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Artificial intelligence manages congenital cataract with

individualized prediction and telehealth computing
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A challenge of chronic diseases that remains to be solved is how to liberate patients and medical resources from the burdens of

long-term monitoring and periodic visits. Precise management based on artificial intelligence (AI) holds great promise; however, a

clinical application that fully integrates prediction and telehealth computing has not been achieved, and further efforts are required

to validate its real-world benefits. Taking congenital cataract as a representative, we used Bayesian and deep-learning algorithms to

create CC-Guardian, an AI agent that incorporates individualized prediction and scheduling, and intelligent telehealth follow-up

computing. Our agent exhibits high sensitivity and specificity in both internal and multi-resource validation. We integrate our agent

with a web-based smartphone app and prototype a prediction-telehealth cloud platform to support our intelligent follow-up

system. We then conduct a retrospective self-controlled test validating that our system not only accurately detects and addresses

complications at earlier stages, but also reduces the socioeconomic burdens compared to conventional methods. This study

represents a pioneering step in applying AI to achieve real medical benefits and demonstrates a novel strategy for the effective

management of chronic diseases.

npj Digital Medicine           (2020) 3:112 ; https://doi.org/10.1038/s41746-020-00319-x

INTRODUCTION

A medical revolution driven by artificial intelligence (AI) is
expected in the near future1–3. Individualized prediction using
machine learning promises to be transformative and indispen-
sable for complex medical situations4, including nephrology5,
cardiology6, and ophthalmology7. Moreover, intelligent telehealth
computing has shown great potential in enabling cost-effective
applications of medical AI8. Although the promise of these
technologies is broad, a full integration of prediction and
telehealth has not been achieved, and the actual benefits of AI
regarding healthcare quality and socioeconomic burden remain to
be validated.
Chronic diseases and conditions are the leading causes of death

and disability worldwide9. Follow-up management of chronic-
disease patients remains one of the most intractable healthcare
problems, and solutions are urgently needed10. Presently,
conventional follow-up plans scheduled by clinicians are one-
size-fits-all and are primarily based on personal experience or
limited clinical evidence, resulting in the delayed detection of
complications11. Furthermore, among developing countries, only a
few specialized care centers are capable of effective examinations
and accurate interventions12,13. The sparse distribution of these
specialized centers creates significant difficulty and economic

pressure for patients, resulting in low follow-up rates14. Therefore,
a new strategy for precise and effective follow-up management
leveraging AI is highly desirable.
The study focuses on the follow-up management of patients

with congenital cataract (CC), a typical chronic condition
characterized by high long-term risk of two main complications:
high intraocular pressure (IOP)15 and visual axis opacification
(VAO)16. Rigorous follow-up care and timely intervention are
necessary to prevent the irreversible and permanent loss of vision
caused by these complications17. Therefore, CC is an ideal test
case for exploring follow-up management strategies for chronic
conditions.
To explore the feasibility of applying AI to improve the quality

of follow-up care, we applied Bayesian and deep-learning
algorithms to create CC-Guardian, an intelligent agent that
consists of three functional modules: (i) a prediction module that
identifies potential high-risk CC patients who are likely to suffer
complications, (ii) a dispatching module that schedules individual
follow-up based on the prediction results, and (iii) a telehealth
module that makes intervention decisions in each follow-up
examination. We verified CC-Guardian’s performance using inter-
nal and multi-resource validation. Using CC-Guardian, we imple-
mented a web-based smartphone app and proposed an operating
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mechanism for our intelligent follow-up system. We conducted a
retrospective self-controlled test to investigate the real-world
efficiency of our system in terms of complication prediction,
telehealth detection, and cost-efficient benefits. More broadly, this
study takes a pioneering step in translating AI into actual medical
benefits and provides a novel approach to the effective manage-
ment of chronic conditions.

RESULTS

Dataset collection and preparation for agent training

The pipeline for our study is shown in Fig. 1. The training dataset
included clinical records of 594 CC patients before and after
surgery, and 4881 of their follow-up images from January 2011 to
December 2016. The eligible criteria of patients included diagnosis
of CC, informed consent, and completed records of baseline
information, lesion condition, comorbidities, surgical procedures,

and complications in the first follow-up year. The eligible images
for training were defined as the anterior segment images covering
the posterior lens capsule by retro-illumination using slit-lamp
photography. All these records were derived from routine
examinations at the Childhood Cataract Program of the Chinese
Ministry of Health (CCPMOH)18.

Functional architecture of CC-Guardian

The CC-Guardian incorporates three functional modules: a
prediction module designed to identify high-risk patients who
are likely to suffer complications (Fig. 2a), a dispatching module
responsible for scheduling individual follow-up visits (depending
on the results of the prediction module) (Fig. 2b), and a telehealth
module that makes a clinical decision regarding additional
treatment (intervention or continued follow-up) in each follow-
up examination using telehealth computing (Fig. 2c).

Fig. 1 Study pipeline for agent training, validation, application, and testing. a Multidimensional clinical records of 594 congenital cataract
patients were collected for prediction module training (279 VAO: 315 non-VAO; 341 high IOP: 253 normal). For telehealth module training, a
total of 4881 postoperative retro-illumination images were obtained (2615 follow-up: 2266 intervention). Each image was independently
described and labeled by an expert panel. b Two datasets were used for the validation of the trained agent, including internal validation
dataset (clinical records of 142 patients, and 1220 follow-up images) and multi-resource dataset (clinical records of 79 patients, 214 follow-up
images). c A web-based smartphone app was implemented, and a prediction-telehealth cloud platform was prototyped for the clinical
application of our intelligent follow-up system. d A retrospective self-controlled test was conducted to investigate the real-world efficiency of
our follow-up system in complication prediction, telehealth detection, and cost-effect benefit. VAO visual axis opacification, IOP intraocular
pressure.
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Naive Bayes algorithm for prediction module

We selected 12 variables that both can be easily collected in
routine clinical practice and were reported to be associated with
complications after surgery16,17 as the inputs for the prediction
module. These 12 variables can be generally grouped into four
categories: (1) baseline information, (2) lesion condition, (3)
comorbidities, and (4) surgical procedures (“Methods”).
To find the optimal algorithm, we first performed a comparison

among naive Bayes and two classic machine learning algorithms
(random forest and neural network, “Methods”). Based on the
average performance of the 5-fold cross-validation by the training
set of 594 CC patients, the naive Bayes algorithm provided
comparative performance with random forest and neural network
algorithms (Table 1). We finally selected the naive Bayes algorithm
due to its intrinsic simplicity19, which can improve the processing
speed and saving computing resource in real-world application.
After selecting the naive Bayes, a complete algorithm was then
trained on the entire dataset of 594 CC patients prior to later
validations.
The normalized contributions of all 12 input variables to predict

VAO (from 0.01 to 0.2, Supplementary Fig. 1a) and high IOP (from
0.03 to 0.15, Supplementary Fig. 1b) were presented, suggesting
their substantial importance to outcome. Both the age at surgery
(0.07 to VAO and 0.12 to high IOP) and gender (0.03 to VAO and

0.02 to high IOP) do not show any dominant role, indicating that
predictive results will not significantly vary from these two
variables.

Follow-up schedules for dispatching module

For patients predicted with no complications, the dispatching
module will schedule seven time points (1 week, 1 month,
2 months, 3 months, 6 months, 9 months, and 12 months after
surgery), which is the conventional plan in current clinical
practice14. If the patients were predicted to have VAO, the module
will add two time points (7.5 months and 10.5 months) to the
conventional plan, since VAO was inclined to happen in the
second half year17,20. If the patients were predicted to have high
IOP, the module will add three time points (2.5 weeks, 2.5 months
and 4.5 months) to the conventional plan, since high IOP was
inclined to happen in the second half year16,20.

Deep residual network for telehealth module

A total of 4881 postoperative retro-illumination images were
included as the training set for telehealth module. These 4881
images were collected from 2175 CC patients. Images from the
same child were taken at different follow-up visits. Each image
was independently labeled (intervention or continued follow-up)

Fig. 2 Functional architecture of CC-Guardian. a The prediction module is trained to identify high-risk patients likely to suffer complications
(the occurrence of VAO, happen or not and the occurrence of high IOP, happen or not). b The dispatching module is responsible for
scheduling individual follow-up based on the prediction module results. c In the telehealth module, a clinical decision regarding further
treatment (intervention or continued follow-up) is made after each telehealth examination based on follow-up images and IOP values. VAO
visual axis opacification, IOP intraocular pressure, m months.
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by two licensed ophthalmologists, and a third ophthalmologist
was consulted when disagreements occurred. Then, a senior
ophthalmologist with over 20 years of clinical CC experience
verified the labels for each image. The ophthalmologists were
blind and had no access to the outcome classifications. A stacked
101-layer residual network21 was utilized for telehealth module
training and classification (“Methods”). The first 100 layers were
used to extract multidimensional, high-level features from the
input images and a Softmax classifier was applied to the last layer.
The architecture of the deep residual network is provided in
Supplementary Fig. 2 in the form of a diagram that highlights the
arrangement of each layer.

Internal validation

A randomly selected dataset derived from the original CCPMOH
records prior to training was used to validate CC-Guardian, which
included clinical records of 142 patients (61 VAO, 81 non-VAO; 79
high-IOP, 63 normal) and 1220 follow-up images (671 follow-up,
549 intervention). The 1,220 images were collected from 507 CC
patients. This dataset did not overlap with the CCPMOH data for
agent training. The trained deep-learning model was frozen prior
to any validations. The deep-learning predictions with time
stamps were verified and saved by an individual who was blind
to the expert-panel labels, thus precluding information leaking or
double-dipping when comparing the prediction results with the
expert-panel labels. After internal validation, the models trained
on all of the training sets were used for following validation.
Using the prediction module, our agent predicted VAO with

sensitivity of 0.967, specificity of 0.975, and area under curve (AUC)
of 0.991; and high IOP with sensitivity of 0.962, specificity of 0.952,
and AUC of 0.979. By virtue of its telehealth module, CC-Guardian
provides intervention decisions with sensitivity of 0.991, specificity
of 0.994, and AUC of 0.996. The detailed distributions for the
accurate and mistaken detections are presented in Fig. 3a.
Confusion matrices and receiver operating characteristic (ROC)
curves are shown in Fig. 3b, c, respectively.

Multi-resource validation

The multi-resource dataset had two parts. The first part consisted
of clinical records of 79 patients (33 VAO, 46 non-VAO; 28 high-
IOP, 51 normal) collected from 7 centers, which were used for
validating prediction module. Seven centers included Shenzhen
Eye Hospital, Beijing Tongren Hospital, People’s Hospital of
Guangxi Zhuang Autonomous Region, the Third Affiliated Hospital
of Sun Yat-sen University, Puning People’s Hospital, The Central
Hospital of Wuhan, and the First Affiliated Hospital of University of
South China. These 7 centers were distributed separately in
northern, central, and southern China, and thus collectively
composed a representative and independent sample for Chinese
population. The eligible criteria were the same as the previous

datasets, which were diagnosis of CC, informed consent, and
completed records of inputs and outcomes required for prediction
module. Detailed description of the datasets collected in each
center was summarized in Supplementary Table 1.
The second part contained images collected from heteroge-

neous open-access databases, which can further validate versati-
lity and generalization of telehealth module. We performed image
searches using the Google, Baidu and Bing search engines
through June 2016, with a combination of key words (e.g.,
congenital, infantile, pediatric cataract, follow-up, and retro-
illumination) in the form of title words or medical subject
headings. Two individuals (E.L. and H.L.) independently completed
the searches. In addition, these two individuals cross-checked and
confirmed that all the collected cases were retro-illumination
images of CC during follow-up management. When discrepancies
arose, consensus was achieved after further discussion. All
confirmed images (91 follow-up and 123 intervention) were
subsequently sent to CC-Guardian for validation.
The CC-Guardian’s prediction module predicted VAO with

sensitivity of 0.940, specificity of 0.935, and area under curve
(AUC) of 0.944; and high IOP with sensitivity of 0.964, specificity of
0.941, and AUC of 0.961. The CC-Guardian’s telehealth module
provided intervention suggestions with sensitivity of 0.959,
specificity of 0.945, and AUC of 0.981, a performance comparable
to that obtained from internal validation. The detailed distribu-
tions for the accurate and mistaken detections are presented in
Fig. 4a. Confusion matrices and ROC curves are shown in Fig. 4b, c,
respectively.

CC-Guardian web-based smartphone app

To establish a telehealth cloud platform for clinical application, we
built a CC-Guardian web-based smartphone app. The functions of
the website (available at https://www.cc-cruiser.com/cc_guardian)
include prediction-metric input, risk-stratification output, follow-
up-examination results upload, and intervention decisions report-
ing. The functions of the smartphone app (available for iOS and
Android systems) include a doctor portal (individual follow-up
scheduling and updating) and a patient portal (automatic short
message service (SMS) and interaction between patients and
CCPMOH).
Users login to the website and input the necessary prediction

metrics to obtain the risk-stratification output (occurrence of VAO
and/or high IOP) (Supplementary Fig. 3a). Doctors can assign an
individual follow-up plan using the smartphone app (doctor
portal) (Supplementary Fig. 3b). Patients will receive individual
follow-up schedules and can check these schedules using the
smartphone app (patient portal) (Supplementary Fig. 3c). Interac-
tion between patients and CCPMOH is enabled through either the
website or the app. Doctors can also reschedule individual plans if
necessary. During the follow-up process, users can upload their

Table 1. Performance of methodological comparison among algorithms.

Outcome Accuracy Sensitivity Specificity

Naïve Bayes VAO 0.966 (0.916–0.991) 0.964 (0.875–0.996) 0.969 (0.892–0.996)

High IOP 0.975 (0.928–0.995) 0.972 (0.902–0.997) 0.979 (0.889–0.999)

Random forest VAO 0.950 (0.894–0.981) 0.946 (0.849–0.989) 0.953 (0.869–0.990)

High IOP 0.941 (0.883–0.976) 0.944 (0.862–0.984) 0.938 (0.828–0.987)

Neural network VAO 0.950 (0.894–0.981) 0.909 (0.801–0.970) 0.984 (0.916–0.999)

High IOP 0.933 (0.872–0.971) 0.986 (0.924–0.999) 0.854 (0.722–0.939)

VAO visual axis opacification, IOP intraocular pressure, accuracy (TP+ TN)/(TP+ TN+ FP+ FN), sensitivity TP/(TP+ FN), specificity TN/(TN+ FP), TP true positive,

TN true negative, FP false positive, FN false negative, CI confidence interval.

A methodological comparison among naive Bayes, random forest, and neural network was performed using the average performance of the 5-fold cross-

validation by the training set of 594 patients.
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follow-up examination results to the website and obtain an
intervention decision in a timely manner (Supplementary Fig. 3d).
The algorithm embedded in this app is the same as the one in
following validations.

CC-Guardian prediction-telehealth cloud platform

A compatible mechanism to promote the real-world clinical
application of CC-Guardian to the follow-up management is highly
desirable. Therefore, we created a prediction-telehealth cloud
platform for the CC-Guardian smartphone app. As shown in Fig. 5,
when a potential patient registers at the specialized care center
(CCPMOH), their clinical metrics (valuable for the prediction
module) are collected with their permission and immediately
sent to the CC-Guardian website for complication prediction.
Based on the prediction results, the dispatching module
individually determines a follow-up schedule and sends an SMS
to remind the patient in a timely manner. Patients can complete
their regular follow-up examinations in primary care hospitals
(telehealth follow-up examination) and upload their examination
results to the web-based telehealth module. If the telehealth
module recommends intervention, a fast-track notification system
is triggered, and an emergency notification is sent to doctors at

CCPMOH for immediate confirmation. Such patients will be
informed that they should undergo intervention to manage their
complications. Instructions for using the prediction-telehealth
cloud platform are provided in Supplementary Video 1.

Retrospective self-controlled test

To further investigate the real-world efficiency of our system, we
retrospectively used longitudinal follow-up records of 141 CC
patients from CCPMOH between January of 2016 and May of 2017
(“Methods”). Before using our system, these 141 CC patients had
987 distant follow-up visits to CCPMOH, including 93 patients who
underwent VAO and 105 patients who suffered from high IOP
(Fig. 6a, b).
After applying our system, 90 cases of VAO (90/93, 96.8%) and

101 cases of high IOP (101/105, 96.2%) were successfully predicted
(Fig. 6a, b). A total of 73 patients (73/90, 81.1%) would have
benefited from earlier VAO detection (2759 risk days in total, 37.8
risk days earlier per person on average, median 45.0 risk days) and
89 patients (89/101, 88.1%) would have benefited from earlier
high-IOP detection (1709 risk days in total, 19.2 risk days earlier
per person on average, median 15.0 risk days).

Fig. 3 Highly accurate performance of CC-Guardian in internal validation. a Using the prediction module, our agent predicted VAO with
96.7% sensitivity and 97.5% specificity, and high IOP with 96.2% sensitivity and 95.2% specificity in internal validation. Using the telehealth
module, our agent provided intervention suggestions with 99.1% sensitivity and 99.4% specificity. b Confusion matrices for agent validation.
c Our agent had AUCs of 0.991, 0.979, and 0.996 for detecting VAO, high IOP, and intervention, respectively, in internal validation. AUC area
under curve, TP true positive, TN true negative, FP false positive, FN false negative.
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All 141 patients would have had a total of 1579 telehealth visits
rather than 987 distant visits to the CCPMOH, which would have,
on average, saved each family significant travel of 928.6 miles per
year (1185.4 vs. 256.8 miles, P < 0.001, Fig. 6c), time of 24.9 h per
year (33.8 vs. 8.9 h, P < 0.001, Fig. 6d), and an expenditure of
$1324.1 per year, ($1791.4 vs. $467.3, P < 0.001, Fig. 6e). These
results demonstrate that our system has the potentials to detect
and address the complications at an earlier stage, and to reduce
the socioeconomic burden faced by patients compared to
conventional in-person follow-up.

DISCUSSION

In this study, we integrated the benefits of individualized
prediction and telehealth computing to create an AI agent and
introduced a prediction-telehealth cloud platform to support its
clinical application to the management of congenital cataract.
With high precision as a prerequisite, our system may effectively
translate correct predictions and detections into real advance-
ments in treatment timing and significant savings in travel
distance, time, and cost.

Earlier diagnosis and timely interventions in response to serious
complications can significantly improve healthcare quality22. For
CC patients whose visual development is in a sensitive stage, even
short duration form-deprivation due to VAO will significantly
increase the risk of amblyopia23. There is a greater risk of
glaucoma caused by high IOP, which is one of the leading causes
of blindness, progressing rapidly and causing irreversible damage
to the optic nerve24. Unfortunately, most symptoms of complica-
tions (e.g., decreased visual acuity) are insidious and tend to be
neglected, which can cause patients to miss the “treatment
window” for saving their remaining vision25. Therefore, the earlier
diagnosis (37.8 risk days per person for VAO and 19.2 risk days per
person for high IOP) provided by our system may reduce the risk
of permanent visual impairment.
Telehealth computing significantly reduces the travel distance,

time, and cost to our patients during follow-up visits (928.6 miles,
24.9 h, and $1324.1 per year for each family), which can
substantially increase their compliance. Such benefits will be even
greater when considering reduced labor costs for clinicians and
patients. Moreover, experts in specialized centers will be free to
transfer to more first-visit patients. Therefore, from this

Fig. 4 Comparative performance of CC-Guardian in multi-resource validation. a Using the prediction module, our agent predicted VAO
with 94.0% sensitivity and 93.5% specificity, and high IOP with 96.4% sensitivity and 94.1% specificity for the multi-resource dataset. Using the
telehealth module, our agent provided intervention suggestions with 95.9% sensitivity and 94.5% specificity for the multi-resource dataset. b
Confusion matrices for agent validation. c Our agent had AUCs of 0.944, 0.961, and 0.981 for detecting VAO, high IOP, and intervention,
respectively, for the multi-resource dataset. AUC area under curve, TP true positive, TN true negative, FP false positive, FN false negative.
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perspective, our telehealth pattern will provide substantial
impetus for creating a more rational allocation of medical
resources and expand the coverage of high-quality medical care.
It should be noted that our previous study has developed an

automatic diagnosis system for CC patients26. Comparing to our
previous work, the current study presented significant advances
and novelties. First, our previous study can only be applied in
preoperative patients for primary screen and diagnosis. However,
the current study focused on follow-up management of CC (high
cost of long-term follow-up and delayed detection on post-
operative complications), a more general and intractable situation
that can be happen in patients with chronic diseases, such as
metabolic and cardiovascular diseases. Second, our previous work
only analyzed 886 images using a 7-layer convolution network. In
comparison, the current work innovatively integrated Bayesian
and 101-layer deep residual network to take the advantage of
both structured clinical records and 4886 postoperative images,
which finally achieved fully automatic flow of prediction and
telehealth. Third, although both our previous and current works
have achieved highly accurate performance in their specific
clinical scenarios, the current work further conducted a retro-
spective self-controlled test to articulate the exact benefits that
our system can provide for patients in real-world settings. These
evidence address a matter of greatest concern to both clinicians
and patients and provide the direct implications and merit to
routine clinical practice.

This study has certain limitations. First, the multi-resource
dataset for validating prediction module is relatively small and
limited to the Chinese population, due to difficulties for assessing
clinical records from centers in other countries27 and limited
cohorts tracking congenital cataract worldwide28. It is also
essential to validate our system using datasets in other ethnic
population or other countries in the future to achieve global
generalization, as previously achieved in diabetic retinopathy29.
Second, it should be emphasized that the application of our
system is limited to CC patients. For other chronic conditions like
hypertension and diabetes, it is expected that machine learning
can be applied to efficiently manage the ketoacidosis or stroke by
prediction-telehealth approach in resource-intensive situations.
Third, images used to train the telehealth module are acquired
through slit-lamp photography. Therefore, assistances (e.g.,
strap30) would be required for the uncooperative infants during
the photography process. Fourth, the duration of self-controlled
test is relatively short (one and four months). The records after
May 2018 are not available for this test because of the incomplete
1-year follow-up records when we submitted this work. Fourth,
the complications’ prevalence in our study is higher than those
reported by previous studies31–33. It may be attributed to
difference of measurement and definition, or “severe patient
effects” (that is, infants with complications have better compliance
and thus are more likely to have complete follow-up records). We
further estimated that such prevalence difference will not

Fig. 5 The prediction-telehealth cloud platform. When potential patients register at the specialized care center (CCPMOH), their clinical
metrics (valuable for the prediction module) are collected with their permission and immediately uploaded to the CC-Guardian cloud platform
for complication prediction. Based on the prediction results, the dispatching module designs an individualized follow-up schedule and sends
a short message to notify each corresponding patient in a timely manner. Patients can complete their regular follow-up in primary care
hospitals and upload their examination results to the web-based telehealth module. If the telehealth module recommends intervention, the
fast-track notification system is triggered, and an emergency notification is sent to doctors at the specialized care center (CCPMOH) for
immediate confirmation. These patients are informed that they should undergo intervention to manage complications after confirmation.
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influence the results on advance detection timing, savings of
travel distance, time and expenditure (Supplementary Informa-
tion, Supplementary Table 2). Fifth, it should be noted that we
cannot quantify the effects of earlier detection on improved
outcomes due to retrospective design. It is necessary to conduct
prospective studies to further investigate the agent’s robustness in
performance and benefits in real-world setting.
In the future, the performance of CC-Guardian will be enhanced

though the collection of larger datasets using our platform.
Furthermore, CC-Guardian can be combined with wearable
devices (e.g., smartphone-based slit-lamp photography) to imple-
ment real-time eye condition monitoring, which will provide a
foundation for the development of a home-based telehealth
platform.

METHODS

Predictive indicators and outcomes for prediction module

The baseline information included gender, age at surgery, and laterality.

The lesion condition included area, density, and location. The area was

defined as “extensive” when the opacity covered more than 50% of the

pupillary area; otherwise, it was “limited”. The density was defined as

“dense” when the opacity fully disrupted viewing of the fundus; otherwise,

it was “non-dense”. The location was defined as “central” when the opacity

fully covered the visual-axis area; otherwise, it was “peripheral”. For

comorbidities, nystagmus, microphthalmia, microcornea, and persistent

hyperplastic primary vitreous were defined according to the 11th Revision

of the International Classification of Diseases (ICD-11) Beta Draft34. For

surgical procedures, three standardized cataract extraction methods were

classified, including lens aspiration (I/A), I/A with posterior continuous

curvilinear capsulorhexis (I/A+ PCCC), I/A with PCCC and anterior

vitrectomy (A-Vit)20. Intraocular lens (IOL) implantation was classified as

primary or secondary IOL implantation.
These 12 inputs aim to predict two high-risk complications after one-

year of follow-up after surgery: (1) the occurrence of VAO (happen or not)

and (2) the occurrence of high IOP (happen or not). VAO was defined as

lens epithelial cells proliferation that extends into the pupillary area and

covers the visual axis. High IOP was defined as IOP > 21mmHg.

Supplementary Table 3 summarizes the distribution of all inputs and

outcomes.

Methodological comparison for prediction module

To find the optimal algorithm, we first performed a comparison among
naive Bayes and two classic machine learning algorithms (random forest
and neural network). Briefly, we developed the naive Bayes by constructing
a scoring function to perform binary classifications19. Random forest was
developed by constructing a multitude of decision trees at training time
and outputting the mode of the classes for classification7. Neural network
was developed by systematic training of interlinked simple processing
elements and artificial neurons for classification35. The methodological
comparison was conducted using the toolbox in MatLab 2016 (MathWorks,
Inc., Natick, MA, USA). The optimal algorithm was selected based on the
average performance of the 5-fold cross-validation by the training set of
594 CC patients. After selection, a complete algorithm was then trained on
the entire 594 CC patients prior to later validations.

Deep residual network for telehealth module

A stacked 101-layer residual network21 was utilized for telehealth module
training and classification. Specifically, several techniques, including
convolution, max pooling, residual blocks, batch-normalizing transform36,
non-saturating rectified linear units, and data augmentation were
integrated into this algorithm. The residual block was employed to avoid
the degradation, further enhance recognition rates, and accelerate
convergence. The entire network included thirty-three residual blocks,
each of which consists of three convolutions and a nonlinear transforma-
tion function (i.e., the residual blocks together comprise 99 layers). Batch
normalization was employed to address the problem of vanishing and
exploding gradients to help convergence. Transfer learning technology
was also employed by pre-training on the large-scale 1000-class datasets
from ImageNet37. We then optimized the learning process on our ocular
images by transfer learning an existing model that was. All codes were
executed in the Convolutional Architecture for Fast Feature Embedding
(Caffe) framework running on an Ubuntu 14.04 64 bit operating system
and the Compute Unified Device Architecture (CUDA) 8.038.

Retrospective self-controlled test

To further investigate the real-world efficiency of the prediction-telehealth
cloud platform, we retrospectively used longitudinal follow-up records
from CCPMOH between January 2017 and May 2018. Informed consent
was obtained from all subjects. Among 172 CC patients, 141 of which were
finally included because they had complete follow-up records in all visits.
Specifically, we included 141 patients’ clinical records (93 VAO, 48 non-
VAO; 105 high-IOP, 36 normal) for prediction module testing and 987

Fig. 6 Real-world efficiency in retrospective self-controlled test. Error bars presented the standard deviation. a, b The longitudinal follow-up
records of 141 CC patients (987 follow-up visits to CCPMOH) were retrospectively used for real-world testing. Before using CC-Guardian, a total
of 93 patients underwent VAO and 105 patients suffered from High IOP. After using our system, 90 cases of VAO (90/93, 96.8%) and 101 cases
of high IOP (101/105, 96.2%) are successfully predicted. c–e Each family would have saved an average travel distance of 928.6 miles (1185.4 vs.
256.8 miles, P < 0.001), an average time of 24.9 h (33.8 vs. 8.9 h, P < 0.001), and an average expenditure of $1324.1 ($1791.4 vs. $467.3, P < 0.001)
per year. VAO visual axis opacification, IOP intraocular pressure.
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images (394 intervention and 593 follow-up) for telehealth module testing.

The mean age at surgery of the included patients were 28.32 months, and

74 participants (52.5%) were male. Supplementary Table 4 summarizes the

clinical characteristics of all 141 included patients. All images are eligible as

the inputs for the telehealth module.
In the self-controlled analysis, we retrospectively investigated the

efficiency (advanced complication detection) and cost-efficient benefits

(time, travel distance, and expenditure) before and after the use of our

system. For complication detection, true prediction with an advanced

schedule and accurate detection was considered a timelier intervention,

and the time difference of intervention before and after the use of our

system was calculated. For example, an individual had no VAO in 9-month

visit but had VAO in 12-month visit, which is considered as 90 risk days

before using our system. If our system can predict and detect successfully,

this individual will have an additional visit at 10.5 month and be detected

at this visit, which is considered as 45 risk days (45 risk days in advance).
The cost-efficient benefits were calculated based on the assumption that

all follow-up visits using our agent were conducted via telehealth

computing. Travel distance savings was defined as the round-trip distance

savings between the distance traveled from the patient’s home address to

the telehealth site and the distance the patient would have traveled at

CCPMOH. Amap 7.8.6 (Alibaba Group, Hangzhou, China) was used to

geocode the patients’ addresses, the telehealth sites (hospitals with

ophthalmological departments) and CCPMOH and to calculate the travel

distances. Distances were calculated by doubling one-way distances and

the “quickest route” option was selected rather than the “shortest route” or

“straight line” options.
Time savings was defined as the round-trip time savings for travel to the

telehealth sites compared to travel to an in-person consultation at

CCPMOH. The following travel speeds were used to calculate travel time:

highways, 65 miles per hour (mph); major roads, 50 mph; arterial roads,

30mph; and streets, 20 mph.
Expenditure savings was defined as the round-trip cost savings between

the travel costs associated with traveling to the telehealth sites and those

associated with traveling to CCPMOH. The estimated cost savings were

calculated according to the latest standard of travel and traffic expenses

from the Ministry of Finance of the People’s Republic of China in 2016 (file

identifier: 2016–71), which reflects the cost of vehicular travel including

insurance, fuel, and vehicle maintenance for miles driven.

Statistical analysis

Due to the skewed distributions of variables difference, Wilcoxon paired

test was used to compare the differences of distance, time, and cost before

and after the use of CC-Guardian. The Yonden index method was used to

decide the optimal operating threshold for calculating the sensitivity and

specificity values39. The 95% confidence interval of sensitivity, specificity

was calculated using binomial proportion confidence intervals. All the

statistical tests were two-tailed, and a P value below 0.05 was considered

statistically significant. All tests were conducted using the statistical

package R, version 3.2.4.

Ethics approval

Our study was approved by the centralized institutional review board (IRB)

of Sun Yat-sen University. It was conducted in accordance with the

Declaration of Helsinki. All included datasets were anonymized according

to the Health Insurance Portability and Accountability Act Safe Harbor

guidelines prior to their transfer to the study investigators.

Reporting summary

Further information on research design is available in the Nature Research

Reporting Summary linked to this article.
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