policy. This is done through leverag-
ing a system of rewards and punishments to acquire useful behaviour—effectively a trial-
and-error process. The framework trains using a simulation model, so it does not require a 
predefined training dataset, either labeled or unlabeled.

However, pure RL requires an excessive number of trials to learn fully, something that 
may be impractical in many (especially real-time) applications if training from scratch 
(Hessel et al. 2018). AlphaGo, a computer program developed by DeepMind Technologies 
that can beat a human professional Go player, employs RL on top of a pre-trained model to 
improve its play strategy to beat a particular player.10 RL could be useful in creative appli-
cations, where there may not be a predefined way to perform a given task, but where there 
are rules that the model has to follow to perform its duties correctly. Current applications 
involve end-to-end RL combined with CNNs, including gaming (Mnih et  al. 2013), and 
RLs with GANs in optimal painting stroke in stroke-based rendering (Huang et al. 2019). 
Recently RL methods have been developed using a graph neural network (GNN) to play 
Diplomacy, a highly complex 7-player (large scale) board game (Anthony et al. 2020).

Temporal difference (TD) learning (Gregor et al. 2019; Chen et al. 2018; Nguyen et al. 
2020) has recently been introduced as a model-free reinforcement learning method that 
learns how to predict a quantity that depends on future values of a given signal. That is, 
the model learns from an environment through episodes with no prior knowledge of the 
environment. This may well have application in the creative sector for storytelling, caption-
from-image generation and gaming.
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(a)                                                                                 (b)
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Fig. 4  Architectures of a GAN, b RNN for drawing sketches (Ha and Eck 2018)

10 https:// ai. googl eblog. com/ 2016/ 01/ alpha go- maste ring- ancie nt- game- of- go. html.

https://ai.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html
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3  AI for the creative industries

AI has increasingly (and often mistakenly) been associated with human creativity and artis-
tic practice. As it has demonstrated abilities to ‘see’, ‘hear’, ‘speak’, ‘move’, and ‘write’, it 
has been applied in domains and applications including: audio, image and video analysis, 
gaming, journalism, script writing, filmmaking, social media analysis and marketing. One 
of the earliest AI technologies, available for more than two decades, is Autotune, which 
automatically fixes vocal intonation errors (Hildebrand 1999). An early attempt to exploit 
AI for creating art occurred in 2016, when a three-dimensional (3D) printed painting, the 
Next Rembrandt,11 was produced solely based on training data from Rembrandt’s portfolio. 
It was created using deep learning algorithms and facial recognition techniques.

Creativity is defined in the Cambridge Dictionary as ‘the ability to produce original and 
unusual ideas, or to make something new or imaginative’. Creative tasks generally require 
some degree of original thinking, extensive experience and an understanding of the audi-
ence, while production tasks are, in general, more repetitive or predictable, making them 
more amenable to being performed by machines. To date, AI technologies have produced 
mixed results when used for generating original creative works. For example, GumGum12 
creates a new piece of art following the input of a brief idea from the user. The model is 
trained by recording the preferred tools and processes that the artist uses to create a paint-
ing. A Turing test revealed that it is difficult to distinguish these AI generated products 
from those painted by humans. AI methods often produce unusual results when employed 
to create new narratives for books or movie scripts. Botnik13 employs an AI algorithm to 
automatically remix texts of existing books to create a new chapter. In one experiment, 
the team fed the seven Harry Potter novels through their predictive text algorithm, and the 
‘bot’ created rather strange but amusing sentences, such as “Ron was standing there and 

doing a kind of frenzied tap dance. He saw Harry and immediately began to eat Hermi-

one’s family” (Sautoy 2019). However, when AI is used to create less structured content 
(e.g., some forms of ‘musical’ experience), it can demonstrate pleasurable difference (Briot 
et al. 2020).

In the production domain, Twitter has applied automatic cropping to create image 
thumbnails that show the most salient part of an image (Theis et al. 2018). The BBC has 
created a proof-of-concept system for automated coverage of live events. In this work, the 
AI-based system performs shot framing (wide, mid and close-up shots), sequencing, and 
shot selection automatically (Wright et  al. 2020). However, the initial results show that 
the algorithm needs some improvement if it is to replace human operators. Nippon Hoso 
Kyokai (NHK, Japan’s Broadcasting Corporation), has developed a new AI-driven broad-
casting technology called “Smart Production”. This approach extracts events and incidents 
from diverse sources such as social media feeds (e.g., Twitter), local government data and 
interviews, and integrates these into a human-friendly accessible format (Kaneko et  al. 
2020).

In this review, we divide creative applications into five major categories: content crea-
tion, information analysis, content enhancement and post production workflows, informa-
tion extraction and enhancement, and data compression. However, it should be noted that 

11 https:// www. nextr embra ndt. com/.
12 https:// gumgum. com/ artifi cial- creat ivity.
13 https:// botnik. org/.

https://www.nextrembrandt.com/
https://gumgum.com/artificial-creativity
https://botnik.org/
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many applications exploit several categories in combination. For instance, post-production 
tools (discussed in Sects. 3.3 and 3.4) frequently combine information extraction and con-
tent enhancement techniques. These combinations can together be used to create new expe-
riences, enhance existing material or to re-purpose archives (e.g., ‘Venice Through a VR 
Lens, 1898’ directed by BDH Immersive and Academy 7 Production14). These workflows 
may employ AI-enabled super-resolution, colorization, 3D reconstruction and frame rate 
interpolation methods. Gaming is another important example that has been key for the 
development of AI. It could be considered as an ‘all-in-one’ AI platform, since it combines 
rendering, prediction and learning.

We categorize the applications and the corresponding AI-based solutions as shown in 
Table 1. For those interested, a more detailed overview of contemporary Deep Learning 
systems is provided in Sect. 2.3.

3.1  Content creation

Content creation is a fundamental activity of artists and designers. This section discusses 
how AI technologies have been employed both to support the creative process and as a 
creator in their own right.

3.1.1  Script and movie generation

The narrative or story underpins all forms of creativity across art, fiction, journalism, 
gaming, and other forms of entertainment. AI has been used both to create stories and to 
optimize the use of supporting data, for example organizing and searching through huge 
archives for documentaries. The script of a fictional short film, Sunspring (2016),15 was 
entirely written by an AI machine, known as Benjamin, created by New York University. 
The model, based on a recurrent neural network (RNN) architecture, was trained using sci-
ence fiction screenplays as input, and the script was generated with random seeds from a 
sci-fi filmmaking contest. Sunspring has some unnatural story lines. In the sequel, It’s No 
Game (2017), Benjamin was then used only in selected areas and in collaboration with 
humans, producing a more fluid and natural plot. This reinforces the notion that the current 
AI technology can work more efficiently in conjunction with humans rather than being left 
to its own devices. In 2016, IBM Watson, an AI-based computer system, composed the 
6-min movie trailer of a horror film, called Morgan.16 The model was trained with more 
than 100 trailers of horror films enabling it to learn the normative structure and pattern. 
Later in 2018, Benjamin was used to generate a new film ‘Zone Out’ (produced within 
48 h). The project also experimented further by using face-swapping, based on a GAN and 
voice-generating technologies. This film was entirely directed by AI, but includes many 
artefacts and unnatural scenes as shown in Fig. 5a.17 Recently, ScriptBook18 introduced a 
story-awareness concept for AI-based storytelling. The generative models focus on three 

16 https:// www. ibm. com/ blogs/ think/ 2016/ 08/ cogni tive- movie- trail er/.
17 https:// www. youtu be. com/ watch?v= vUgUe Fu2Dcw.
18 https:// www. scrip tbook. io.

14 https:// www. bdh. net/ immer sive/ venice- 1898- throu gh- the- lens.
15 https:// www. imdb. com/ title/ tt579 4766/.

https://www.ibm.com/blogs/think/2016/08/cognitive-movie-trailer/
https://www.youtube.com/watch?v=vUgUeFu2Dcw
https://www.scriptbook.io
https://www.bdh.net/immersive/venice-1898-through-the-lens
https://www.imdb.com/title/tt5794766/
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aspects: awareness of characters and their traits, awareness of a script’s style and theme, 
and awareness of a script’s structure, so the resulting script is more natural.

In gaming, AI has been used to support design, decision-making and interactivity (Jus-
tesen et  al. 2020). Interactive narrative, where users create a storyline through actions, 
has been developed using AI methods over the past decade (Riedl and Bulitko 2012). For 
example, MADE (Massive Artificial Drama Engine for non-player characters) generates 
procedural content in games (Héctor 2014), and deep reinforcement learning has been 
employed for personalization (Wang et al. 2017). AI Dungeon19 is a web-based game that 
is capable of generating a storyline in real time, interacting with player input. The underly-
ing algorithm requires more than 10,000 label contributions for training to ensure that the 
model produces smooth interaction with the players. Procedural generation has been used 
to automatically randomize content so that a game does not present content in the same 
order every time (Short and Adams 2017). Modern games often integrate 3D visualization, 
augmented reality (AR) and virtual reality (VR) techniques, with the aim of making play 
more realistic and immersive. Examples include Vid2Vid (Wang et al. 2018) which uses a 
deep neural network, trained on real videos of cityscapes, to generate a synthetic 3D gam-
ing environment. Recently, NVIDIA Research has used a generative model [GameGAN by 
Kim et al. (2020b)], trained on 50,000 PAC-MAN episodes, to create new content, which 
can be used by game developers to automatically generate layouts for new game levels in 
the future.

3.1.2  Journalism and text generation

Natural language processing (NLP) refers to the broad class of computational techniques 
for incorporating speech and text. It analyzes natural language data and trains machines 
to perceive and to generate human language directly. NLP algorithms frequently involve 
speech recognition (Sect. 3.4), natural language understanding [e.g., BERT by Google AI 
(Devlin et al. 2019)], and natural language generation (Leppänen et al. 2017). Automated 
journalism, also known as robot journalism, describes automated tools that can gener-
ate news articles from structured data. The process scans large amounts of assorted data, 
orders key points, and inserts details such as names, places, statistics, and some figures 
(Cohen 2015). This can be achieved through NLP and text mining techniques (Dörr 2016).

AI can help to break down barriers between different languages with machine transla-
tion (Dzmitry Bahdanau 2015). A conditioned GAN with an RNN architecture has been 
proposed for language translation by Subramanian et  al. (2018). It was used for the dif-
ficult task of generating English sentences from Chinese poems; it creates understandable 
text but sometimes with grammatical errors. CNN and RNN architectures are employed to 
translate video into natural language sentences (Venugopalan et al. 2015). AI can also be 
used to rewrite one article to suit several different channels or audience tastes.20 A survey 
of recent deep learning methods for text generation by Iqbal and Qureshi (2020) concludes 
that text generated from images could be most amenable to GAN processing while topic-
to-text translation is likely to be dominated by variational autoencoders (VAE).

19 https:// aidun geon. io/.
20 https:// www. niema nlab. org/ 2016/ 10/ the- ap- wants- to- use- machi ne- learn ing- to- autom ate- turni ng- print- 
stori es- into- broad cast- ones/.

https://aidungeon.io/
https://www.niemanlab.org/2016/10/the-ap-wants-to-use-machine-learning-to-automate-turning-print-stories-into-broadcast-ones/
https://www.niemanlab.org/2016/10/the-ap-wants-to-use-machine-learning-to-automate-turning-print-stories-into-broadcast-ones/
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Automated journalism is now quite widely used. For example, BBC reported on the UK 
general election in 2019 using such tools.21 Forbes uses an AI-based content management 
system, called Bertie, to assist in providing reporters with the first drafts and templates for 
news stories.22 The Washington Post also has a robot reporting program called Heliograf.23 
Microsoft has announced in 2020 that they use automated systems to select news stories to 
appear on MSN website.24 This application of AI demonstrates that current AI technology 
can be effective in supporting human journalists in constrained cases, increasing produc-
tion efficiency.

3.1.3  Music generation

There are many different areas where sound design is used in professional practice, includ-
ing television, film, music production, sound art, video games and theatre. Applications of 
AI in this domain include searching through large databases to find the most appropriate 
match for such applications (see Sect. 3.2.3), and assisting sound design. Currently, sev-
eral AI assisted music composition systems support music creation. The process gener-
ally involves using ML algorithms to analyze data to find musical patterns, e.g., chords, 
tempo, and length from various instruments, synthesizers and drums. The system then sug-
gests new composed melodies that may inspire the artist. Example software includes Flow 
Machines by Sony,25 Jukebox by OpenAI26 and NSynth by Google AI.27 In 2016, Flow 
Machines launched a song in the style of The Beatles, and in 2018 the team released the 
first AI album, ‘Hello World’, composed by an artist, SKYGGE (Benoit Carré), using an 
AI-based tool.28 Coconet uses a CNN to infill missing pieces of music.29 Modelling music 

Fig. 5  a A screenshot from ‘Zone Out’, where the face of the woman was replaced with a man’s mouth17 . b 
Music transcription generated by AI algorithm31

21 https:// www. bbc. com/ news/ techn ology- 50779 761.
22 https:// www. forbes. com/ sites/ nicol emart in1/ 2019/ 02/ 08/ did-a- robot- write- this- how- ai- is- impac ting- 
journ alism/# 5292a b6177 95.
23 https:// www. washi ngton post. com/ pr/ wp/ 2016/ 10/ 19/ the- washi ngton- post- uses- artifi cial- intel ligen ce- to- 
cover- nearly- 500- races- on- elect ion- day/.
24 https:// www. bbc. com/ news/ world- us- canada- 52860 247.
25 http:// www. flow- machi nes. com/.
26 https:// openai. com/ blog/ jukeb ox/.
27 https:// magen ta. tenso rflow. org/ nsynth.
28 https:// www. hello world album. net/.
29 https:// magen ta. tenso rflow. org/ cocon et.

https://www.bbc.com/news/technology-50779761
https://www.forbes.com/sites/nicolemartin1/2019/02/08/did-a-robot-write-this-how-ai-is-impacting-journalism/#5292ab617795
https://www.forbes.com/sites/nicolemartin1/2019/02/08/did-a-robot-write-this-how-ai-is-impacting-journalism/#5292ab617795
https://www.washingtonpost.com/pr/wp/2016/10/19/the-washington-post-uses-artificial-intelligence-to-cover-nearly-500-races-on-election-day/
https://www.washingtonpost.com/pr/wp/2016/10/19/the-washington-post-uses-artificial-intelligence-to-cover-nearly-500-races-on-election-day/
https://www.bbc.com/news/world-us-canada-52860247
http://www.flow-machines.com/
https://openai.com/blog/jukebox/
https://magenta.tensorflow.org/nsynth
https://www.helloworldalbum.net/
https://magenta.tensorflow.org/coconet
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creativity is often achieved using Long Short-Term Memory (LSTM), a special type of 
RNN architecture (Sturm et al. 2016) (an example of the output of this model is shown in 
Fig. 5b30 and the reader can experience AI-based music at Ars Electronica Voyages Chan-
nel31). The model takes a transcribed musical idea and transforms it in meaningful ways. 
For example, DeepJ composes music conditioned on a specific mixture of composer styles 
using a Biaxial LSTM architecture (Mao et  al. 2018). More recently, generative mod-
els have been configured based on an LSTM neural network to generate music (Li et al. 
2019b).

Alongside these methods of musical notation based audio synthesis, there also exists a 
range of direct waveform synthesis techniques that learn and/or act directly on the wave-
form of the audio itself [for example (Donahue et  al. 2019; Engel et  al. 2019]. A more 
detailed overview of Deep Learning techniques for music generation can be found in Briot 
et al. (2020).

3.1.4  Image generation

AI can be used to create new digital imagery or art-forms automatically, based on selected 
training datasets, e.g., new examples of bedrooms (Radford et al. 2016), cartoon characters 
(Jin et  al. 2017), celebrity headshots (Karras et  al. 2018). Some applications produce a 
new image conditioned to the input image, referred to as image-to-image translation, or 
‘style transfer’. It is called translation or transfer, because the image output has a different 
appearance to the input but with similar semantic content. That is, the algorithms learn 
the mapping between an input image and an output image. For example, grayscale tones 
can be converted into natural colors (Zhang et al. 2016), using eight simple convolution 
layers to capture localized semantic meaning and to generate a and b color channels of the 
CIELAB color space. This involves mapping class probabilities to point estimates in ab 
space. DeepArt (Gatys et al. 2016) transforms the input image into the style of the selected 
artist by combining feature maps from different convolutional layers. A stroke-based draw-
ing method trains machines to draw and generalise abstract concepts in a manner similar to 
humans using RNNs (Ha and Eck 2018).

A Berkeley AI Research team has successfully used GANs to convert between two 
image types (Isola et al. 2017), e.g., from a Google map to an aerial photo, a segmenta-
tion map to a real scene, or a sketch to a colored object (Fig.  6). They have published 
their pix2pix codebase32 and invited the online community to experiment with it in dif-
ferent application domains, including depth map to street view, background removal and 
pose transfer. For example pix2pix has been used33 to create a Renaissance portrait from 
a real portrait photo. Following pix2pix, a large number of research works have improved 
the performance of style transfer. Cycle-consistent adversarial networks (CycleGAN) (Zhu 
et al. 2017) and DualGAN (Yi et al. 2017) have been proposed for unsupervised learning. 
Both algorithms are based on similar concepts—the images of both groups are translated 
twice (e.g., from group A to group B, then translated back to the original group A) and the 
loss function compares the input image and its reconstruction, computing what is referred 
to as cycle-consistency loss. Samsung AI has shown, using GANs, that it is possible to turn 

32 https:// phill ipi. github. io/ pix2p ix/.
33 https:// ai- art. tokyo/ en/.

30 https:// folkr nn. org/.
31 https:// ars. elect ronica. art/ keple rsgar dens/ en/ folk- algor ithms/.

https://phillipi.github.io/pix2pix/
https://ai-art.tokyo/en/
https://folkrnn.org/
https://ars.electronica.art/keplersgardens/en/folk-algorithms/
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a portrait image, such as the Mona Lisa, into a video where the portrait’s face speaks in the 
style of a guide (Zakharov et al. 2019). Conditional GANs can be trained to transform a 
human face into one of a different age (Song et al. 2018b), and to change facial attributes, 
such as the presence of a beard, skin condition, hair style and color (He et al. 2019).

Several creative tools have employed ML-AI methods to create new unique artworks. 
For example, Picbreeder34 and EndlessForms35 employ Hypercube-based NeuroEvolu-
tion of Augmenting Topologies (Stanley et al. 2009) as a generative encoder that exploits 
geometric regularities. Artbreeder36 and GANVAS Studio37 employ BigGAN (Brock et al. 
2019) to generate high-resolution class-conditional images and also to mix two images 
together to create new interesting work.

3.1.5  Animation

Animation is the process of using drawings and models to create moving images. Tradi-
tionally this was done by hand-drawing each frame in the sequence and rendering these 
at an appropriate rate to give the appearance of continuous motion. In recent years, AI 
methods have been employed to automate the animation process making it easier, faster 
and more realistic than in the past. A single animation project can involve several shot 
types, ranging from simple camera pans on a static scene, to more challenging dynamic 
movements of multiple interacting characters [e.g basketball players (Starke et al. 2020)]. 
ML-based AI is particularly well suited to learning models of motion from captured real 
motion sequences. These motion characteristics can be learnt using deep learning-based 
approaches, such as autoencoders (Holden et  al. 2015), LSTMs (Lee et  al. 2018), and 
motion prediction networks (Starke et  al. 2019). Then, the inference applies these char-
acteristics from the trained model to animate characters and dynamic movements. In sim-
ple animation, the motion can be estimated using a single low-cost camera. For example, 
Google research has created software for pose animation that turns a human pose into a 
cartoon animation in real time38. This is based on PoseNet (estimating pose position39) and 
FaceMesh (capturing face movement (Kartynnik et al. 2019)) as shown in Fig. 7a. Adobe 
has also created Character Animator software40 offering lip synchronisation, eye tracking 
and gesture control through webcam and microphone inputs in real-time. This has been 
adopted by Hollywood studios and other online content creators.

AI has also been employed for rendering objects and scenes. This includes the synthesis 
of 3D views from motion capture or from monocular cameras (see Sect. 3.4.6), shading 
(Nalbach et al. 2017) and dynamic texture synthesis (Tesfaldet et al. 2018). Creating real-
istic lighting in animation and visual effects has also benefited by combining traditional 
geometrical computer vision with enhanced ML approaches and multiple depth sensors 
(Guo et al. 2019). Animation is not only important within the film industry; it also plays 
an important role in the games industry, responsible for the portrayal of movement and 
behaviour. Animating characters, including their faces and postures, is a key component in 

34 http:// picbr eeder. org/.
35 http:// endle ssfor ms. com/.
36 https:// www. artbr eeder. com/.
37 https:// ganvas. studio/.
38 https:// github. com/ yemou nt/ pose- anima tor/.
39 https:// www. tenso rflow. org/ lite/ models/ pose_ estim ation/ overv iew.
40 https:// www. adobe. com/ produ cts/ chara cter- anima tor. html.

http://picbreeder.org/
http://endlessforms.com/
https://www.artbreeder.com/
https://ganvas.studio/
https://github.com/yemount/pose-animator/
https://www.tensorflow.org/lite/models/pose_estimation/overview
https://www.adobe.com/products/character-animator.html
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a game engine. AI-based technologies have enabled digital characters and audiences to co-
exist and interact.41 Avatar creation has also been employed to enhance virtual assistants,42 
e.g., using proprietary photoreal AI face synthesis technology (Nagano et al. 2018). Face-
book Reality Labs have employed ML-AI techniques to animate realistic digital humans, 
called Codec Avatars, in real time using GAN-based style transfer and using a VAE to 
extract avatar parameters (Wei et al. 2019). AI is also employed to up-sample frame rate in 
animation (Siyao et al. 2021).

3.1.6  Augmented, virtual and mixed reality (VR, AR, MR)

AR and VR use computer technologies to create a fully simulated environment or one that 
is real but augmented with virtual entities. AR expands the physical world with digital 
layers via mobile phones, tablets or head mounted displays, while VR takes the user into 
immersive experiences via a headset with a 3D display that isolates the viewer (at least in 
an audio-visual sense) from the physical world (Milgram et al. 1995).

Fig. 6  Example applications of pix2pix framework (Isola et al. 2017)

Fig. 7  a Real-time pose animator38 . b Deepfake applied to replaces Alden Ehrenreich with young Harrison 
Ford in Solo: a star wars story by derpfakes50

41 https:// cubic motion. com/ perso na/.
42 https:// www. pinsc reen. com/.

https://cubicmotion.com/persona/
https://www.pinscreen.com/
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Significant predictions have been made about the growth of AR and VR markets in 
recent years but these have not realised yet.43 This is due to many factors including equip-
ment cost, available content and the physiological effects of ‘immersion’ (particularly over 
extended time periods) due to conflicting sensory interactions (Ng et al. 2020). VR can be 
used to simulate a real workspace for training workers for the sake of safety and to prevent 
the real-world consequences of failure (Laver et al. 2017). In the healthcare industry, VR 
is being increasingly used in various sectors, ranging from surgical simulation to physical 
therapy (Keswani et al. 2020).

Gaming is often cited as a major market for VR, along with related areas such as pre-
visualisation of designs or creative productions (e.g., in building, architecture and film-
making). A good list of VR games can be found in many article.44 Deep learning technolo-
gies have been exploited in many aspects of gaming, for example in VR/AR game design 
(Zhang 2020) and emotion detection while using VR to improve the user’s immersive 
experience (Quesnel et al. 2018). More recently AI gaming methods have been extended 
into the area of virtual production, where the tools are scaled to produce dynamic virtual 
environments for filmmaking

AR perhaps has more early potential for growth than VR and uses have been developed 
in education and to create shared information, work or design spaces, where it can provide 
added 3D realism for the users interacting in the space (Palmarini et al. 2018). AR has also 
gained interest in augmenting experiences in movie and theatre settings.45 A review of cur-
rent and future trends of AR and VR systems can be found in Bastug et al. (2017).

MR combines the real world with digital elements (or the virtual world) (Milgram and 
Kishino 1994). It allows us to interact with objects and environments in both the real and 
virtual world by using touch technology and other sensory interfaces, to merge reality and 
imagination and to provide more engaging experiences. Examples of MR applications 
include the ‘MR Sales Gallery’ used by large real estate developers.46 It is a virtual sam-
ple room that simulates the environment for customers to experience the atmosphere of an 
interactive residential project. The growth of VR, AR and MR technologies is described by 
Immerse UK in their recent report on the immersive economy in the UK 2019.47 Extended 
reality (XR) is a newer technology that combines VR, AR and MR with internet connectiv-
ity, which opens further opportunities across industry, education, defence, health, tourism 
and entertainment (Chuah 2018).

An immersive experience with VR or MR requires good quality, high-resolution, ani-
mated worlds or 360-degree video content (Ozcinar and Smolic 2018). This poses new 
problems for data compression and visual quality assessment, which are the subject of 
increased research activity currently (Xu et al. 2020). AI technologies have been employed 
to make AR/VR/MR/XR content more exciting and realistic, to robustly track and localize 
objects and users in the environment. For example, automatic map reading using image-
based localization (Panphattarasap and Calway 2018), and gaze estimation (Anantrasirichai 

43 https:// www. marke trese archf uture. com/ repor ts/ augme nted- reali ty- virtu al- reali ty- market- 6884.
44 https:// www. forbes. com/ sites/ jesse damia ni/ 2020/ 01/ 15/ the- top- 50- vr- games- of- 2019/? sh= 42279 94132 
2d.
45 https:// www. factor- tech. com/ featu re/ lifti ng- the- curta in- on- augme nted- reali ty- how- ar- is- bring ing- theat re- 
into- the- future/.
46 https:// dynam ics. micro soft. com/ en- gb/ mixed- reali ty/ overv iew/.
47 https:// www. immer seuk. org/ wp- conte nt/ uploa ds/ 2019/ 11/ The- Immer sive- Econo my- in- the- UK- Report- 
2019. pdf.

https://www.marketresearchfuture.com/reports/augmented-reality-virtual-reality-market-6884
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https://www.forbes.com/sites/jessedamiani/2020/01/15/the-top-50-vr-games-of-2019/?sh=42279941322d
https://www.factor-tech.com/feature/lifting-the-curtain-on-augmented-reality-how-ar-is-bringing-theatre-into-the-future/
https://www.factor-tech.com/feature/lifting-the-curtain-on-augmented-reality-how-ar-is-bringing-theatre-into-the-future/
https://dynamics.microsoft.com/en-gb/mixed-reality/overview/
https://www.immerseuk.org/wp-content/uploads/2019/11/The-Immersive-Economy-in-the-UK-Report-2019.pdf
https://www.immerseuk.org/wp-content/uploads/2019/11/The-Immersive-Economy-in-the-UK-Report-2019.pdf
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et al. 2016; Soccini 2017). Oculus Insight, by Facebook, uses visual-inertial SLAM (simul-
taneous localization and mapping) to generate real-time maps and position tracking.48 
More sophisticated approaches, such as Neural Topological SLAM, leverage semantics 
and geometric information to improve long-horizon navigation (Chaplot et al. 2020). Com-
bining audio and visual sensors can further improve navigation of egocentric observations 
in complex 3D environments, which can be done through deep reinforcement learning 
approach (Chen et al. 2020).

3.1.7  Deepfakes

Manipulations of visual and auditory media, either for amusement or malicious intent, 
are not new. However, advances in AI and ML methods have taken this to another level, 
improving their realistism and providing automated processes that make them easier to 
render. Text generator tools, such as those by OpenAI, can generate coherent paragraphs 
of text with basic comprehension, translation and summarization but have also been used 
to create fake news or abusive spam on social media.49 Deepfake technologies can also 
create realistic fake videos by replacing some parts of the media with synthetic content. 
For example, substituting someone’s face while hair, body and action remain the same 
(Fig. 7b50). Early research created mouth movement synthesis tools capable of making the 
subject appear to say something different from the actual narrative, e.g., President Barack 
Obama is lip-synchronized to a new audio track in Suwajanakorn et  al. (2017). More 
recently, DeepFaceLab (Perov et al. 2020) provided a state-of-the-art tool for face replace-
ment; however manual editing is still required in order to create the most natural appear-
ance. Whole body movements have been generated via learning from a source video to 
synthesize the positions of arms, legs and body of the target (Chan et al. 2019).

Deep learning approaches to Deepfake generation primarily employ generative neu-
ral network architectures, e.g., VAEs (Kietzmann et al. 2020) and GANs (Zakharov et al. 
2019). Despite rapid progress in this area, the creation of perfectly natural figures remains 
challenging; for example deepfake faces often do not blink naturally. Deepfake techniques 
have been widely used to create pornographic images of celebrities, to cause political dis-
tress or social unrest, for purposes of blackmail and to announce fake terrorism events or 
other disasters. This has resulted in several countries banning non-consensual deepfake 
content. To counter these often malicious attacks, a number of approaches have been 
reported and introduced to detect fake digital content (Güera and Delp 2018; Hasan and 
Salah 2019; Li and Lyu 2019).

3.1.8  Content and captions

There are many approaches that attempt to interpret an image or video and then automati-
cally generate captions based on its content (Pu et al. 2016; Xia and Wang 2005; Xu et al. 
2017b). This can successfully be achieved through object recognition (see Sect. 3.4); You-
Tube has provided this function for both video-on-demand and livestream videos.51

51 https:// suppo rt. google. com/ youtu be/ answer/ 63735 54? hl= en.

48 https:// ai. faceb ook. com/ blog/ power ed- by- ai- oculus- insig ht/.
49 https:// talkt otran sform er. com/.
50 https:// www. youtu be. com/ watch? time_ conti nue= 2&v= ANXuc rz7Hjs.

https://support.google.com/youtube/answer/6373554?hl=en
https://ai.facebook.com/blog/powered-by-ai-oculus-insight/
https://talktotransformer.com/
https://www.youtube.com/watch?time_continue=2&v=ANXucrz7Hjs
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The other way around, AI can also help to generate a new image from text. However, 
this problem is far more complicated; attempts so far have been based on GANs. Early 
work by Mansimov et al. (2016) was capable of generating background image content with 
relevant colors but with blurred foreground details. A conditioning augmentation technique 
was proposed to stabilize the training process of the conditional GAN, and also to improve 
the diversity of the generated samples (Zhang et al. 2017). Recent methods with signifi-
cantly increased complexity are capable of learning to generate an image in an object-wise 
fashion, leading to more natural-looking results (Li et  al. 2019c). However, limitations 
remain, for example artefacts often appear around object boundaries or inappropriate back-
grounds can be produced if the words of the caption are not given in the correct order.

3.2  Information analysis

AI has proven capability to process and adapt to large amounts of training data. It can learn 
and analyze the characteristics of these data, making it possible to classify content and 
predict outcomes with high levels of confidence. Example applications include advertis-
ing and film analysis, as well as image or video retrieval, for example enabling producers 
to acquire information, analysts to better market products or journalists to retrieve content 
relevant to an investigation.

3.2.1  Text categorization

Text categorization is a core application of NLP. This generic text processing task is useful 
in indexing documents for subsequent retrieval and content analysis (e.g., spam detection, 
sentiment classification, and topic classification). It can be thought of as the generation of 
summarised texts from full texts. Traditional techniques for both multi-class and multi-
label classifications include decision trees, support vector machines (Kowsari et al. 2019), 
term frequency–inverse document frequency (Azam and Yao 2012), and extreme learning 
machine (Rezaei-Ravari et al. 2021). Unsupervised learning with self-organizing maps has 
also been investigated (Pawar and Gawande 2012). Modern NLP techniques are based on 
deep learning, where generally the first layer is an embedding layer that converts words to 
vector representations. Additional CNN layers are then added to extract text features and 
learn word positions (Johnson and Zhang 2015). RNNs (mostly based on LSTM architec-
tures) have also been concatenated to learn sentences and give prediction outputs (Chen 
et al. 2017; Gunasekara and Nejadgholi 2018). A category sentence generative adversarial 
network has also been proposed that combines GAN, RNN and reinforcement learning 
to enlarge training datasets, which improves performance for sentiment classification (Li 
et al. 2018b). Recently, an attention layer has been integrated into the network to provide 
semantic representations in aspect-based sentiment analysis (Truşcă et al. 2020). The artist, 
Vibeke Sorensen, has applied AI techniques to categorize texts from global social networks 
such as Twitter into six live emotions and display the ‘Mood of the Planet’ artistically 
using six different colors.52

52 http:// vibeke. info/ mood- of- the- planet/.

http://vibeke.info/mood-of-the-planet/
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3.2.2  Advertisements and film analysis

AI can assist creators in matching content more effectively to their audiences, for example 
recommending music and movies in a streaming service, like Spotify or Netflix. Learning 
systems have also been used to characterize and target individual viewers, optimizing the 
time they spend on advertising (Lacerda et al. 2006). This approach assesses what users 
look at and how long they spend browsing adverts, participating on social media platforms. 
In addition, AI can be used to inform how adverts should be presented to help boost their 
effectiveness, for example by identifying suitable customers and showing the ad at the right 
time. This normally involves gathering and analysing personal data in order to predict pref-
erences (Golbeck et al. 2011).

Contextualizing social-media conversations can also help advertisers understand how 
consumers feel about products and to detect fraudulent ad impressions (Ghani et al. 2019). 
This can be achieved using NLP methods (Young et al. 2018). Recently, an AI-based data 
analysis tool has been introduced to assist filmmaking companies to develop strategies for 
how, when and where prospective films should be released (Dodds 2020). The tool employs 
ML approaches to model the patterns of historical data about film performances associat-
ing with the film’s content and themes. This is also used in gaming industries, where the 
behaviour of each player is analyzed so that the company can better understand their style 
of play and decide when best to approach them to make money.53

3.2.3  Content retrieval

Data retrieval is an important component in many creative processes, since producing a 
new piece of work generally requires undertaking a significant amount of research at the 
start. Traditional retrieval technologies employ metadata or annotation text (e.g., titles, 
captions, tags, keywords and descriptions) to the source content (Jeon et  al. 2003). The 
manual annotation process needed to create this metadata is however very time-consuming. 
AI methods have enabled automatic annotation by supporting the analysis of media based 
on audio and object recognition and scene understanding (Amato et  al. 2017; Wu et  al. 
2015).

In contrast to traditional concept-based approaches, content-based image retrieval (or 
query by image content (QBIC)) analyzes the content of an image rather than its metadata. 
A reverse image search technique (one of the techniques Google Images uses54) extracts 
low-level features from an input image, such as points, lines, shapes, colors and textures. 
The query system then searches for related images by matching these features within the 
search space. Modern image retrieval methods often employ deep learning techniques, ena-
bling image to image searching by extracting low-level features and then combining these 
to form semantic representations of the reference image that can be used as the basis of a 
search (Wan et al. 2014). For example, when a user uploads an image of a dog to Google 
Images, the search engine will return the dog breed, show similar websites by searching 
with this keyword, and also show selected images that are visually similar to that dog, 
e.g., with similar colors and background. These techniques have been further improved by 
exploiting features at local, regional and global image levels (Gordo et  al. 2016). GAN 

53 https:// www. bloom berg. com/ news/ artic les/ 2017- 10- 23/ game- makers- tap- ai- to- profi le- each- player- and- 
keep- them- hooked.
54 https:// images. google. com/.
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approaches are also popular, associated with learning-based hashing which was proposed 
for scalable image retrieval (Song et  al. 2018a). Video retrieval can be more challeng-
ing due to the requirement for understanding activities, interactions between objects and 
unknown context; RNNs have provided a natural extension that supports the extraction of 
sequential behaviour in this case (Jabeen et al. 2018).

Music information retrieval extracts features of sound, and then converts these to a 
meaningful representation suitable for a query engine. Several methods for this have been 
reported, including automatic tagging, query by humming, search by sound and acoustic 
fingerprinting (Kaminskas and Ricci 2012).

3.2.4  Recommendation services

A recommendation engine is a system that suggests products, services, information to 
users based on analysis of data. For example, a music curator creates a soundtrack or a 
playlist that has songs with similar mood and tone, bringing related content to the user. 
Curation tools, capable of searching large databases and creating recommendation short-
lists, have become popular because they can save time, elevate brand visibility and increase 
connection to the audience. The techniques used in recommendation systems generally 
fall into three categories: (i) content-based filtering, which uses a single user’s data, (ii) 
collaborative filtering, the most prominent approach, that derives suggestions from many 
other users, and (iii) knowledge-based system, based on specific queries made by the user, 
which is generally employed in complex domains, where the first two cannot be applied. 
The approach can be hybrid; for instance where content-based filtering exploits individual 
metadata and collaborative filtering finds overlaps between user playlists. Such systems 
build a profile of what the users listen to or watch, and then look at what other people who 
have similar profiles listen to or watch. ESPN and Netflix have partnered with Spotify to 
curate playlists from the documentary ‘The Last Dance’. Spotify has created music and 
podcast playlists that viewers can check out after watching the show.55

Content summarization is a fundamental tool that can support recommendation services. 
Text categorization approaches extract important content from a document into key indices 
(see Sect. 3.2.1). RNN-based models incorporating attention models have been employed 
to successfully generate a summary in the form of an abstract (Rush et al. 2015), short par-
agraph (See et al. 2017) or a personalized sentence (Li et al. 2019a). The gaze behavior of 
an individual viewer has also been included for personalised text summarization (Yi et al. 
2020). The personalized identification of key frames and start points in a video has also 
been framed as an optimization problem in Chen et al. (2014). ML approaches have been 
developed to perform content-based recommendations. Multimodal features of text, audio, 
image, and video content are extracted and used to seek similar content in Deldjoo et al. 
(2018). This task is relevant to content retrieval, as discussed in Sect.  3.2.3. A detailed 
review of deep learning for recommendation systems can be found in Batmaz et al. (2019).

3.2.5  Intelligent assistants

Intelligent Assistants employ a combination of AI tools, including many of those men-
tioned above, in the form of a software agent that can perform tasks or services for an 

55 https:// open. spoti fy. com/ show/ 3ViwF Adff2 YaXPy gfUuv 51.

https://open.spotify.com/show/3ViwFAdff2YaXPygfUuv51
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individual. These virtual agents can access information via digital channels to answer ques-
tions relating to, for example, weather forecasts, news items or encyclopaedic enquiries. 
They can recommend songs, movies and places, as well as suggest routes. They can also 
manage personal schedules, emails, and reminders. The communication can be in the form 
of text or voice. The AI technologies behind the intelligent assistants are based on sophis-
ticated ML and NLP methods. Examples of current intelligent assistants include Google 
Assistant,56 Siri,57 Amazon Alexa and Nina by Nuance.58 Similarly, chatbots and other 
types of virtual assistants are used for marketing, customer service, finding specific content 
and information gathering (Xu et al. 2017a).

3.3  Content enhancement and post production workflows

It is often the case that original content (whether images, videos, audio or documents) is 
not fit for the purpose of its target audience. This could be due to noise caused by sen-
sor limitations, the conditions prevailing during acquisition, or degradation over time. AI 
offers the potential to create assistive intelligent tools that improve both quality and man-
agement, particularly for mass-produced content.

3.3.1  Contrast enhancement

The human visual system employs many opponent processes, both in the retina and vis-
ual cortex, that rely heavily on differences in color, luminance or motion to trigger salient 
reactions (Bull and Zhang 2021). Contrast is the difference in luminance and/or color that 
makes an object distinguishable, and this is an important factor in any subjective evaluation 
of image quality. Low contrast images exhibit a narrow range of tones and can therefore 
appear flat or dull. Non-parametric methods for contrast enhancement involve histogram 
equalisation which spans the intensity of an image between its bit depth limits from 0 to a 
maximum value (e.g., 255 for 8 bits/pixel). Contrast-limited adaptive histogram equalisa-
tion (CLAHE) is one example that is commonly used to adjust an histogram and reduce 
noise amplification (Pizer et  al. 1987). Modern methods have further extended perfor-
mance by exploiting CNNs and autoencoders (Lore et  al. 2017), inception modules and 
residual learning (Tao et al. 2017). Image Enhancement Conditional Generative Adversar-
ial Networks (IE-CGANs) designed to process both visible and infrared images have been 
proposed by Kuang et al. (2019). Contrast enhancement, along with other methods to be 
discussed later, suffer from a fundamental lack of data for supervised training because real 
image pairs with low and high contrast are unavailable (Jiang et al. 2021). Most of these 
methods therefore train their networks with synthetic data (see Sect. 2.3.1).

3.3.2  Colorization

Colorization is the process that adds or restores color in visual media. This can be useful 
in coloring archive black and white content, enhancing infrared imagery (e.g., in low-light 
natural history filming) and also in restoring the color of aged film. A good example is the 

56 https:// assis tant. google. com/.
57 https:// www. apple. com/ siri/.
58 https:// www. nuance. com/ omni- chann el- custo mer- engag ement/ digit al/ virtu al- assis tant/ nina. html.

https://assistant.google.com/
https://www.apple.com/siri/
https://www.nuance.com/omni-channel-customer-engagement/digital/virtual-assistant/nina.html
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recent film “They Shall Not Grow Old” (2018) by Peter Jackson, that colorized (and cor-
rected for speed and jerkiness, added sound and converted to 3D) 90 minutes of footage 
from World War One. The workflow was based on extensive studies of WW1 equipment 
and uniforms as a reference point and involved a time-consuming use of post production 
tools.

The first AI-based techniques for colorization used a CNN with only three convolutional 
layers to convert a grayscale image into chrominance values and refined them with bilateral 
filters to generate a natural color image (Cheng et al. 2015). A deeper network, but still 
only with eight dilated convolutional layers, was proposed a year later (Zhang et al. 2016). 
This network captured better semantics, resulting in an improvement on images with dis-
tinct foreground objects. Encoder-decoder networks are employed in Xu et al. (2020).

Colorization remains a challenging problem for AI as recognized in the recent Chal-
lenge in Computer Vision and Pattern Recognition Workshops (CVPRW) in 2019 (Nah 
et al. 2019). Six teams competed and all of them employed deep learning methods. Most 
of the methods adopted an encoder-decoder or a structure based on U-Net (Ronneberger 
et al. 2015). The deep residual net (NesNet) architecture (He et al. 2016) and the dense net 
(DenseNet) architecture (Huang et al. 2017) have both demonstrated effective conversion 
of gray scale to natural-looking color images. More complex architectures have been devel-
oped based on GAN structures (Zhang et  al. 2019), for example DeOldify and NoGAN 
(Antic 2020). The latter model was shown to reduce temporal color flickering on the video 
sequence, which is a common problem when enhancing colors on an individual frame by 
frame basis. Infrared images have also been converted to natural color images using CNNs 
(e.g., Limmer and Lensch 2016) (Fig. 8a) and GANs (e.g., Kuang et al. 2020; Suarez et al. 
2017).

3.3.3  Upscaling imagery: super-resolution methods

Super-resolution (SR) approaches have gained popularity in recent years, enabling the 
upsampling of images and video spatially or temporally. This is useful for up-converting 
legacy content for compatibility with modern formats and displays. SR methods increase 
the resolution (or sample rate) of a low-resolution (LR) image (Fig. 8b) or video. In the 
case of video sequences, successive frames can, for example, be employed to construct 
a single high-resolution (HR) frame. Although the basic concept of the SR algorithm is 
quite simple, there are many problems related to perceptual quality and restriction of avail-
able data. For example, the LR video may be aliased and exhibit sub-pixel shifts between 
frames and hence some points in the HR frame do not correspond to any information from 
the LR frames.

With deep learning-based technologies, the LR and HR images are matched and used 
for training architectures such as CNNs, to provide high quality upscaling potentially using 
only a single LR image (Dong et al. 2014). Sub-pixel convolution layers can be introduced 
to improve fine details in the image, as reported by Shi et al.. Residual learning and genera-
tive models are also employed, (e.g., Kim et al. 2016; Tai et al. 2017). A generative model 
with a VGG-based59 perceptual loss function has been shown to significantly improve qual-
ity and sharpness when used with the SRGAN by Ledig et al. (2017). Wang et al. (2018) 

59 VGG is a popular CNN, originally developed for object recognition by the Visual Geometry Group at 
the University of Oxford (Simonyan and Zisserman 2015). See Sect. 2.3.2 for more detail.
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proposed a progressive multi-scale GAN for perceptual enhancement, where pyramidal 
decomposition is combined with a DenseNet architecture (Huang et al. 2017). The above 
techniques seek to learn implicit redundancy that is present in natural data to recover miss-
ing HR information from a single LR instance. For single image SR, the review by Yang 
et al. (2019) suggests that methods such as EnhanceNet (Sajjadi et al. 2017) and SRGAN 
(Ledig et al. 2017), that achieve high subjective quality with good sharpness and textural 
detail, cannot simultaneously achieve low distortion loss (e.g., mean absolute error (MAE) 
or peak signal-to-noise-ratio (PSNR)). A comprehensive survey of image SR is provided 
by Wang et al. (2020b). This observes that more complex networks generally produce bet-
ter PSNR results and that most state-of-the-art methods are based on residual learning and 
use �

1
 as one of training losses (e.g., Dai et al. 2019; Zhang et al. 2018a).

When applied to video sequences, super-resolution methods can exploit temporal corre-
lations across frames as well as local spatial correlations within them. Early contributions 
applying deep learning to achieve video SR gathered multiple frames into a 3D volume 
which formed the input to a CNN (Kappeler et  al. 2016). Later work exploited tempo-
ral correlation via a motion compensation process before concatenating multiple warped 
frames into a 3D volume (Caballero et al. 2017) using a recurrent architecture (Huang et al. 
2015). The framework proposed by Liu et al. (2018a) upscales each frame before applying 
another network for motion compensation. The original target frame is fed, along with its 
neighbouring frames, into intermediate layers of the CNN to perform inter-frame motion 
compensation during feature extraction (Haris et al. 2019). EDVR (Wang et al. 2019), the 
winner of the NTIRE19 video restoration and enhancement challenges in 2019,60 employs 
a deformable convolutional network (Dai et  al. 2017) to align two successive frames. 
Deformable convolution is also employed in DNLN (Deformable Non-Local Network) 
(Wang et al. 2019a). At the time of writing, EDVR (Wang et al. 2019) and DNLN (Wang 
et  al. 2019a) are reported to outperform other methods for video SR, followed by the 
method of Haris et al. (2019). This suggests that deformable convolution plays an impor-
tant role in overcoming inter-frame misalignment, producing sharp textural details.

3.3.4  Restoration

The quality of a signal can often be reduced due to distortion or damage. This could be 
due to environmental conditions during acquisition (low light, atmospheric distortions 

Original IR image Colorized image Original LR Bicubic interpolate SRGAN

(a) (b)

Fig. 8  Image enhancement. a Colorization for infrared image (Limmer and Lensch 2016). b Super-resolu-
tion (Ledig et al. 2017)

60 https:// data. vision. ee. ethz. ch/ cvl/ ntire 19/.

https://data.vision.ee.ethz.ch/cvl/ntire19/
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or high motion), sensor characteristics (quantization due to limited resolution or bit-
depth or electronic noise in the sensor itself) or ageing of the original medium such as 
tape of film. The general degradation model can be written as I

obs
= h ∗ I

ideal
+ n , where 

I
obs

 is an observed (distorted) version of the ideal signal I
ideal

 , h is the degradation oper-
ator, ∗ represents convolution, and n is noise. The restoration process tries to reconstruct 
I
ideal

 from I
obs

 . h and n are values or functions that are dependent on the application. 
Signal restoration can be addressed as an inverse problem and deep learning techniques 
have been employed to solve it. Below we divide restoration into four classes that relate 
to work in the creative industries with examples illustrated in Fig. 9. Further details of 
deep learning for inverse problem solving can be found in Lucas et al. (2018).

3.3.4.1 Deblurring Images can be distorted by blur, due to poor camera focus or camera 
or subject motion. Blur-removal is an ill-posed problem represented by a point spread 
function (PSF) h, which is generally unknown. Deblurring methods sharpen an image to 
increase subjective quality, and also to assist subsequent operations such as optical char-
acter recognition (OCR) (Hradis et al. 2015) and object detection (Kupyn et al. 2018). 
Early work in this area analyzed the statistics of the image and attempted to model physi-
cal image and camera properties (Biemond et al. 1990). More sophisticated algorithms 
such as blind deconvolution (BD), attempt to restore the image and the PSF simultane-
ously (Jia 2007; Krishnan et al. 2011). These methods however assume a space-invariant 
PSF and the process generally involves several iterations.

As described by the image degradation model, the PSF (h) is related to the target 
image via a convolution operation. CNNs are therefore inherently applicable for solv-
ing blur problems (Schuler et  al. 2016). Deblurring techniques based on CNNs (Nah 
et al. 2017) and GANs (Kupyn et al. 2018) usually employ residual blocks, where skip 
connections are inserted every two convolution layers (He et  al. 2016). Deblurring an 
image from coarse-to-fine scales is proposed in Tao et al. (2018), where the outputs are 
upscaled and are fed back to the encoder-decoder structure. The high-level features of 
each iteration are linked in a recurrent manner, leading to a recursive process of learn-
ing sharp images from blurred ones. Nested skip connections were introduced by Gao 
et  al. (2019), where feature maps from multiple convolution layers are merged before 
applying them to the next convolution layer (in contrast to the residual block approach 
where one feature map is merged at the next input). This more complicated architecture 
improves information flow and results in sharper images with fewer ghosting artefacts 
compared to previous methods.

Fig. 9  Restoration for a deblurring (Zhang et al. 2018), b denoising with DnCNN (Zhang et al. 2017), and c 
turbulence mitigation (Anantrasirichai et al. 2013). Left and right are the original degraded images and the 
restored images respectively
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In the case of video sequences, deblurring can benefit from the abundant information 
present across neighbouring frames. The DeBlurNet model (Su et al. 2017) takes a stack 
of nearby frames as input and uses synthetic motion blur to generate a training dataset. 
A Spatio-temporal recurrent network exploiting a dynamic temporal blending network is 
proposed by Hyun Kim et al. (2017). Zhang et al. (2018) have concatenated an encoder, 
recurrent network and decoder to mitigate motion blur. Recently a recurrent network with 
iterative updating of the hidden state was trained using a regularization process to cre-
ate sharp images with fewer ringing artefacts (Nah et  al. 2019), denoted as IFI-RNN. A 
Spatio-Temporal Filter Adaptive Network (STFAN) has been proposed (Zhou et al. 2019), 
where the convolutional kernel is acquired from the feature values in a spatially varying 
manner. IFI-RNN and STFAN produce comparable results and hitherto achieve the best 
performances in terms of both subjective and objective quality measurements [the average 
PSNRs of both methods are higher than that of Hyun Kim et al. (2017) by up to 3 dB].

3.3.4.2 Denoising Noise can be introduced from various sources during signal acquisition, 
recording and processing, and is normally attributed to sensor limitations when operating 
under extreme conditions. It is generally characterized in terms of whether it is additive, 
multiplicative, impulsive or signal dependent, and in terms of its statistical properties. Not 
only visually distracting, but noise can also affect the performance of detection, classifica-
tion and tracking tools. Denoising nodes are therefore commonplace in post production 
workflows, especially for challenging low light natural history content (Anantrasirichai 
et al. 2020a). In addition, noise can reduce the efficiency of video compression algorithms, 
since the encoder allocates wasted bits to represent noise rather than signal, especially at low 
compression levels. This is the reason that film-grain noise suppression tools are employed 
in certain modern video codecs (Such as AV1) prior to encoding by streaming and broad-
casting organisations.

The simplest noise reduction technique is weighted averaging, performed spatially and/
or temporally as a sliding window, also known as a moving average filter  (Yahya et  al. 
2016). More sophisticated methods however perform significantly better and are able to 
adapt to change noise statistics. These include adaptive spatio-temporal smoothing through 
anisotropic filtering (Malm et al. 2007), nonlocal transform-domain group filtering (Mag-
gioni et al. 2012), Kalman-bilateral mixture model (Zuo et al. 2013), and spatio-temporal 
patch-based filtering  (Buades and Duran 2019). Prior to the introduction of deep neural 
network denoising, methods such as BM3D (block matching 3-D) (Dabov et al. 2007) rep-
resented the state of the art in denoising performance.

Recent advances in denoising have almost entirely been based on deep learn-
ing approaches and these now represent the state of the art. RNNs have been employed 
successfully to remove noise in audio (Maas et  al. 2012; Zhang et  al. 2018b). A resid-
ual noise map is estimated in the Denoising Convolutional Neural Network (DnCNN) 
method (Zhang et al. 2017) for image based denoising, and for video based denoising, a 
spatial and temporal network are concatenated (Claus and van Gemert 2019) where the 
latter handles brightness changes and temporal inconsistencies. FFDNet is a modified 
form of DnCNN that works on reversibly downsampled subimages (Zhang et  al. 2018). 
Liu et al. (2018b) developed MWCNN; a similar system that integrates multiscale wavelet 
transforms within the network to replace max pooling layers in order to better retain visual 
information. This integrated a wavelet/CNN denoising system and currently provides the 
state-of-the-art performance for Additive Gaussian White Noise (AGWN). VNLnet com-
bines a non-local patch search module with DnCNN. The first part extracts features, while 
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the latter mitigates the remaining noise (Davy et al. 2019). Zhao et al. (2019a) proposed a 
simple and shallow network, SDNet, uses six convolution layers with some skip connec-
tion to create a hierarchy of residual blocks. TOFlow (Xue et al. 2019) offers an end-to-
end trainable convolutional network that performs motion analysis and video processing 
simultaneously. GANs have been employed to estimate a noise distribution which is sub-
sequently used to augment clean data for training CNN-based denoising networks (such as 
DnCNN) (Chen et al. 2018b). GANs for denoising data have been proposed for medical 
imaging (Yang et al. 2018), but they are not popular in the natural image domain due to the 
limited data resolution of current GANs. However, CycleGAN has recently been modified 
to attempt denoising and enhancing low-light ultra-high-definition (UHD) videos using a 
patch-based strategy (Anantrasirichai and Bull 2021).

Recently, the Noise2Noise algorithm has shown that it is possible to train a denoising 
network without clean data, under the assumption that the data is corrupted by zero-mean 
noise (Lehtinen et al. 2018). The training pair of input and output images are both noisy 
and the network learns to minimize the loss function by solving the point estimation prob-
lem separately for each input sample. However, this algorithm is sensitive to the loss func-
tion used, which can significantly influence the performance of the model. Another algo-
rithm, Noise2Void (Krull et al. 2019), employs a novel blind-spot network that does not 
include the current pixel in the convolution. The network is trained using the noisy patches 
as input and output within the same noisy patch. It achieves comparable performance to 
Noise2Noise but allows the network to learn noise characteristics in a single image.

NTIRE 2020 held a denoising grand challenge within the IEEE CVPR conference that 
compared many contemporary high performing ML denoising methods on real images 
(Abdelhamed et  al. 2020). The best competing teams employed a variety of techniques 
using variants on CNN architectures such as U-Net (Ronneberger et al. 2015), ResNet (He 
et al. 2016) and DenseNet (Huang et al. 2017), together with �

1
 loss functions and ensem-

ble processing including flips and rotations. The survey by Tian et  al. (2020) states that 
SDNet (Zhao et  al. 2019a) achieves the best results on ISO noise, and FFDNet (Zhang 
et  al. 2018) offers the best denoising performance overall, including Gaussian noise and 
spatially variant noise (non-uniform noise levels).

Neural networks have also been used for other aspects of image denoising: Chen et al. 
(2018a) have developed specific low light denoising methods using CNN-based methods; 
Lempitsky et al. (2018) have developed a deep learning prior that can be used to denoise 
images without access to training data; and Brooks et al. (2019) have developed specific 
neural networks to denoise real images through ‘unprocessing’, i.e. they re-generate raw 
captured images by inverting the processing stages in a camera to form a supervised train-
ing system for raw images.

3.3.4.3 Dehazing In certain situations, fog, haze, smoke and mist can create mood in an 
image or video. In other cases, they are considered as distortions that reduce contrast, increase 
brightness and lower color fidelity. Further problems can be caused by condensation forming 
on the camera lens. The degradation model can be represented as: I

obs
= I

ideal
t + A(1 − t) 

where A is atmospheric light and t is medium transmission. The transmission t is estimated 
using a dark channel prior based on the observation that the lowest value of each color 
channel of haze-free images is close to zero (He et al. 2011). Berman et al. (2016), the true 
colors are recovered based on the assumption that an image can be faithfully represented 
with just a few hundred distinct colors. The authors showed that tight color clusters change 
because of haze and form lines in RGB space enabling them to be readjusted. The scene 
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radiance ( I
ideal

 ) is attenuated exponentially with depth so some work has included an esti-
mate of the depth map corresponding to each pixel in the image (Kopf et al. 2008). CNNs 
are employed to estimate transmission t and dark channel by Yang and Sun (2018). Cycle-
Dehazing (Engin et al. 2018) is used to enhance GAN architecture in CycleGAN (Zhu et al. 
2017). This formulation combines cycle-consistency loss (see Sect. 3.1.4) and perceptual 
loss (see Sect. 2.3.2) in order to improve the quality of textural information recovery and 
generate visually better haze-free images (Engin et al. 2018). A comprehensive study and 
an evaluation of existing single-image dehazing CNN-based algorithms are reported by Li 
et al. (2019). It concludes that DehazeNet (Cai et al. 2016) performs best in terms of percep-
tual loss, MSCNN (Tang et al. 2019) offers the best subjective quality and superior detection 
performance on real hazy images, and AOD-Net (Li et al. 2017) is the most efficient.

A related application is underwater photography (Li et al. 2016) as commonly used in 
natural history filmmaking. CNNs are employed to estimate the corresponding transmis-
sion map or ambient light of an underwater hazy image in Shin et al. (2016). More com-
plicated structures merging U-Net, multi-scale estimation, and incorporating cross layer 
connections to produce even better results are reported by Hu et al. (2018).

3.3.4.4 Mitigating atmospheric turbulence When the temperature difference between the 
ground and the air increases, the air layers move upwards rapidly, leading to a change in 
the interference pattern of the light refraction. This is generally observed as a combina-
tion of blur, ripple and intensity fluctuations in the scene. Restoring a scene distorted by 
atmospheric turbulence is a challenging problem. The effect, which is caused by random, 
spatially varying, perturbations, makes a model-based solution difficult and, in most cases, 
impractical. Traditional methods have involved frame selection, image registration, image 
fusion, phase alignment and image deblurring (Anantrasirichai et al. 2013; Xie et al. 2016; 
Zhu and Milanfar 2013). Removing the turbulence distortion from a video containing mov-
ing objects is very challenging, as generally multiple frames are used and they are needed to 
be aligned. Temporal filtering with local weights determined from optical flow is employed 
to address this by Anantrasirichai et al. (2018). However, artefacts in the transition areas 
between foreground and background regions can remain. Removing atmospheric turbulence 
based on single image processing is proposed using ML by Gao et al. (2019). Deep learn-
ing techniques to solve this problem are still in their early stages. However, one method 
reported employs a CNN to support deblurring (Nieuwenhuizen and Schutte 2019) and 
another employs multiple frames using a GAN architecture (Chak et al. 2018). This however 
appears only to work well for static scenes.

3.3.5  Inpainting

Inpainting is the process of estimating lost or damaged parts of an image or a video. Exam-
ple applications for this approach include the repair of damage caused by cracks, scratches, 
dust or spots on film or chemical damage resulting in image degradation. Similar problems 
arise due to data loss during transmission across packet networks. Related applications 
include the removal of unwanted foreground objects or regions of an image and video; 
in this case the occluded background that is revealed must be estimated. An example of 
inpainting is shown in Fig. 10. In digital photography and video editing, perhaps the most 
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widely used tool is Adobe Photoshop,61 where inpainting is achieved using content-aware 
interpolation by analysing the entire image to find the best detail to intelligently replace the 
damaged area.

Recently AI technologies have been reported that model the missing parts of an image 
using content in proximity to the damage, as well as global information to assist extract-
ing semantic meaning. Xie et al. (2012) combine sparse coding with deep neural networks 
pre-trained with denoising auto-encoders. Dilated convolutions are employed in two con-
catenated networks for spatial reconstruction in the coarse and fine details (Yu et al. 2018). 
Some methods allow users to interact with the process, for example inputting information 
such as strong edges to guide the solution and produce better results. An example of this 
image inpainting with user-guided free-form is given by Yu et al. (2019). Gated convolu-
tion is used to learn the soft mask automatically from the data and the content is then gen-
erated using both low-level features and extracted semantic meaning. Chang et al. (2019) 
extend the work by Yu et al. (2019) to video sequences using a GAN architecture. Video 
Inpainting, VINet, as reported by Kim et  al. (2019) offers the ability to remove moving 
objects and replace them with content aggregated from both spatial and temporal infor-
mation using CNNs and recurrent feedback. Black et  al. (2020) evaluated state-of-the-
art methods by comparing performance based on the classification and retrieval of fixed 
images. They reported that DFNet (Hong et al. 2019), based on U-Net (Ronneberger et al. 
2015) adding fusion blocks in the decoding layers, outperformed other methods over a 
wide range of missing pixels.

3.3.6  Visual special effects (VFX)

Closely related to animation, the use of ML-based AI in VFX has increased rapidly in 
recent years. Examples include BBC’s His Dark Materials and Avengers Endgame (Mar-
vel).62 These both use a combination of physics models with data driven results from AI 
algorithms to create high fidelity and photorealistic 3D animations, simulations and ren-
derings. ML-based tools transform the actor’s face into the film’s character using head-
mounted cameras and facial tracking markers. With ML-based AI, a single image can be 
turned into a photorealistic and fully-clothed production-level 3D avatar in real-time (Hu 

Fig. 10  Example of inpainting, (left-right) original image, masking and inpainted image

61 https:// www. adobe. com/ produ cts/ photo shop/ conte nt- aware- fill. html.
62 https:// blogs. nvidia. com/ blog/ 2020/ 02/ 07/ ai- vfx- oscars/.

https://www.adobe.com/products/photoshop/content-aware-fill.html
https://blogs.nvidia.com/blog/2020/02/07/ai-vfx-oscars/
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et al. 2017). Other techniques related to VFX can be found in Sect. 3.1 (e.g., style trans-
fer and deepfakes), Sect.  3.3 (e.g., colorization and super-resolution) and Sect.  3.4 (e.g 
tracking and 3D rendering). AI techniques63 are increasingly being employed to reduce 
the human resources needed for certain labour-intensive or repetitive tasks such as match-
move, tracking, rotoscoping, compositing and animation (Barber et al. 2016; Torrejon et al. 
2020).

3.4  Information extraction and enhancement

AI methods based on deep learning have demonstrated significant success in recognizing 
and extracting information from data. They are well suited to this task since successive 
convolutional layers efficiently perform statistical analysis from low to high level, progres-
sively abstracting meaningful and representative features. Once information is extracted 
from a signal, it is frequently desirable to enhance it or transform it in some way. This may, 
for example, make an image more readily interpretable through modality fusion, or trans-
late actions from a real animal to an animation. This section investigates how AI methods 
can utilize explicit information extracted from images and videos to construct such infor-
mation and reuse it in new directions or new forms.

3.4.1  Segmentation

Segmentation methods are widely employed to partition a signal (typically an image or 
video) into a form that is semantically more meaningful and easier to analyze or track. The 
resulting segmentation map indicates the locations and boundaries of semantic objects or 
regions with parametric homogeneity in an image. Pixels within a region could therefore 
represent an identifiable object and/or have shared characteristics, such as color, intensity, 
and texture. Segmentation boundaries indicate the shape of objects and this, together with 
other parameters, can be used to identify what the object is. Segmentation can be used as a 
tool in the creative process, for example assisting with rotoscoping, masking, cropping and 
for merging objects from different sources into a new picture. Segmentation, in the case 
of video content, also enables the user to change the object or region’s characteristics over 
time, for example through blurring, color grading or replacement.64

Classification systems can be built on top of segmentation in order to detect or iden-
tify objects in a scene (Fig. 11a). This can be compared with the way that humans view a 
photograph or video, to spot people or other objects, to interpret visual details or to inter-
pret the scene. Since different objects or regions will differ to some degree in terms of the 
parameters that characterize them, we can train a machine to perform a similar process, 
providing an understanding of what the image or video contains and activities in the scene. 
This can in turn support classification, cataloguing and data retrieval. Semantic segmenta-
tion classifies all pixels in an image into predefined categories, implying that it processes 
segmentation and classification simultaneously. The first deep learning approach to seman-
tic segmentation employed a fully convolutional network (Long et al. 2015). In the same 
year, the encoder-decoder model in Noh et  al. (2015) and the U-Net architecture (Ron-
neberger et  al. 2015) were introduced. Following these, a number of modified networks 

63 https:// www. vfxvo ice. com/ the- new- artifi cial- intel ligen ce- front ier- of- vfx/.
64 https:// suppo rt. zoom. us/ hc/ en- us/ artic les/ 21070 7503- Virtu al- Backg round.

https://www.vfxvoice.com/the-new-artificial-intelligence-frontier-of-vfx/
https://support.zoom.us/hc/en-us/articles/210707503-Virtual-Background
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based on them architectures have been reported Asgari Taghanaki et al. (2021). GANs have 
also been employed for the purpose of image translation, in this case to translate a natural 
image into a segmentation map (Isola et al. 2017). The semantic segmentation approach 
has also been applied to point cloud data to classify and segment 3D scenes, e.g., Fig. 11b 
(Qi et al. 2017).

3.4.2  Recognition

Object recognition has been one of the most common targets for AI in recent years, driven 
by the complexity of the task but also by the huge amount of labeled imagery available for 
training deep networks. The performance in terms of mean Average Precision (mAP) for 
detecting 200 classes has increased more than 300% over the last 5 years (Liu et al. 2020). 
The Mask R-CNN approach (He et  al. 2017) has gained popularity due to its ability to 
separate different objects in an image or a video giving their bounding boxes, classes and 
pixel-level masks, as demonstrated by Ren et al. (2017). Feature Pyramid Network (FPN) 
is also a popular backbone for object detection (Lin et  al. 2017). An in-depth review of 
object recognition using deep learning can be found in Zhao et al. (2019b) and Liu et al. 
(2020).

YOLO and its variants represent the current state of the art in real-time object detection 
and tracking (Redmon et  al. 2016). A state-of-the-art, real-time object detection system, 
You Only Look Once (YOLO), works on a frame-by-frame basis and is fast enough to 
process at typical video rates (currently reported up to 55 fps). YOLO divides an image 
into regions and predicts bounding boxes using a multi-scale approach and gives prob-
abilities for each region. The latest model, YOLOv4, (Bochkovskiy et  al. 2020), concat-
enates YOLOv3 (Redmon and Farhadi 2018) with a CNN that is 53 layers deep, with SPP-
blocks (He et al. 2015) or SAM-blocks (Woo et al. 2018) and a multi-scale CNN backbone. 
YOLOv4 offers real-time computation and high precision [up to 66 mAP on Microsoft’s 
COCO object dataset (Lin et al. 2014)].

On the PASCAL visual object classes (VOC) Challenge datasets (Everingham et  al. 
2012), YOLOv3 is the leader of object detection on the VOC2010 dataset a with mAP of 
80.8% (YOLOv4 performance on this dataset had not been reported at the time of writing) 

Fig. 11  Segmentation and recognition. a Object recognition (Kim et al. 2020a). b 3D semantic segmenta-
tion (Qi et al. 2017)
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and NAS-Yolo is the best for VOC2012 dataset with a mAP of 86.5%65 (the VOC2012 
dataset has a larger number of segmentations than VOC2010). NAS-Yolo (Yang et  al. 
2020b) employs Neural Architecture Search (NAS) and reinforcement learning to find the 
best augmentation policies for the target. In the PASCAL VOC Challenge for semantic 
segmentation, FlatteNet (Cai and Pu 2019) and FDNet (Zhen et  al. 2019) lead the field 
achieving the mAP of 84.3 and 84.0% on VOC2012 data, respectively. FlatteNet integrates 
fully convolutional network with pixel-wise visual descriptors converting from feature 
maps. FDNet links all feature maps from the encoder to each input of the decoder leading 
to really dense network and precise segmentation. On the Microsoft COCO object dataset, 
MegDetV2 (Li et al. 2019d) ranks first on both the detection leaderboard and the semantic 
segmentation leaderboard. MegDetV2 combines ResNet with FPN and uses deformable 
convolution to train the end-to-end network with large mini-batches.

Recognition of speech and music has also been successfully achieved using deep learn-
ing methods. Mobile phone apps that capture a few seconds of sound or music, such as 
Shazam,66 characterize songs based on an audio fingerprint using a spectrogram (a time-
frequency graph) that is used to search for a matching fingerprint in a database. Houndify 
by SoundHound67 exploits speech recognition and searches content across the internet. 
This technology also provides voice interaction for in-car systems. Google proposed a full 
visual-speech recognition system that maps videos of lips to sequences of words using spa-
tiotemporal CNNs and LSTMs (Shillingford et al. 2019).

Emotion recognition has also been studied for over a decade. AI methods have been 
used to learn, interpret and respond to human emotion, via speech (e.g., tone, loudness, 
and tempo) (Kwon et al. 2003), face detection (e.g., eyebrows, the tip of nose, the corners 
of mouth) (Ko 2018), and both audio and video (Hossain and Muhammad 2019). Such sys-
tems have also been used in security systems and for fraud detection.

A further task, relevant to video content, is action recognition. This involves capturing 
spatio-temporal context across frames, for example: jumping into a pool, swimming, get-
ting out of the pool. Deep learning has again been extensively exploited in this area, with 
the first report based on a 3D CNN (Ji et al. 2013). An excellent state-of-the-art review on 
action recognition can be found in Yao et al. (2019). More recent advances include tempo-
ral segment networks (Wang et al. 2016) and temporal binding networks, where the fusion 
of audio and visual information is employed (Kazakos et  al. 2019). EPIC-KITCHENS, 
is a large dataset focused on egocentric vision that provides audio-visual, non-scripted 
recordings in native environments (Damen et  al. 2018); it has been extensively used to 
train action recognition systems. Research on sign language recognition is also related to 
creative applications, since it studies body posture, hand gesture, and face expression, and 
hence involves segmentation, detection, classification and 3D reconstruction (Jalal et  al. 
2018; Kratimenos et al. 2020; Adithya and Rajesh 2020). Moreover, visual and linguistic 
modelling has been combined to enable translation between spoken/written language and 
continuous sign language videos (Bragg et al. 2019).

65 http:// host. robots. ox. ac. uk: 8080/ leade rboard/ main_ boots trap. php.
66 https:// www. shazam. com/ gb/ compa ny.
67 https:// www. sound hound. com/.

http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php
https://www.shazam.com/gb/company
https://www.soundhound.com/
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3.4.3  Salient object detection

Salient object detection (SOD) is a task based on visual attention mechanisms, in which 
algorithms aim to identify objects or regions that are likely to be the focus of attention. 
SOD methods can benefit the creative industries in applications such as image editing 
(Cheng et al. 2010; Mejjati et  al. 2020), content interpretation (Rutishauser et al. 2004), 
egocentric vision (Anantrasirichai et al. 2018), VR (Ozcinar and Smolic 2018), and com-
pression (Gupta et al. 2013). The purpose of SOD differs from fixation detection, which 
predicts where humans look, but there is a strong correlation between the two (Borji et al. 
2019). In general, the SOD process involves two tasks: saliency prediction and segmen-
tation. Recent supervised learning technologies have significantly improved the perfor-
mance of SOD. Hou et al. (2019) merge multi-level features of a VGG network with fusion 
and cross-entropy losses. A survey by Wang et al. (2021) reveals that most SOD models 
employ VGG and ResNet as backbone architectures and train the model with the standard 
binary cross-entropy loss. More recent work has developed the end-to-end framework with 
GANs (Wang et al. 2020a) and some works include depth information from RGB-D cam-
eras (Jiang et al. 2020). More details on the recent SOD on RGB-D data can be found in 
(Zhou et al. 2021). When detecting salient objects in the video, an LSTM module is used 
to learn saliency shifts (Fan et  al. 2019). The SOD approach has also been extended to 
co-salient object detection (CoSOD), aiming to detect the co-occurring salient objects in 
multiple images (Fan et al. 2020).

3.4.4  Tracking

Object tracking is the temporal process of locating objects in consecutive video frames. 
It takes an initial set of object detections (see Sect. 3.4), creates a unique ID for each of 
these initial detections, and then tracks each of the objects, via their properties, over time. 
Similar to segmentation, object tracking can support the creative process, particularly in 
editing. For example, a user can identify and edit a particular area or object in one frame 
and, by tracking the region, these adjusted parameters can be applied to the rest of the 
sequence regardless of object motion. Semi-supervised learning is also employed in Siam-
Mask (Wang et al. 2019b) offering the user an interface to define the object of interest and 
to track it over time.

Similar to object recognition, deep learning has become an effective tool for object 
tracking, particularly when tracking multiple objects in the video (Liu et al. 2020). Recur-
rent networks have been integrated with object recognition methods to track the detected 
objects over time (e.g., Fang 2016; Gordon et al. 2018; Milan et al. 2017). VOT bench-
marks (Kristan et  al. 2016) have been reported for real-time visual object tracking chal-
lenges run in both ICCV and ECCV conferences, and the performance of tracking has 
been observed to improve year on year. The best performing methods include Re3 (Gordon 
et al. 2018) and Siamese-RPN (Li et al. 2018) achieving 150 and 160 fps at the expected 
overlap of 0.2, respectively. MOTChallenge68 and KITTI69 are the most commonly used 
datasets for training and testing multiple object tracking (MOT). At the time of publish-
ing, ReMOTS (Yang et al. 2020a) is currently the best performer with a mask-based MOT 

68 https:// motch allen ge. net/.
69 http:// www. cvlibs. net/ datas ets/ kitti/ eval_ track ing. php.

https://motchallenge.net/
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
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accuracy of 83.9%. ReMOTS fuses the segmentation results of the Mask R-CNN (He et al. 
2017) and a ResNet-101 (He et al. 2016) backbone extended with FPN.

3.4.5  Image fusion

Image fusion provides a mechanism to combine multiple images (or regions therein, or 
their associated information) into a single representation that has the potential to aid human 
visual perception and/or subsequent image processing tasks. A fused image (e.g., a combi-
nation of IR and visible images) aims to express the salient information from each source 
image without introducing artefacts or inconsistencies. A number of applications have 
exploited image fusion to combine complementary information into a single image, where 
the capability of a single sensor is limited by design or observational constraints. Existing 
pixel-level fusion schemes range from simple averaging of the pixel values of registered 
(aligned) images to more complex multiresolution pyramids, sparse methods (Anantrasiri-
chai et al. 2020b) and methods based on complex wavelets (Lewis et al. 2007). Deep learn-
ing techniques have been successfully employed in many image fusion applications. An 
all-in-focus image is created using multiple images of the same scene taken with different 
focal settings (Liu et  al. 2017) (Fig.  12a). Multi-exposure deep fusion is used to create 
high-dynamic range images by Prabhakar et al. (2017). A review of deep learning for pixel-
level image fusion can be found in Liu et al. (2018). Recently, GANs have also been devel-
oped for this application (e.g., Ma et al. 2019c), with an example of image blending using a 
guided mask (e.g., Wu et al. 2019).

The performance of a fusion algorithm is difficult to quantitatively assess as no ground 
truth exists in the fused domain. Ma et  al. (2019b) shows that a guided filtering-based 
fusion (Li et  al. 2013) achieves the best results based on the visual information fidelity 
(VIF) metric, but proposed that fused images with very low correlation coefficients, meas-
uring the degree of linear correlation between the fused image its source images, also 
works well compared to subjective assessment.

3.4.6  3D reconstruction and rendering

In the human visual system, a stereopsis process (together with many other visual cues 
and priors (Bull and Zhang 2021) creates a perception of three-dimensional (3D) depth 
from the combination of two spatially separated signals received by the visual cortex from 
our retinas. The fusion of these two slightly different pictures gives the sensation of strong 
three-dimensionality by matching similarities. To provide stereopsis in machine vision 
applications, images are captured simultaneously from two cameras with parallel camera 

Original image 1 Original image 2 Fused image Original 2D face Reconstructed 3D face

(a) (b)

Fig. 12  Information Enhancement. a Multifocal image fusion. b 2D to 3D face conversion generated using 
the algorithm proposed by Jackson et al. (2017)
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geometry, and an implicit geometric process is used to extract 3D information from these 
images. This process can be extended using multiple cameras in an array to create a full 
volumetric representation of an object. This approach is becoming increasingly popular in 
the creative industries, especially for special effects that create digital humans70 in high end 
movies or live performance.

To convert 2D to 3D representations (including 2D+t to 3D), the first step is normally 
depth estimation, which is performed using stereo or multi-view RGB camera arrays. Con-
sumer RGB-D sensors can also be used for this purpose (Maier et al. 2017). Depth estima-
tion, based on disparity can also be assisted by motion parallax (using a single moving 
camera), focus, and perspective. For example, motion parallax is learned using a chain of 
encoder-decoder networks by Ummenhofer et al. (2017). Google Earth has computed topo-
graphical information from images captured using aircraft and added texture to create a 3D 
mesh. As the demands for higher depth accuracy have increased and real-time computa-
tion has become feasible, deep learning methods (particularly CNNs) have gained more 
attention. A number of network architectures have been proposed for stereo configurations, 
including a pyramid stereo matching network (PSMNet) (Chang and Chen 2018), a stacked 
hourglass architecture (Newell et al. 2016), a sparse cost volume network (SCV-Net) (Lu 
et al. 2018), a fast densenet (Anantrasirichai et al. 2021) and a guided aggregation net (GA-
Net) (Zhang et al. 2019). On the KITTI Stereo dataset benchmark (Geiger et al. 2012), the 
team, called LEAStereo from Monash University, ranks 1st at the time of writing (the num-
ber of erroneous pixels reported as 1.65%). They exploit neural architecture search (NAS) 
technique71 to build the best network designed by another neural network.

3D reconstruction is generally divided into: volumetric, surface-based, and multi-plane 
representations. Volumetric representations can be achieved by extending the 2D convo-
lutions used in image analysis. Surface-based representations, e.g., meshes, can be more 
memory-efficient, but are not regular structures and thus do not easily map onto deep learn-
ing architectures. The state-of-the-art methods for volumetric and surface-based repre-
sentations are Pix2Vox (Xie et al. 2019) and AllVPNet (Soltani et al. 2017) reporting an 
Intersection-over-Union (IoU) measure of 0.71 and 0.83 constructed from 20 views on the 
ShapeNet dataset benchmark (Chang et al. 2015)). GAN architectures have been used to 
generate non-rigid surfaces from a monocular image (Shimada et al. 2019). The third type 
of representation is formed from multiple planes of the scene. It is a trade-off between the 
first two representations—efficient storage and amenable to training with deep learning. 
The method in Flynn et  al. (2019), developed by Google, achieves view synthesis with 
learned gradient descent. A review of state-of-the-art 3D reconstruction from images using 
deep learning can be found in Han et al. (2019).

Recently, low-cost video plus depth (RGB-D) sensors have become widely available. 
Key challenges related to RGB-D video processing have included synchronisation, align-
ment and data fusion between multimodal sensors (Malleson et al. 2019). Deep learning 
approaches have also been used to achieve semantic segmentation, multi-model feature 
matching and noise reduction for RGB-D information (Zollhöfer et al. 2018). Light field 
cameras, that capture the intensity and direction of light rays, produce denser data than the 
RGB-D cameras. Depth information of a scene can be extracted from the displacement of 
the image array, and 3D rendering has been reported using deep learning approaches in Shi 

70 https:// www. dimen sions tudio. co/ solut ions/ digit al- humans.
71 http:// www. cvlibs. net/ datas ets/ kitti/ eval_ scene_ flow. php? bench mark= stereo.

https://www.dimensionstudio.co/solutions/digital-humans
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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et al. (2020). Recent state-of-the-art light field methods can be found in the review by Jiang 
et al. (2020).

3D reconstruction from a single image is an ill-posed problem. However, it is possible 
with deep learning due to the network’s ability to learn semantic meaning (similar to object 
recognition, described in Sect. 3.4). Using a 2D RGB training image with 3D ground truth, 
the model can predict what kind of scene and objects are contained in the test image. Deep 
learning-based methods also provide state-of-the-art performance for generating the cor-
responding right view from a left view in a stereo pair (Xie et al. 2016), and for converting 
2D face images to 3D face reconstructions using CNN-based encoder-decoder architectures 
(Bulat and Tzimiropoulos 2017; Jackson et al. 2017), autoencoders (Tewari et al. 2020) and 
GANs (Tian et al. 2018) (Fig. 12b). Creating 3D models of bodies from photographs is the 
focus of (Kanazawa et al. 2018). Here, a CNN is used to translate a single 2D image of a 
person into parameters of shape and pose, as well as to estimate camera parameters. This is 
useful for applications such as virtual modelling of clothes in the fashion industry. A recent 
method reported by Mescheder et al. (2019) is able to generate a realistic 3D surface from 
a single image intruding the idea of a continuous decision boundary within the deep neural 
network classifier. For 2D image to 3D object generation, generative models offer the best 
performance to date, with the state-of-the-art method, GAL (Jiang et al. 2018), achieving 
an average IoU of 0.71 on the ShapeNet dataset. The creation of a 3D photograph from 2D 
images is also possible via tools such as SketchUp72 and Smoothie-3D.73 Very recently 
(Feb 2020), Facebook allowed users to add a 3D effect to all 2D images.74 They trained 
a CNN on millions of pairs of public 3D images with their associating depth maps. Their 
Mesh R-CNN (Gkioxari et al. 2019) leverages the Mask R-CNN approach (He et al. 2017) 
for object recognition and segmentation to help estimate depth cues. A common limita-
tion when converting a single 2D image to a 3D representation is associated with occluded 
areas that require spatial interpolation.

AI has also been used to increase the dimensionality of audio signals. Humans have an 
ability to spatially locate a sound as our brain can sense the differences between arrival 
times of sounds at the left and the right ears, and between the volumes (interaural level) 
that the left and the right ears hear. Moreover, our ear flaps distort the sound telling us 
whether the sound emanates in front of or behind the head. With this knowledge, Gao and 
Grauman (2019) created binaural audio from a mono signal driven by the subject’s visual 
environment to enrich the perceptual experience of the scene. This framework exploits 
U-Net to extract audio features, merged with visual features extracted from ResNet to pre-
dict the sound for the left and the right channels. Subjective tests indicate that this method 
can improve realism and the sensation being in a 3D space. Morgado et al. (2018) expand 
mono audio, recorded using a 360◦ video camera, to the sound over the full viewing sur-
face of sphere. The process extracts semantic environments from the video with CNNs 
and then high-level features of vision and audio are combined to generate the sound corre-
sponding to different viewpoints. Vasudevan et al. (2020) also include depth estimation to 
improve realistic quality of super-resolution sound.

72 https:// www. sketc hup. com/ plans- and- prici ng/ sketc hup- free.
73 https:// smoot hie- 3d. com/.
74 https:// ai. faceb ook. com/ blog/ power ed- by- ai- turni ng- any- 2d- photo- into- 3d- using- convo lutio nal- neural- 
nets/.

https://www.sketchup.com/plans-and-pricing/sketchup-free
https://smoothie-3d.com/
https://ai.facebook.com/blog/powered-by-ai-turning-any-2d-photo-into-3d-using-convolutional-neural-nets/
https://ai.facebook.com/blog/powered-by-ai-turning-any-2d-photo-into-3d-using-convolutional-neural-nets/
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3.5  Data compression

Visual information is the primary consumer of communications bandwidth across 
broadcasting and internet communications. The demand for increased qualities and 
quantities of visual content is particularly driven by the creative media sector, with 
increased numbers of users expecting increased quality and new experiences. Cisco pre-
dict, in their Video Network Index report, (Barnett et  al. 2018) that there will be 4.8 
zettabytes (4.8 ×10

21 bytes) of global annual internet traffic by 2022—equivalent to all 
movies ever made crossing global IP networks in 53 seconds. Video will account for 82 
percent of all internet traffic by 2022. This will be driven by increased demands for new 
formats and more immersive experiences with multiple viewpoints, greater interactiv-
ity, higher spatial resolutions, frame rates and dynamic range and wider color gamut. 
This is creating a major tension between available network capacity and required video 
bit rate. Network operators, content creators and service providers all need to transmit 
the highest quality video at the lowest bit rate and this can only be achieved through 
the exploitation of content awareness and perceptual redundancy to enable better video 
compression.

Traditional image encoding systems (e.g., JPEG) encode a picture without refer-
ence to any other frames. This is normally achieved by exploiting spatial redundancy 
through transform-based decorrelation followed by variable length, quantization and 
symbol encoding. While video can also be encoded as a series of still images, signifi-
cantly higher coding gains can be achieved if temporal redundancies are also exploited. 
This is achieved using inter-frame motion prediction and compensation. In this case the 
encoder processes the low energy residual signal remaining after prediction, rather than 
the original frame. A thorough coverage of image and video compression methods is 
provided by Bull and Zhang (2021).

Deep neural networks have gained popularity for image and video compression 
in recent years and can achieve consistently greater coding gain than conventional 
approaches. Deep compression methods are also now starting to be considered as com-
ponents in mainstream video coding standards such as VVC and AV2. They have been 
applied to optimize a range of coding tools including intra prediction (Li et  al. 2018; 
Schiopu et al. 2019), motion estimation (Zhao et al. 2019b), transforms (Liu et al. 2018), 
quantization (Liu et al. 2019), entropy coding (Zhao et al. 2019a) and loop filtering (Lu 
et al. 2019). Post processing is also commonly applied at the video decoder to reduce 
various coding artefacts and enhance the visual quality of the reconstructed frames 
[e.g., (Xue and Su 2019; Zhang et al. 2020)]. Other work has implemented a complete 
coding framework based on neural networks using end-to-end training and optimisation 
(Lu et al. 2020). This approach presents a radical departure from conventional coding 
strategies and, while it is not yet competitive with state-of-the-art conventional video 
codecs, it holds significant promise for the future.

Perceptually based resampling methods based on SR methods using CNNs and GANs 
have been introduced recently. Disney Research proposed a deep generative video com-
pression system (Han et al. 2019) that involves downscaling using a VAE and entropy 
coding via a deep sequential model. ViSTRA2 (Zhang et  al. 2019b), exploits adapta-
tion of spatial resolution and effective bit depth, downsampling these parameters at the 
encoder based on perceptual criteria, and up-sampling at the decoder using a deep con-
volutional neural network. ViSTRA2 has been integrated with the reference software of 
both the HEVC (HM 16.20) and VVC (VTM 4.01), and evaluated under the Joint Video 
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Exploration Team Common Test Conditions using the Random Access configuration. 
Results show consistent and significant compression gains against HM and VVC based 
on Bjønegaard Delta measurements, with average BD-rate savings of 12.6% (PSNR) and 
19.5% (VMAF) over HM and 5.5% and 8.6% over VTM. This work has been extended 
to a GAN architecture by Ma et al. (2020a). Recently, Mentzer et al. (2020) optimize a 
neural compression scheme with a GAN, yielding reconstructions with high perceptual 
fidelity. Ma et al. (2021) combine several quantitative losses to achieve maximal percep-
tual video quality when training a relativistic sphere GAN.

Like all deep learning applications, training data is a key factor in compression perfor-
mance. Research by Ma et al. (2020) has demonstrated the importance of large and diverse 
datasets when developing CNN-based coding tools. Their BVI-DVC database is publicly 
available and produces significant improvements in coding gain across a wide range of 
deep learning networks for coding tools such as loop filtering and post-decoder enhance-
ment. An extensive review of AI for compression can be found in Bull and Zhang (2021) 
and Ma et al. (2020b).

4  Future challenges for AI in the creative sector

There will always be philosophical and ethical questions relating to the creative capacity, 
ideas and thought processes, particularly where computers or AI are involved. The debate 
often focuses on the fundamental difference between humans and machines. In this section 
we will briefly explore some of these issues and comment on their relevance to and impact 
on the use of AI in the creative sector.

4.1  Ethical issues, fakes and bias

An AI-based machine can work ‘intelligently’, providing an impression of understanding 
but nonetheless performing without ‘awareness’ of wider context. It can however offer 
probabilities or predictions of what could happen in the future from several candidates, 
based on the trained model from an available database. With current technology, AI can-
not truly offer broad context, emotion or social relationship. However, it can affect modern 
human life culturally and societally. UNESCO has specifically commented on the potential 
impact of AI on culture, education, scientific knowledge, communication and information 
provision particularly relating to the problems of the digital divide.75 AI seems to amplify 
the gap between those who can and those who cannot use new digital technologies, lead-
ing to increasing inequality of information access. In the context of the creative industries, 
UNESCO mentions that collaboration between intelligent algorithms and human creativity 
may eventually bring important challenges for the rights of artists.

One would expect that the authorship of AI creations resides with those who develop 
the algorithms that drive the art work. Issues of piracy and originality thus need special 
attention and careful definition, and deliberate and perhaps unintentional exploitation 
needs to be addressed. We must be cognizant of how easy AI technologies can be accessed 
and used in the wrong hands. AI systems are now becoming very competent at creating 
fake images, videos, conversations, and all manner of content. Against this, as reported in 

75 https:// ircai. org/ proje ct/ preli minary- study- on- the- ethics- of- ai/.

https://ircai.org/project/preliminary-study-on-the-ethics-of-ai/
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Sect. 3.1.7, there are also other AI-based methods under development that can, with some 
success, detect these fakes.

The primary learning algorithms for AI are data-driven. This means that, if the data 
used for training are unevenly distributed or unrepresentative due to human selection crite-
ria or labeling, the results after learning can equally be biased and ultimately judgemental. 
For example, streaming media services suggest movies that the users may enjoy and these 
suggestions must not privilege specific works over others. Similarly face recognition or 
autofocus methods must be trained on a broad range of skin types and facial features to 
avoid failure for certain ethnic groups or genders. Bias in algorithmic decision-making is 
also a concern of governments across the world.76 Well-designed AI systems can not only 
increase the speed and accuracy with which decisions are made, but they can also reduce 
human bias in decision-making processes. However, throughout the lifetime of a trained AI 
system, the complexity of data it processes is likely to grow, so even a network originally 
trained with balanced data may consequently establish some bias. Periodic retraining may 
therefore be needed. A review of various sources of bias in ML is provided in Ntoutsi et al. 
(2020).

Dignum (2018) provide a useful classification of the relationships between ethics and 
AI, defining three categories: (i) Ethics by Design, methods that ensure ethical behaviour 
in autonomous systems, (ii) Ethics in Design, methods that support the analysis of the ethi-
cal implications of AI systems, and (iii) Ethics for Design, codes and protocols to ensure 
the integrity of developers and users. A discussion of ethics associated with AI in general 
can be found in Bostrom and Yudkowsky (2014).

AI can, of course, also be used to help identify and resolve ethical issues. For example, 
Instagram uses an anti-bullying AI77 to identify negative comments before they are pub-
lished and asks users to confirm if they really want to post such messages.

4.2  The human in the loop: AI and creativity

Throughout this review we have recognized and reported on the successes of AI in sup-
porting and enhancing processes within constrained domains where there is good availabil-
ity of data as a basis for ML. We have seen that AI-based techniques work very well when 
they are used as tools for information extraction, analysis and enhancement. Deep learning 
methods that characterize data from low-level features and connect these to extract seman-
tic meaning are well suited to these applications. AI can thus be used with success, to per-
form tasks that are too difficult for humans or are too time-consuming, such as search-
ing through a large database and examining its data to draw conclusions. Post production 
workflows will therefore see increased use of AI, including enhanced tools for denoising, 
colorization, segmentation, rendering and tracking. Motion and volumetric capture meth-
ods will benefit from enhanced parameter selection and rendering tools. Virtual production 
methods and games technologies will see greater convergence and increased reliance on AI 
methodologies.

In all the above examples, AI tools will not be used in isolation as a simple black box 
solution. Instead, they must be designed as part of the associated workflow and incorporate 

76 https:// www. gov. uk/ gover nment/ publi catio ns/ inter im- repor ts- from- the- centre- for- data- ethics- and- innov 
ation/ inter im- report- review- into- bias- in- algor ithmic- decis ion- making.
77 https:// about. insta gram. com/ blog/ annou nceme nts/ insta grams- commi tment- to- lead- fight- again st- online- 
bully ing.

https://www.gov.uk/government/publications/interim-reports-from-the-centre-for-data-ethics-and-innovation/interim-report-review-into-bias-in-algorithmic-decision-making
https://www.gov.uk/government/publications/interim-reports-from-the-centre-for-data-ethics-and-innovation/interim-report-review-into-bias-in-algorithmic-decision-making
https://about.instagram.com/blog/announcements/instagrams-commitment-to-lead-fight-against-online-bullying
https://about.instagram.com/blog/announcements/instagrams-commitment-to-lead-fight-against-online-bullying
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a feedback framework with the human in the loop. For the foreseeable future, humans will 
need to check the outputs from AI systems, make critical decisions, and feedback ‘faults’ 
that will be used to adjust the model. In addition, the interactions between audiences or 
users and machines are likely to become increasingly common. For example, AI could help 
to create characters that learn context in location-based storytelling and begin to under-
stand the audience and adapt according to interactions.

Currently, the most effective AI algorithms still rely on supervised learning, where 
ground truth data readily exist or where humans have labeled the dataset prior to using it 
for training the model (as described in Sect. 2.3.1). In contrast, truly creative processes do 
not have pre-defined outcomes that can simply be classed as good or bad. Although many 
may follow contemporary trends or be in some way derivative, based on known audience 
preferences, there is no obvious way of measuring the quality of the result in advance. 
Creativity almost always involves combining ideas, often in an abstract yet coherent way, 
from different domains or multiple experiences, driven by curiosity and experimentation. 
Hence, labeling of data for these applications is not straightforward or even possible in 
many cases. This leads to difficulties in using current ML technologies.

In the context of creating a new artwork, generating low-level features from semantics is 
a one-to-many relationship, leading to inconsistencies between outputs. For example, when 
asking a group of artists to draw a cat, the results will all differ in color, shape, size, context 
and pose. Results of the creative process are thus unlikely to be structured, and hence may 
not be suitable for use with ML methods. We have previously referred to the potential of 
generative models, such as GANs, in this respect, but these are not yet sufficiently robust 
to consistently create results that are realistic or valuable. Also, most GAN-based methods 
are currently limited to the generation of relatively small images and are prone to artefacts 
at transitions between foreground and background content. It is clear that significant addi-
tional work is needed to extract significant value from AI in this area.

4.3  The future of AI technologies

Research into, and development of, AI-based solutions continue apace. AI is attracting 
major investments from governments and large international organisations alongside ven-
ture capital investments in start-up enterprises. ML algorithms will be the primary driver 
for most AI systems in the future and AI solutions will, in turn, impact an even wider range 
of sectors. The pace of AI research has been predicated, not just on innovative algorithms 
(the basics are not too dissimilar to those published in the 1980s), but also on our ability 
to generate, access and store massive amounts of data, and on advances in graphics pro-
cessing architectures and parallel hardware to process these massive amounts of data. New 
computational solutions such as quantum computing, will likely play an increasing role in 
this respect (Welser et al. 2018).

In order to produce an original work, such as music or abstract art, it would be ben-
eficial to support increased diversity and context when training AI systems. The quality 
of the solution in such cases is difficult to define and will inevitably depend on audience 
preferences and popular contemporary trends. High-dimensional datasets that can repre-
sent some of these characteristics will therefore be needed. Furthermore, the loss functions 
that drive the convergence of the network’s internal weights must reflect perceptions rather 
than simple mathematical differences. Research into such loss functions that better reflect 
human perception of performance or quality is therefore an area for further research.
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ML-based AI algorithms are data-driven; hence how to select and prepare data for cre-
ative applications will be key to future developments. Defining, cleaning and organizing 
bias-free data for creative applications are not straightforward tasks. Because the task of 
data collection and labeling can be highly resource intensive,labeling services are expected 
to become more popular in the future. Amazon currently offers a cloud management tool, 
SageMaker,78 that uses ML to determine which data in a dataset needs to be labeled by 
humans, and consequently sends this data to human annotators through its Mechanical 
Turk system or via third party vendors. This can reduce the resources needed by developers 
during the key data preparation process. In this or other contexts, AI may converge with 
blockchain technologies. Blockchains create decentralized, distributed, secure and trans-
parent networks that can be accessed by anyone in public (or private) blockchain networks. 
Such systems may be a means of trading trusted AI assets, or alternatively AI agents may 
be trusted to trade other assets (e.g., financial (or creative) across blockchain networks. 
Recently, Microsoft has tried to improve small ML models hosted on public blockchains 
and plan to expand to more complex models in the future.79 Blockchains make it possible 
to reward participants who help to improve models, while providing a level of trust and 
security.

As the amount of unlabeled data grows dramatically, unsupervised or self-supervised 
ML algorithms are prime candidates for underpinning future advancements in the next 
generation of ML. There exist techniques that employ neural networks to learn statisti-
cal distributions of input data and then transfer this to the distribution of the output data 
(Damodaran et al. 2018; Xu et al. 2019; Zhu et al. 2017). These techniques do not require a 
precise matching pair between the input and the ground truth, reducing the limitations for a 
range of applications.

It is clear that current AI methods do not mimic the human brain, or even parts of it, 
particularly closely. The data driven learning approach with error backpropagation is not 
apparent in human learning. Humans learn in complex ways that combine genetics, experi-
ence and prediction-failure reinforcement. A nice example is provided by Yan LeCun of 
NYU and Facebook80 who describes a 4–6 month old baby being shown a picture of a toy 
floating in space; the baby shows little surprise that this object defies gravity. Showing the 
same image to the same child at around 9 months produces a very different result, despite 
the fact that it is very unlikely that the child has been explicitly trained about gravity. It 
has instead learnt by experience and is capable of transferring its knowledge across a wide 
range of scenarios never previously experienced. This form of reinforcement and transfer 
learning holds significant potential for the next generation of ML algorithms, providing 
much greater generalization and scope for innovation.

Reinforcement Learning generally refers to a goal-oriented approach, which learns how 
to achieve a complex objective through reinforcement via penalties and rewards based on 
its decisions over time. Deep Reinforcement Learning (DRL) integrates this approach into 
a deep network which, with little initialisation and through self-supervision, can achieve 
extraordinary performance in certain domains. Rather than depend on manual labeling, 
DRL automatically extracts weak annotation information from the input data, reinforced 
over several steps. It thus learns the semantic features of the data, which can be transferred 

78 https:// docs. aws. amazon. com/ sagem aker/ latest/ dg/ sms. html.
79 https:// www. micro soft. com/ en- us/ resea rch/ blog/ lever aging- block chain- to- make- machi ne- learn ing- mod-
els- more- acces sible/.
80 LeCun credits Emmanuel Dupoux for this example.

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://www.microsoft.com/en-us/research/blog/leveraging-blockchain-to-make-machine-learning-models-more-accessible/
https://www.microsoft.com/en-us/research/blog/leveraging-blockchain-to-make-machine-learning-models-more-accessible/
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to other tasks. DRL algorithms can beat human experts playing video games and the world 
champions of Go. The state of the art in this area is progressing rapidly and the potential 
for strong AI, even with ambiguous data in the creative sector is significant. However, this 
will require major research effort as the human processes that underpin this are not well 
understood.

5  Concluding remarks

This paper has presented a comprehensive review of current AI technologies and their 
applications, specifically in the context of the creative industries. We have seen that ML-
based AI has advanced the state of the art across a range of creative applications including 
content creation, information analysis, content enhancement, information extraction, infor-
mation enhancement and data compression. ML–AI methods are data driven and benefit 
from recent advances in computational hardware and the availability of huge amounts of 
data for training—particularly image and video data.

We have differentiated throughout between the use of ML–AI as a creative tool and its 
potential as a creator in its own right. We foresee, in the near future, that AI will be adopted 
much more widely as a tool or collaborative assistant for creativity, supporting acquisition, 
production, post-production, delivery and interactivity. The concurrent advances in com-
puting power, storage capacities and communication technologies (such as 5G) will sup-
port the embedding of AI processing within and at the edge of the network. In contrast, we 
observe that, despite recent advances, significant challenges remain for AI as the sole gen-
erator of original work. ML–AI works well when there are clearly defined problems that do 
not depend on external context or require long chains of inference or reasoning in decision 
making. It also benefits significantly from large amounts of diverse and unbiased data for 
training. Hence, the likelihood of AI (or its developers) winning awards for creative works 
in competition with human creatives may be some way off. We therefore conclude that, for 
creative applications, technological developments will, for some time yet, remain human-
centric—designed to augment, rather than replace, human creativity. As AI methods begin 
to pervade the creative sector, developers and deployers must however continue to build 
trust; technological advances must go hand-in-hand with a greater understanding of ethical 
issues, data bias and wider social impact.
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