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Abstract The current work demonstrates the support

vector machine (SVM) and adaptive neuro-fuzzy inference

system (ANFIS) modeling to assess the removal efficiency

of Kjeldahl Nitrogen of a full-scale aerobic biological

wastewater treatment plant. The influent variables such as

pH, chemical oxygen demand, total solids (TS), free

ammonia, ammonia nitrogen and Kjeldahl Nitrogen are

used as input variables during modeling. Model develop-

ment focused on postulating an adaptive, functional, real-

time and alternative approach for modeling the removal

efficiency of Kjeldahl Nitrogen. The input variables used

for modeling were daily time series data recorded at

wastewater treatment plant (WWTP) located in Mangalore

during the period June 2014–September 2014. The per-

formance of ANFIS model developed using Gbell and

trapezoidal membership functions (MFs) and SVM are

assessed using different statistical indices like root mean

square error, correlation coefficients (CC) and Nash Sut-

cliff error (NSE). The errors related to the prediction of

effluent Kjeldahl Nitrogen concentration by the SVM

modeling appeared to be reasonable when compared to that

of ANFIS models with Gbell and trapezoidal MF. From the

performance evaluation of the developed SVM model, it is

observed that the approach is capable to define the inter-

relationship between various wastewater quality variables

and thus SVM can be potentially applied for evaluating the

efficiency of aerobic biological processes in WWTP.

Keywords ANFIS � SVM � Statistical indices � Total

Kjeldahl Nitrogen � Wastewater treatment plants �
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Introduction

Improper maintenance of WWTP can trigger serious eco-

logical and public health problems and also it may be a

reason for various water borne diseases affecting human

health and aquatic life. Nitrogen and phosphorous are the

key nutrients supporting the growth of algae and organic

matter which instigate eutrophication in water bodies.

Various control actions have to be implemented for effi-

cient monitoring of process performance during the oper-

ation of wastewater treatment plant (WWTP) (Boelee et al.

2011). Models are necessary for the reason that, the effects

of tuning the operating variables can be studied more

transiently on a computer than by doing experiments.

Hence, many alternative schemes and operational strategies

can be evaluated without the need for physical trials of

each scenario (Thalla et al. 2010; Pai et al. 2011). By

simulating the performance assessment models using suit-

able influential variables, one can rapidly respond to any

changes in the processes and devise operational strategies

to shift the plant to new operating conditions which

improves its stability, the quality of the effluent and at the

same time achieve reduction in the running costs (Miller

et al. 1997; Nair et al. 2016; Kumar and Saravanan 2009).

Several deterministic, stochastic and time series-based

models have been developed for predicting the perfor-

mance of WWTPs, (Guo et al. 2014; Ráduly et al. 2007;

Denai et al. 2004; Erdirencelebi and Yalpir 2011; González

et al. 2009). In the recent past, soft computing tools such as
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artificial neural network (ANN), adaptive neuro-fuzzy

inference system (ANFIS) have also been widely used for

wastewater treatment prediction studies (Belanche et al.

1998; Elmolla et al. 2010; Cakmakci 2007).

Nitrogen is a major wastewater nutrient and exists in

various forms, including free ammonia, organic nitrogen,

nitrate and nitrite each of which may be assessed for in a

variety of ways. Fresh wastewater nitrogen is generally

present in the ammonia and organic nitrogen forms, with

the minute corpus of nitrite and nitrate forms (Sharma and

Chopra 2015). The effluent may consist of either ammonia

or nitrate nitrogen depending on the extent of nitrification,

which exists within the treatment plant. Under routine

conditions, the nitrite form of nitrogen does not exist in fat

quantities due to its instantaneous oxidation or transfor-

mation to nitrate (Zhang and Gao 2000). Total Kjeldahl

Nitrogen (TKN) is a chemical analysis to ascertain both the

organic and the ammonia nitrogen. The TKN value cor-

responds to a total nitrogen concentration, which is the

summation of organic nitrogen compounds and ammonia

nitrogen [TKN = org-N ? NH4–N (mg/L)]. Nitrogen

mainly occurs in wastewater in the TKN form. After bio-

logical wastewater treatment, TKN mostly appears as

oxidized nitrite (Liu et al. 2013).

The objective of the current study is to investigate the

applicability of support vector machine (SVM) and adaptive

neuro-fuzzy inference system (ANFIS) modeling approach

for predicting the Kjeldahl Nitrogen removal from a

domestic WWTP. Support vector machine is a unique state-

of-the-art classification and regression technique based on

the framework ofVapnik’s statistical learning theory (Cortes

and Vapnik 1995) designed to solve complex regression

problems. The hybrid neuro-fuzzy approach developed from

the combination of neural network and fuzzy system paves

way for implementing an effective tool/algorithm for solving

non-linear and complex real-world problems. Due to its

abilities, such as handling imprecisions, uncertainties and

large data sets, adaptive neuro-fuzzy inference system

(ANFIS) is evolved to be one of the commonly used tech-

niques. ANFIS trains the influencing parameters of the fuzzy

inference system through a learning algorithm deduced from

neural network (Jang 1993). Considering the difficulties

associated with the conventional or analytical approaches

and the experimentation/computational cost, SVM and

ANFIS techniques are suitable choices to predict the Kjel-

dahl Nitrogen removal in the system.

Description of WWTP and data analysis

The data sets were obtained from the Kavoor Wastewater

Treatment Plant (WWTP) situated at Mangalore which

serves a population of 440,000. The design capacity of the

WWTP is 43.5 MLD, respectively. The normal operating

DO in the aerobic reactor was about 1.7–2.5 mg/L. The

sludge retention time was about 8–10 days with a hydraulic

retention time of 7–8 h. The mixed liquor suspended solids

(MLSS) maintained in the aerobic reactor was about

4200–4500 mg/L. The data set contains daily time series

data analyzed and recorded at the WWTP plant during the

period June–Sept 2014 with a total of 88 data points (pe-

riod of 4 months) of seven variables, namely pH, total

solids (TS), chemical oxygen demand (COD), temperature

(T), free ammonia (FA), ammonia nitrogen (AN) and total

Kjeldahl Nitrogen (TKN). The Kavoor WWTP adopts a

biological treatment process, which possess the capability

to remove phosphorus and nitrogen simultaneously under

anaerobic and aerobic environments. The Kavoor WWTP

consists of screening, grit chamber, anaerobic, aerobic

reactors and a secondary clarifier as shown in Fig. 1.

Complete removal of total Kjeldahl Nitrogen (TKN) is

practically unachievable in the WWTP’s having a pre-

anaerobic system, wherein the anaerobic reactor is posi-

tioned behind the aerobic reactor and the mixed liquor

involving nitrate is recirculated to the aerobic reactor from

the secondary clarifier. The nitrate recirculation rate needs

to be intensified, so as to improve the TKN removal effi-

ciency, which steers to higher power consumption and

dissolved oxygen (DO) return from the aerobic reactor (Liu

et al. 2013).

The raw influent is fed into the bar screen, followed by

grit chamber, anaerobic, and aerobic reactors, subsequently

the sludge from the secondary clarifier is restored to the

aerobic reactor. The treatment plant incorporates a simul-

taneous nitrification and denitrification (SND) process

which initiates with partial nitrification of NH4? to nitrite

and successively continues with an immediate reduction of

nitrite to N2 gas. In SND process, nitrification and deni-

trification exist simultaneously in the same reactor basin

under identical operating conditions (Breisha 2010). The

main factors affecting nitrogen removal efficiency are

temperature, nitrate concentration, dissolved oxygen,

alkalinity, pH, BOD, COD and free ammonia concentra-

tion. At high temperatures (between 28 and 38 �C) the

specific growth rate of ammonia oxidizing bacteria (AOB)

will be higher than that of nitrite oxidizing bacteria NOB

effecting in enhanced nitrogen removal rate via nitrite.

Nitrifiers are vulnerable to temperature than heterotrophic

bacteria. Optimal pH for effective nitrification is some-

where between 7 and 8.5. pH lower than 6 can cause

inhibition. Alkalinity acts as a source of carbon for nitrifier

growth. Nitrifiers are very sensitive to diverse kinds of

compounds present in wastewater and get inhibited at very

low DO levels. If the operating solids retention time (SRT)

is lesser than the minimum SRT, nitrification process will

be hampered. COD plays a role during denitrification
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process. Even though high DO concentrations are required

to augment the activity of nitrifiers in the reactor, denitri-

fication gets inhibited by excess oxygen. Free ammonia

also inhibits the ammonium and nitrite oxidation during

nitrification and denitrification processes. Hence, in the

present context, the factors such as influent pH, COD, total

solids (TS), temperature (T), free ammonia (FA), ammonia

nitrogen (AN) and total Kjeldahl Nitrogen (TKN) are used

as predictors to predict the effluent total Kjeldahl Nitrogen

(TKN) concentrations using artificial intelligence (AI)

models. The influent and effluent wastewater characteris-

tics are analyzed on a daily basis by adopting the grab

sampling technique. The details of sampling source and the

laboratory methods of wastewater analysis are provided in

Table 1. Sampling is carried out between 8 AM and 10 AM

every day as the plant receives its peak flow. The

descriptive statistics of the observed variables of WWTP

are presented in Table 2. The Xmax, Xmin, Xmean, SD, & Cv

denotes the maximum, minimum, mean, standard deviation

and variance of the data respectively.

Methodology

Support vector machine

Support vector machine is a unique state-of-the-art classifi-

cation and regression technique based on the framework of

Vapnik’s statistical learning theory (Cortes and Vapnik 1995)

designed to solve complex regression problems. The SVM

technique has been effectively used to perform multivariate

function estimation, nonlinear regressionproblems, etc. due to

its competence to escape from local minima, improved gen-

eralization capability and sparse representation of the solution

(Vapnik 1999). SVM is based on structural risk minimization

principle wherein it addresses the problem of overfitting by

balancing the model’s complexity. Non-linear problems are

tackled by transforming them into linear ones in multi-di-

mensional feature space usingKernel functions. The structure

of SVM is as represented in Fig. 2. With the innovation of

Vapnik’s e-insensitivity loss function, the SVM is still more

capable to solve nonlinear regression problems (Smola and

Schölkopf 2004). In order to achieve a good generalization

performance, it is essential to find certain optimal hyper-pa-

rameters ofSVMmodel. Thehyper-parameters that need to be

tuned are the regularization parameter (C) that controls the

generalization performance of SVM, secondly the kernel

parameter specific to the type of kernel adopted and finally the

radius of e—insensitive zonewhich determines the number of

support vectors (Cristianini and Shawe-Taylor 2000; Kecman

2001). A brief description and derivation of support vector

regression can be referred from various literatures (Smola and

Scholkopf 2004; Cristianini and Shawe-Taylor 2000;

Raghavendra and Deka 2015a).

ANFIS architecture

ANFIS, a hybrid fuzzy logic-based technique integrated

with the learning power of artificial neural network

improves the performance of any kind of intelligent system

by utilizing knowledge acquired after learning. For a real-

time input–output dataset, a hybrid learning algorithm such

as ANFIS constructs a backpropagation gradient descent

and least squares methods associatively to frame a fuzzy

inference system whose membership function parameters

are iteratively tuned or adjusted. Adaptive neuro-fuzzy

inference systems comprise of a mainly five layers—rule

base, database, fuzzification interface, defuzzification

interface and decision making unit (Jovanovic et al. 2004;

Raghavendra and Deka 2015b). The generalized ANFIS

architecture proposed is summarized below.

The ANFIS is a fuzzy Sugeno model that allocates the

structure of adaptive systems to assist learning and adap-

tation. ANFIS architecture comprises of five layers. Every

single node in layer 1 is an adaptive node with a node

function which may be anyone among the membership

functions. Every node of layer 2 is a fixed node labeled ‘p’

which signposts the firing strength of each rule. All nodes

Fig. 1 Schematic flow diagram of Kavoor WWTP
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of layer 3 are fixed nodes labeled as ‘N’ which demon-

strates the normalized firing strength of each rule. The

layer 4 is as similar to layer 1 wherein every node is an

adaptive node governed by a node function. The layer 5

being a single fixed node labeled ‘R’, representing the final

output (f), defined as the summation of all arriving signals.

Figure 2, shows the implementation of two fuzzy rules using

ANFIS architecture. The appropriate choice of the type and the

parameters of the fuzzy membership functions and rules play a

vital role in achieving the desired performance but in most cir-

cumstances, it is problematic (Raghavendra et al. 2015).

Sometimes these parameters are chosen on the basis of trial and

error method which enlightens the importance of tuning the

fuzzy system. Themain objective of training theANFIS system

is to govern the optimal premise and resultant parameters.

ANFIS can be used to train the FIS model by modifying the

membership functionparameters basedonerror chosencriterion

to copewith the training data. TheFISmodel having parameters

related to the least checking data model error is selected, when

ANFIS contains the checking data and training data.

Performance evaluation

The level of confidence over the predictions of any

developed model is assessed by using suitable statistical

indices. Correlation coefficient (CC), root mean square

error (RMSE) and Nash–Sutcliffe error (NSE) were used to

evaluate the model accuracies. Although RMSE values are

used to distinguish model performance in training and

testing period, it can also be used to compare the perfor-

mance of individual model to other predictive models. To

Table 1 Sampling source and the laboratory methods of wastewater

analysis

Characteristic Sampling

source

Test method

pH Influent and

effluent

IS 3025 (Part 11): 1983 (RA 2006)

Potentiometric method

TS (mg/L) IS 3025 (Part 15): 1984a (RA 2003)

Gravimetric method

COD (mg/L) IS 3025 (Part 58): 2006

Open reflex method

T (�C) IS 3025(Part 9): 1984b (RA 2002)

Mercury –in-glass thermo meter

method

FA (mg/L) IS 3025 (Part 34): 1988 (RA 2009)

Macro-Kjeldahl method with

calorimetric analysis

AN (mg/L) IS 3025 (Part 34): 1988 (RA 2009)

Spectrophotometric method

TKN (mg/L) IS 3025 (Part 34): 1988 (RA 2009)

TKN distillation method

TS total solids, COD chemical oxygen demand, T temperature, FA

free ammonia, AN ammonia nitrogen, TKN total Kjeldahl Nitrogen

Table 2 Statistical indices of various parameters of WWTP

Parameters Statistical indices

Xmax Xmin Xmean Sd Cv

Train phase

Predictors Influent pH 6.70 6.30 6.45 0.09 0.0078

Influent TS (mg/L) 670.00 367.00 487.05 56.84 3230.64

Influent COD (mg/L) 592.00 264.00 389.72 73.14 5349.11

Influent T (�C) 34.00 27.00 29.29 1.60 2.55

Influent FA (mg/L) 0.16 0.05 0.09 0.025 0.0006

Influent AN (mg/L) 29.00 10.00 17.12 4.40 19.33

Influent TKN (mg/L) 37.00 16.00 23.71 5.35 28.59

Predictand Effluent TKN (mg/L) 32.00 11.00 19.72 5.00 24.98

Test phase

Predictors Influent pH 6.70 6.30 6.4478 0.1039 0.0108

Influent TS (mg/L) 626.00 382.00 460.78 51.68 2671.27

Influent COD (mg/L) 504.00 200.00 329.39 84.87 7202.34

Influent T (�C) 30.00 27.00 28.4783 0.6653 0.4427

Influent FA (mg/L) 0.08 0.02 0.0436 0.0126 0.0002

Influent AN (mg/L) 11.00 5.00 8.45 1.53 2.3550

Influent TKN (mg/L) 16.00 9.00 13.13 1.96 3.8458

Predictand Effluent TKN (mg/L) 14.00 7.00 10.83 1.80 3.2411
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assess the performance of ANFIS models the following

statistical indices were adopted.

1. Correlation coefficient (CC)

CC ¼

P

n

i¼1

Xi � �Xð Þ � Yi � �Yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Xi � �Xð Þ
2
�
P

n

i¼1

Yi � �Yð Þ
2

s : ð1Þ

2. Root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Xi � Yið Þ2

n

v

u

u

u

t

: ð2Þ

3. Nash–Sutcliffe coefficient (NSE)

NSE ¼ 1�

P

n

i¼1

Xi � Yið Þ2

P

n

i¼1

Xi � �Xð Þ
2

; ð3Þ

where X = observed/actual values; Y = predicted values;

X = mean of actual data values; n = total number of

values.

Results and discussion

The dataset is split into ‘train dataset’ which includes 74%

(65 data points) of data in the period of 2nd June 2014 to

30th August 2014 and ‘test dataset’ composed of the

remaining 26% data (23 data points) in the period of 1st

September 2014 to 30th September 2014. The train dataset

was used to build/simulate the model and the test dataset

was employed to evaluate the performance of the built

model. In order to investigate the dependency between

variables that influence total Kjeldahl Nitrogen (TKN),

cross-correlation coefficients between effluent TKN and

each input parameter were analyzed and are presented in

Table 3. This data were exercised to assist in selecting

input variables for ANFIS and SVM models. From

Fig. 2 Schematic diagram of

SVM and ANFIS Structure

(Source: Raghavendra and Deka

2014)
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Table 3, it can be noticed that the effluent TKN at the time

(t) is strongly correlated with the influent total Kjeldahl

Nitrogen concentration [with a correlation value of

0.952(in train dataset) and 0.92(test)]; Influent ammonia

nitrogen concentration [with a correlation value of

0.916(train) and 0.85(test)]; and the influent free ammonia

concentration [with a correlation value of 0.87(train) and

0.76(test)]. The cross-correlation coefficients between the

effluent TKN and other variables (influent total solids,

COD concentrations, temperature) were also found to be

fairly influential. The cross-correlation coefficients

between the effluent TKN and the influent pH ranged from

-0.597(train) and -0.532(test). The negative correlation

indicates that a high occurrence or amount of TKN is

rendered in the effluent during decreased pH of the influent.

The analysis is carried out to predict the concentration

of effluent Kjeldahl Nitrogen using influent pH, TS, COD,

Free ammonia, ammonia nitrogen, Kjeldahl Nitrogen as

input variables. The cross-validation search is used to

determine the optimal SVM hyper-parameters (C, c and e).

SVM with RBF kernel function is implemented in the

present case. The optimal parameters obtained after tuning

the SVM model are as tabulated in Table 4. The modeling

of ANFIS is carried out in MATLAB platform. The results

obtained from SVM and ANFIS models with Gbell and

trapezoidal MFs are depicted in the form of various sta-

tistical indices like RMSE, CC and NSE through tables and

various plots. The optimal ANFIS architecture as presented

in Table 4 is obtained after tuning fuzzy MF and rules of

certain number and type.

The prediction errors of the models in the training and

testing phases are as presented in Table 5. In the SVM

model, the RMSE and NSE are significantly less in both

training and testing stages when compared to that of

ANFIS models. The magnitude of RMSE and NSE com-

putation infers that the ANFIS model with Gbell mem-

bership function closely predicts the effluent Kjeldahl

Nitrogen concentration than that of trapezoidal member-

ship function. Here, the RMSE = 0.795 mg/L,

NSE = 0.79 and CC = 0.85 of ANFIS model with Gbell

membership function during test phase verifies the close

agreement of concentration of effluent Kjeldahl Nitrogen

with the observed concentration. The comparative evalua-

tion of results obtained from Gbell and trapezoidal ANFIS

models along with the SVM model during the prediction of

effluent Kjeldahl Nitrogen is as presented in the form of

graph (Fig. 3).

The SVM algorithm outperformed the ANFIS models,

particularly in the testing stage. The prediction errors and

correlation statistic of the SVM algorithm is relatively

Table 3 Cross-correlation between effluent total Kjeldahl Nitrogen

(TKN) and other parameters

Parameter Effluent total Kjeldahl Nitrogen (TKN)

Train data Test data

Influent pH -0.597 -0.532

Influent TS (mg/L) 0.654 0.628

Influent COD (mg/L) 0.723 0.698

Influent T (�C) 0.646 0.622

Influent FA (mg/L) 0.872 0.765

Influent AN (mg/L) 0.916 0.853

Influent TKN (mg/L) 0.952 0.920

Table 4 Details of SVM and

ANFIS architecture
ANFIS architecture SVM model

No.of membership function (MF) 3 Optimal C 15

Algorithm selected Hybrid Optimal e 0.15

No. of Epoch given 500 Optimal c 5

FIS generated Grid partition nsv 47%

No. of membership (MF) type Constant

Member ship function (MF) used Gbell & trapezoidal

Table 5 Statistical results of SVM and ANFIS models

Statistical indices ANFIS models SVM model

GBELL MF Trapezoidal MF

Train Test Train Test Train Test

CC 0.97 0.85 0.96 0.79 0.98 0.91

RMSE (mg/L) 0.198 0.795 0.532 1.104 0.155 0.232

NSE 0.96 0.79 0.97 0.58 0.98 0.85
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better than the ANFIS models as presented in Figs. 3 and 4,

respectively. It is common to see that each and every model

gets better solutions in the training stage as compared to

that of testing stage. The possible reason for this is, the

models will be trained over the range of dataset with

specific maximum and minimum values. The mean of the

dataset will also influence during training of a model.

However, during testing of the model with another dataset

of different minima and maxima, the model is usually

unsuccessful to catch up the limits of the testing dataset.

From the time series graph as presented in Fig. 4 during the

effluent Kjeldahl Nitrogen prediction, it is observed that the

SVM model closely follows the observed time series. The

ANFIS model with Gbell MF appears to have the accepted

accuracy during both training and testing phase.

Figure 5 shows closely spaced scatters of the predicted

and observed effluent Kjeldahl Nitrogen concentrations of

SVM and ANFIS models during the testing phase. The

reasonable dependence of a variable can be verified

through the coefficient of determination (R2) which ranges

between 0 and 1 signposting the predictable extent of the

dependent variable. The data points in the upper and lower

extremes of the scatter plot of SVM model do not deviate

to a great extent from the line of best fit indicating the

goodness of the fit/model. In SVM model 82.48% of the

variations in total Kjeldahl Nitrogen prediction is explained

by taking into account of pH, TS, COD, T, FA and AN as

predictors. It can be observed that ANFIS model with

trapezoidal MF has more number of outliers than that of the

SVM and Gbell ANFIS models during the test phase. From

this, it can be ascertained that SVM model has higher

consistency and robust performance during prediction.

Summary and conclusions

Much research has endorsed that biological wastewater

treatment is an extremely viable treatment technology

regarding nitrification–denitrification and phosphorus

removal. In conjunction with optimized plant design and

operating parameters, the biological wastewater treatment

guarantees high effluent quality in terms of nitrates,

ammonia, and phosphates existing in wastewater.

According to contemporary European regulation, the total

phosphorus and nitrogen in treated effluent should be in the

range of 1–2 and 10–15 mg/L, respectively. In many sit-

uations, where the risk of public exposure to the reclaimed

water exists, effective monitoring of effluent quality is

necessary. The data related to influent pollutants, including

the total suspended solids (TSS) and COD are utilized for

immediate or short-term effluent quality prediction to

provide information for efficient operation of the treatment

process. In this study, the artificial intelligence models—

SVM and ANFIS are being applied for the prediction of

effluent Kjeldahl Nitrogen concentration yielded from a

biological wastewater treatment plant. SVM and ANFIS

models with Gbell and trapezoidal membership functions

are tested in the study with input variables such as influent

pH, TS, COD, Free ammonia, ammonia nitrogen and

Kjeldahl Nitrogen. From the results presented above, cross-

validation search was able to set the SVM parameters
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efficiently and thereby improve the forecasting efficiency

of SVM. SVM models provided reliable prediction results

than the ANFIS models. Among ANFIS models, Gbell MF

MODEL was found to be slightly efficient in modeling the

nonlinear time series. However, due to the computational

complexity of various membership functions, trapezoidal

membership function was found to be incompatible to

model the effluent Kjeldahl Nitrogen concentration in the

present study.

Acknowledgements The authors would like to thank the Mangalore

City Corporation, Dakshina Kannada District, Karnataka for provid-

ing the necessary data required for research and the Department of

Civil Engineering, National Institute of Technology Karnataka for the

necessary infrastructural support.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

References

Belanche LA, Valdés J, Llu’is AB, Vald’es J, Comas J, Ignasi R, and

Roda MP (1998) Modeling the input–output behaviour of

wastewater treatment plants using soft computing techniques.

In: Proceedings of BESAI’98. Binding environmental sciences

and AI. Workshop held as part of ECAI’98: European Confer-

ence on Artificial Intelligence. Brighton, UK

Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH

(2011) Nitrogen and phosphorus removal from municipal

wastewater effluent using microalgal biofilms. Water Res

45:5925–5933. doi:10.1016/j.watres.2011.08.044

Breisha GZ (2010) Bio-removal of nitrogen from wastewaters—a

review. Nat Sci 8(12):210–228

Cakmakci M (2007) Adaptive neuro-fuzzy modelling of anaerobic

digestion of primary sedimentation sludge. Bioprocess Biosyst

Eng 30:349–357. doi:10.1007/s00449-007-0131-2

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297. doi:10.1007/BF00994018

Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines and other kernel-based learning methods.

Cambridge University Press, New York, USA

Denai MA, Palis F, Zeghbib A (2004) ANFIS based modelling and

control of non-linear systems: a tutorial. In: 2004 IEEE

International Conference on Systems, Man and Cybernetics

(IEEE Cat. No.04CH37583):4. doi:10.1109/ICSMC.2004.

1400873

Elmolla ES, Chaudhuri M, Eltoukhy MM (2010) The use of artificial

neural network (ANN) for modeling of COD removal from

antibiotic aqueous solution by the Fenton process. J Hazard

Mater 179:127–134. doi:10.1016/j.jhazmat.2010.02.068

Erdirencelebi D, Yalpir S (2011) Adaptive network fuzzy inference

system modeling for the input selection and prediction of

anaerobic digestion effluent quality. Appl Math Model

35:3821–3832. doi:10.1016/j.apm.2011.02.015

Fig. 5 Scatter plot of observed v/s Predicted of SVM and ANFIS

models during testing

Appl Water Sci

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.watres.2011.08.044
http://dx.doi.org/10.1007/s00449-007-0131-2
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/ICSMC.2004.1400873
http://dx.doi.org/10.1109/ICSMC.2004.1400873
http://dx.doi.org/10.1016/j.jhazmat.2010.02.068
http://dx.doi.org/10.1016/j.apm.2011.02.015
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