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Abstract 

Global climate change is affecting water resources and other aspects of life in many 
countries. Rainfall is the most significant climate element affecting the livelihood and 
well-being of the majority of Ethiopians. Rainfall variability has a great impact on agri-
cultural production, water supply, transportation, the environment, and urban plan-
ning. Because all agricultural activities and subsequent national crop production hinge 
on the amount and distribution of rainfall, accurate monthly and seasonal predictions 
of this rainfall are vital for agricultural planning. Rainfall prediction is also useful for 
governmental, non-governmental, and private agencies in making long-term decisions 
and planning in numerous areas such as farming, early warning of potential hazards, 
drought mitigation, disaster prevention, and insurance policy. Artificial Intelligence (AI) 
has been widely used in almost every area, and rainfall prediction is one of them. In this 
study, we attempt to investigate the use of AI-based models to predict monthly rainfall 
at 92 Ethiopian meteorological stations. The applicability of Artificial Neural Networks 
(ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models in predicting 
long-term monthly precipitation was investigated using geographical and periodicity 
component (longitude, latitude, and altitude) data collected from 2011 to 2021. The 
experimental results reveal that the ANFIS model outperforms the ANN model in all 
assessment criteria across all testing stations. The Nash–Sutcliffe efficiency coefficients 
were 0.995 for ANFIS and 0.935 for ANN over testing stations.
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Introduction
Global climate change is affecting water resources and several other aspects of life in 
many countries. Studies on climate change due to global warming have achieved high 
importance over the past few years [1, 2]. Ref. [3] stated that, global warming has 
recently attracted considerable attention from researchers, and it may cause changes in 
rainfall patterns, a rise in seawater level, and impacts on plants, wildlife, and humans. 
The magnitude of climatic variations, including temperature and rainfall, differs in sev-
eral parts of the world [4]. Consequently, some arid regions are expected to experience 
droughts while others may be affected by heavy rainfall [5]. As a result, the prediction 
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of climatic variables has considerably increased all over the world [6]. Climate predic-
tions are fundamentally probabilistic statements about the future climate conditions on 
timescales ranging from seasons to decades or longer, and on spatial scales ranging from 
local to regional to global. Such predictions may provide some statistics on the seasonal 
or annual mean difference together with a degree of its probability of occurrence [7].

Rainfall is the most significant climate element affecting the livelihood and well-being 
of the majority of Ethiopians. The rainy season, or Kiremt, (from June to September), 
supports 85–95% of the country’s food production [8]. A study made by [9] on rainfall 
cyclicity over selected stations in Ethiopia indicates that there is a periodic tendency in 
the annual rainfall series. Several regions of Ethiopia receive rainfall throughout the year, 
but in some regions there is a seasonal and spatial variation of rainfall, which is the main 
factor affecting irrigation development.

Rainfall variability has a great impact on agricultural production, water supply, trans-
portation, the environment, urban planning, and the lives of people in general. Its vari-
ability is the main cause of the frequent droughts and floods. Ethiopia is one of the 
countries whose economy is mainly dependent on rain-fed agriculture and also faces 
periodic floods and drought. Current climate variability is imposing a substantial chal-
lenge on Ethiopia [10]. Because all agricultural activities and subsequent national crop 
production hinge on the amount and distribution of rainfall, accurate monthly and sea-
sonal predictions of this rainfall are vital for agricultural planning [8]. Rainfall is caused 
by a variety of meteorological conditions and the mathematical model for it is nonlinear. 
Due to this, accurate prediction of rainfall is challenging [11]. In addition to this, varia-
tion in rainfall timing and quantity makes rainfall prediction a challenging task for mete-
orological scientists [12], and many weather forecasters and experts devote themselves 
to improving the accuracy of their predictions [13].

Rainfall as a stochastic variable significantly differs in space and time concerning the 
general pattern of atmospheric circulation and local factors. Weather forecasts, espe-
cially rainfall prediction, pose complex tasks because they depend on numerous param-
eters to predict the dependent variables like temperature, humidity, wind speed, and 
direction, which change from time to time and their calculation varies with the geo-
graphical location along with their atmospheric variables [13]. Even though rainfall is a 
complex nonlinear phenomenon and its distribution varies in time and space, there are 
many studies in the literature showing that it is predictable [14, 15].

Predicting rainfall is an essential requirement to support water resources manage-
ment, especially when it is related to climate change. Hence, climate change affects the 
pattern of rainfall and the prediction of rainfall with a good and accurate method is 
crucial to anticipate the impact [16]. Timely, actionable, and reliable climate prediction 
plays a vital role in decision making for individual users, users in a variety of sectors, 
and national development planning to help the management of development oppor-
tunities and risks, and for adaptation and mitigation. Demand for climate information 
for decision and policy making is growing as the private and public sectors increasingly 
recognize the significance and value of such information for building climate resilience 
and mitigating and adapting to climate change. Several users are looking for tailored 
and actionable climate information on a wide range of timescales, from past, current, 
and future climates. Their needs are broad, including long-term decisions and planning, 
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early warning of potential hazards, and managing risks arising from climate variability 
and change [17]. Therefore, to get efficient and accurate results for forecasting rainfall, 
methods have been developed. Among them, a statistical model has been broadly used 
to make predictions of rainfall [18].

The attempt to predict statistics of rainfall several months in advance needs the pre-
dictor’s engagement with the theory of climate systems, consideration of trade-offs 
between physical-based dynamical methods and empirically grounded statistical meth-
ods, and selection of appropriate models that are generalizable and provide the best fit to 
recent observations [19].

AI has been widely used in almost every area, and weather prediction is one of them. 
Rainfall prediction is one of the most widely used research areas as many lives and prop-
erty damage occur due to this. Intense rainfall has numerous impacts on society and 
on our daily life, from cultivation to disaster measures [20]. Weather prediction methods 
based on ANNs and ANFIS have been investigated intensively in recent years [6]. Dif-
ferent studies indicate that models based on AI can be applied for the identification of 
nonlinear systems in various fields of engineering, and can be used for rainfall predic-
tion [21, 22]. Therefore, this study aims to apply ANN and ANFIS models to predict the 
monthly rainfall of meteorological stations in Ethiopia.

Weather predictions are identified as major areas requiring further progress in climate 
research and have thus been selected as one of the World Climate Research Program 
(WCRP) Grand Challenges [23]. Reliable predictions of climate variables are required on 
short and long time scales to reduce potential risks and damage that result from weather 
and climate extremes [24]. Precise and timely weather prediction is a major challenge for 
national meteorological agencies all over the world.

Weather prediction models are important for developing countries like Ethiopia, 
where most of the agriculture depends on rainfall. It is a major concern to identify any 
trends for weather parameters to deviate from their periodicity, which would affect the 
economy of the country. This fear has been aggravated due to the threat of global warm-
ing and the greenhouse effect. The impact of extreme weather phenomena on society is 
growing more and more costly, causing infrastructure damage, injury, and the loss of life. 
Therefore, there is a need for accurate weather forecasts today more than ever before, 
not only as a defense against hazardous weather but also in planning the day-to-day 
operations of private enterprises and governments, and by individuals to enhance their 
quality of life [25].

Rainfall prediction and early warning systems are the most important services for an 
agricultural country like Ethiopia [26]. Meteorological data is periodically gathered by 
the Ethiopian meteorology agency. However, due to the lack of appropriate data analysis 
tools, the available data cannot be practically used to alleviate the problems faced by 
planners, policymakers, and decision-makers. In Ethiopia, agriculture is the backbone 
of the economy. Irrigation facilities are still not so good in the country and most agri-
culture depends upon the rain [27]. A reliable rainfall prediction results in the occur-
rence of a dry period for a long time or heavy rain that affects both the crop yield as 
well as the economy of the country, so early rainfall prediction is very crucial. Rainfall 
forecasting models have been applied in many sectors, such as agriculture [28] and water 
resources management [29]. Rainfall prediction involves a combination of statistical 
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models, observation, and knowledge of trends and patterns. Using these methods, rea-
sonably accurate forecasts can be made. The main aim of this study is to apply AI-based 
models for the prediction of monthly rainfall in Ethiopia. The contribution of this study 
is summarized as follows:

1.	 Develop a model to predict monthly rainfall of the study area using ANN and ANFIS.
2.	 To evaluate model performance using different statistical evaluation criteria and 

observed values and select the best fit model.

This paper is organized as follows: related works are described in “Related works” 
Section. Our method of monthly rainfall prediction models is defined in “Methods and 
materials” Section. The experimental findings of the study are defined in “Results and 
discussions” Section. Finally, “Conclusion” Section contains the conclusion of the study.

Related works
Rainfall prediction is important in water resource engineering, management, and plan-
ning. There are difficulties in the accurate prediction of rainfall because of the complex-
ity of physical processes, especially for long-term prediction. As a result, many efforts 
have been made to develop appropriate methods to predict rainfall, which can be classi-
fied into dynamical methods [30], statistical methods [31], soft computing methods [32], 
and numerical weather prediction methods [33].

Many researchers worldwide have attempted to accurately predict the spatial and 
temporal distribution of rainfall using various techniques such as simple linear regres-
sion and ANNs [18, 34]. However, the accuracy of prediction obtained by some of these 
techniques could not achieve a satisfactory level because of the complex and nonlinear 
nature of rainfall.

Several studies have indicated that they are still inaccurate methods to predict rainfall 
because weather data is non-linear [18]. However, in some cases, the statistical method 
is also able to produce good and accurate predictions. Along with the development of 
computing technology, many researchers are trying to make predictions using the ANN 
method in the field of hydrology.

In recent years, different researchers have been applying soft computing techniques 
such as ANNs, ANFIS, and Support Vector Machines (SVM) in different research areas 
[35, 36]. Among numerous soft computing methods, ANNs are promising tools based 
on their ability to model nonlinear processes. The ANN algorithm is an inductive, data-
driven approach that can model both linear and non-linear systems without the need to 
make pre-assumptions. It is the most popular approach for rainfall prediction [37].

Different researchers apply ANNs to generating short-term predictions of rainfall. 
ANNs can be easily adapted to provide spatial predictions, areal average precipitation, 
or any other precipitation-related parameters that might be useful for hydrologic fore-
casting [38]. ANNs have been applied for quantitative precipitation forecast, predict-
ing monthly rainfall and temperature using geographical information of stations [3], for 
prediction of rainfall time series coupled with data preprocessing methods [39], and for 
flood forecasting by comparing the performance of ANNs with Auto Regressive Moving 
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Average (ARMA) and nearest neighbor methods [40]. The results indicated that the use 
of ANNs provided a substantial enhancement in flood forecasting accuracy.

Several previous works have applied soft-computing approaches to overcome predic-
tion difficulty, mainly based on neural computation approaches. These approaches have 
several advantages over global numerical models: they are much simpler and faster to 
train; they can be applied to data from a specific point of measurement (a specific area 
in a river basin, for example); and their performance is competitive compared to global 
techniques [32].

More recently, ANNs have been applied to model and forecast precipitation in Athens, 
Greece [41], to forecast precipitation during the summer monsoon season in India using 
El Niño South Oscillation (ENSO) indices [42], and a neural computation approach is 
applied to the short-term forecasting of thunderstorm rainfall [43].

Data-driven modeling, which aims to apply AI techniques to extract the data patterns 
in historical variables to forecast future events, has proven to be a very popular and suc-
cessful forecasting and prediction tool. Most recently, a massive development has been 
accomplished by several researchers in the field of hydrology; for instance, sediment 
transport modeling [44], water level [45], groundwater simulation [46], rainfall pattern 
analysis [47], and water irrigation prediction [48].

There are numerous categories of data-driven models, including ANNs and ANFISs. 
They are used for rainfall and temperature analyses, and these models may perform 
non-linear regression using various optimization techniques [5]. Data-driven models 
are simple to use and require less time and effort when compared to Global Circulation 
Models (GCMs) [49]. These models can efficiently address the non-linearity of systems 
due to their parallel architecture. ANN in particular is considered a modern technique 
to address signals in engineering fields and has also been used as a calculation tool to 
solve certain problems concerning water resources. Other types of data-driven models, 
such as fuzzy logic and genetic algorithms, cannot be used for long-term predictions 
due to their logical assumptions [5]. They can be used in a hybrid approach with ANN 
models, to optimize the weights and bias values during the iteration process. However, 
ANN and ANFIS are trained based on a database and have the ability to make long-term 
predictions.

The ANFIS model has a great ability to integrate the power of a fuzzy logic system 
with the numeric power of a neural system adaptive network in modeling numerous 
processes. As stated by [50], the advantage of fuzzy rule-base methods such as ANFIS is 
that they include all of the causes that are not included in the idealized model, whereas 
they exclude some of the causes that are taken into account in physically-based models 
[6].

Various identification methods, such as Grid Partitioning (GP) and Subtractive Clus-
tering (SC), can be applied in the ANFIS model, and different researchers have applied 
this method for different purposes. Some of them are [51] compared ANFIS-GP, ANFIS-
SC, and ANFIS with the Gustafson–Kessel Clustering (GKC) method for rainfall-dis-
charge modeling; [52] introduced the hybrid model of ANFIS and wavelet transform 
for precipitation forecasting; [53] applied ANFIS-GP for investigation of the influence 
of lag time on the event-based rainfall-runoff process; [35] compared the performance 
of the ANFIS-GP and ANFIS-SC in streamflow prediction (the results from the studies 
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indicated that the ANFIS-SC has slightly better accuracy than the ANFIS-GP in stream-
flow estimation); [54] applied ANFIS and Gene Expression Programming (GEP) with 
wavelet to forecast precipitation for two stations in Turkey; [55] applied ANNs and 
ANFIS-GP for spatial prediction of monthly air temperature using geographical inputs; 
[56] examined the performance of ARMA, ANNs, ANFIS, SVR, and genetic program-
ming for forecasting monthly discharge time series. The best performance was achieved 
by ANFIS, SVM, and genetic programming during the training and validation period; 
[57] introduced a model that integrated SVM and a multi-objective genetic algorithm 
to predict hourly typhoon rainfall. The proposed model provided an accurate forecast of 
hourly rainfall and improved the long lead-time forecasts.

But many studies do not employ spatial modeling of long-term monthly rainfall pre-
dictions by ANNs and ANFIS, which uses geographical information of stations as an 
input. To the best knowledge of the authors, there is no published work in the literature 
that uses ANNs and ANFIS for predicting long-term monthly rainfall in the study area. 
This gave motivation to the present study. In this paper, the applicability of ANNs and 
ANFIS models is investigated for predicting long-term monthly rainfall using the geo-
graphical and periodicity components as input data.

Methods and materials
Artificial neural networks

The ANN is an engineering concept of knowledge in the field of AI designed by adopting 
the human nervous system. Wherein the main processing of the human nervous system 
is composed of the brain’s nerve cells as the basic unit of information processing. In the 
concept of ANN, the basic unit of information processing (neurons) serves to process 
information in parallel and immediately. Furthermore, the process of training the ANN 
has many types and uses, including perceptron, backpropagation, Self-Organizing Map 
(SOM), and delta.

ANN, as the most general AI method, is the collection of some neurons with a specific 
structure formed based on the relationships between neurons in different layers [6]. A 
neural network is a computing system made up of several simple and highly intercon-
nected nodes or processing elements called neurons. The goal of neural networks is to 
map a set of input patterns onto a corresponding set of output patterns. The neural net-
works achieve this mapping by first training the neurons to be suitable for a given series 
of patterns. Then, the neural network applies this model to a new input pattern to pre-
dict the appropriate output pattern [58].

There are many kinds of neural networks depending on their structure, function, or 
training method. In this study, multiple-layer feed-forward neural networks are applied 
for rainfall prediction using geographical information and a periodicity component. The 
structure to be considered here includes one input layer, a hidden layer, and an output 
layer. For each layer, some neurons are related by weighted connections. The number of 
neurons for the input and output layers is equal to the numbers of input and output vari-
ables, but the number of neurons in the hidden layer will be selected by a trial-and-error 
procedure.

The weights and bias of connected neurons should be determined before apply-
ing the ANN model. In this matter, the model should be trained using a dataset. The 
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backpropagation method is utilized for the training of networks and among various 
training algorithms, Levenberg–Marquardt, gradient descent, gradient descent with 
adaptive learning rate, gradient descent with momentum, adaptive learning rate, and 
scaled conjugate gradient are used. For all training algorithms, the tangent sigmoid 
transfer function is used in the hidden layers and the purelin transfer function in the 
output layer.

A typical neural network propagates information in the feedforward direction using 
Eq. 1.

 where ai is the input vector, bj is the output vector, wij is a weight factor between two 
nodes, Tj is the internal threshold, and f is a transfer function.

The backpropagation learning algorithm is based on a generalized delta-rule acceler-
ated by a momentum term. To improve the performance of the neural network, both the 
weight factors and the internal threshold values are adjusted using Eqs. 2 and 3.

where, η is the learning rate, α is the momentum coefficient, � w is the previous weight 
factor change, � T is the previous threshold value change, O is the output, δ is the gradi-
ent-descent correction term, and p stands for the pattern.

Despite its theoretical simplicity, the neural network model has excellent performance 
for a wide range of applications and has developed into a powerful and versatile tool in 
recent years [58]. The ANN method was selected for this study because it is the most 
popular data-driven method in hydrological applications.

Adaptive Neuro‑Fuzzy inference system

ANFIS is an effective AI model that combines neural networks and fuzzy logic capabili-
ties [6]. ANFIS utilizes a feed-forward network for searching for fuzzy decision rules to 
perform well on a given problem. With considering a given input–output dataset, ANFIS 
creates a Fuzzy Inference System (FIS) for which Membership Function (MF) param-
eters are adjusted using either a back-propagation algorithm or a combination of a back-
propagation algorithm and a least-squares method.

By using a first-order Takagi–Sugeno fuzzy model, Eqs.  (4) and (5) present a typical 
rule set with two fuzzy if/then rules.

(1)bj = f (

n
∑

i=1

(wijai)− Tj)

(2)wnew
ij = wold

ij + η.
∑

p

δpjOpi + α.�wold
ij

(3)Tnew
j = Told

j + η.
∑

p

δpj + α.�Told
j

(4)Rule 1 : if x is A1 and y is B1 then f1 = p1x + q1y+ r1

(5)Rule 2 : if x is A2 and y is B2 then f2 = p2x + q2y+ r2
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where, A1(LOW), A2(LOW) and B1(HIGH), B2(MEDIUM) are the MFs for inputs 
x(LAT) and y(LON), respectively, and p1, q1, r1, and p2, q2, r2 are the parameters of the 
output function. The system consists of five layers. The relationship between the input 
and output of each layer is described as follows:

Layer 1: Every node i in this layer is an adaptive node with a node output defined by;

where, LAT is the input to the node; Ai is a fuzzy set associated with this node, identified 
by the shape of the MF in this node, and can be any appropriate function that is con-
tinuous and piecewise differentiable such as a Gaussian function. Supposing a Gaussian 
function as an MF, Ai can be computed as;

where, {ci, σi} are parameter sets that are called to as premise (antecedent) parameters.
Layer 2: Every node in this layer is a fixed node, which multiplies the incoming signals 

and output product. For instance,

Each output node describes the firing strength of a rule.
Layer 3: Every node in this layer computes the ratio of the ith rule’s firing strength to 

the sum of all rule’s firing strengths as follows:

The output of this layer is referred normalized firing strengths.
Layer 4: Node i in this layer calculate the contribution of the ith rule towards the model 

output as described follows:

where, wi is the output of layer 3 and {pi, qi, ri} is the parameter set that is called as con-
sequent parameters.

Layer 5: This layer calculates the overall output as the summation of all incoming 
signals.

The ANFIS method was also selected in this study because it is commonly used in 
hydrological applications.

Data collection

In this paper, the applicability of ANNs and ANFIS models was investigated for pre-
dicting long-term monthly rainfall using the geographical and periodicity components 

(6)O1
i = µAi(LAT )

(7)µAi(LAT ) = exp

⌊

1

2
{(x − ci)/σi}

2

⌋

(8)O2
i = wi = µAi(LAT ).µBi(LON ), i = 1, 2, . . .

(9)O3
i = wi =

wi

w1 + w2

, i = 1, 2, . . .

(10)O4
i = wifi = wi(piLAT + qiLON + ri)

(11)O5
i =

∑

i

wifi =

∑

i wifi
∑

i wi
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(longitude, latitude, and altitude) as input data. The rainfall data from 92 meteorologi-
cal stations within the study area (Ethiopia) (Fig. 1) was collected from Climate Predic-
tion Centre (CPC) and used for training, evaluating, and testing the performance of the 
models. The acquired data is global unified gauge-based rainfall data for 11 years (2011–
2021). Sample geographical information about study areas used by this study is depicted 
as shown in Table 1.

The performance of the trained network is verified by determining the error between 
the predicted value and the real value. Before training the neural network, all the data 
points for the patterns are normalized to be less than 1.

Fig. 1  Location map of the study area

Table 1  Sample geographical information and data format

Station ID Longitude Latitude Altitude (m) Month Rainfall (mm)

1 37 4.5 361 1 0

2 36 4.5 711 3 30.51044

3 38 4.5 1201 2 15.15179

9 36 5.5 779 4 34.71596

20 36 6.5 892 12 42.38952

32 36 7.5 429 10 45.97314
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Evaluation metrics

For model development, different statistical evaluation criteria, including Root Mean 
Square Error (RMSE), Nash–Sutcliffe model efficient coefficient (E), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determina-
tion (R2) are applied to assess the model performance. The RMSE, E, MAE, MAPE, 
and R2 are used to evaluate the performance of the model, and they can be calculated 
as follows.

where, n is the number of the dataset, Ro is the mean of observed monthly rainfall, and 
Rp and Ro denote the rainfall values generated by different models and observed monthly 
rainfall values, respectively.

Results and discussions
All experiments in this study were conducted with a device having the Windows 10 
operating system, a core i7, and 16 GB of RAM. A grid search strategy was used to 
compute the optimal hyper-parameter values of both ANFIS and ANN. Within the 
input parameter values indicated in Table 2, the ANFIS model produced a better pre-
dictive outcome.

(12)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Rp − Ro) . . . . . . . . . . . .

(13)E = 1−

∑n
i=1

(

Ro − Rp

)2

∑n
i=1

(

Ro − Ro

)2
. . . . . . . . .

(14)MAE =

∣

∣Ro − Rp

∣

∣

N
(100) . . . . . . . . .

(15)MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

Ro − Rp

Ro

∣

∣

∣

∣

. . . . . . . . .

(16)R2 = 1−
Unexpected variaton

Total variation
. . . . . . . . .

Table 2  The values of hyper-parameters used in ANFIS

Parameter Values

Number of regressors 4

Number of fuzzy memberships 3

Batch size 16

Optimizer Adam

Loss mean_
squared_
error

Number of epochs 100
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The hyper parameters for the ANN model were 0.5 dropout, sigmoid activation 
function, 100 epoch, Adam optimizer, and batch size of 16.

Model training and performance evaluation

We partitioned the dataset into three sections with an 80%, 10%, and 10% split ratio for 
training, validating, and testing the model, respectively. ANFIS and ANN training and 
validation losses using the dataset gathered from 92 weather stations in Ethiopia are 
depicted as shown in Figs. 2 and 3.

As demonstrated in Figs. 2 and 3, the ANFIS model learns the patterns of the input 
variables in order to predict rainfall. The ANFIS validation loss overlaps the training 
loss around the 3rd epoch, whereas the ANN model validation loss overlaps the train-
ing loss around the 20th epoch. As a result, the ANFIS model learns the pattern in the 
training data faster than the ANN model. We examine the performance of the two mod-
els on the testing dataset after training and validating them. The result is depicted as 
shown in Figs. 4 and 5 for ANFIS and ANN, respectively. The actual rainfall value used 
in the graphs below has been normalized to reduce the impact of outliers on the learning 
process.

Fig. 2  Training and validation loss using ANFIS

Fig. 3  Training and validation loss using ANN
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Figure  4 shows how the rainfall value predicted with the ANFIS is related to the 
actual rainfall value. The predicted and actual rainfall values are remarkably similar, 
indicating that the ANFIS is approximately 100 percent accurate in its prediction. In 
the majority of the months used for testing, the rainfall value predicted by ANN is 
lower than the actual monthly rainfall, as shown in Fig. 5.

We also compare and contrast the two models’ performance using other evalua-
tion metrics like mean absolute error, R-square, root mean square error, and mean 
absolute percentage error. Figures 6 and 7 illustrate a comparison of the two models’ 
results using those evaluation metrics.

The R2 of the ANFIS is 0.9992, while the R2 of the ANN is 0.9383, according to the 
graphs in Figs.  6 and 7. This means that when compared to ANN, ANFIS improves 

Fig. 4  Normalized rainfall value predicted by ANFIS and actual rainfall value

Fig. 5  Normalized rainfall value predicted by ANN and actual rainfall value

Fig. 6  Evaluations of ANFIS with different metrics
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the R2 of the prediction by 0.0609 values. MAE of 0.0028, RMSE of 0.0033, and MAPE 
of 0.28 are the errors generated by ANFIS, while MAE of 0.03, RMSE of 0.032, and 
MAPE of 2.8 are errors produced by ANN. In all of the evaluation criteria utilized in 
this study, the results show that the ANN model produces more errors than ANFIS. 
We also compare and contrast these two predictive models with the Nash–Sutcliffe 
model efficient coefficient (E). The value of E is 0.9954 and 0.935 for ANFIS and ANN, 
respectively. The value E for the ANFIS model is 0.9954, which is nearly equal to 1, 
which means the model is a perfect match between the model and the observed data.

We have tested the ANFIS and ANN models on the rainfall prediction for the nine 
stations from station ID 84 to 92. At these stations, ANFIS performs better than ANN. 
Therefore, we recommend researchers use the ANFIS model for applications that require 
rainfall prediction without climatic data.

Conclusion
The prediction accuracy of ANFIS and ANN models was investigated in the prediction 
of monthly rainfall using meteorological stations in Ethiopia. Longitude, latitude, and 
altitude data from 92 weather stations for 11  years running, from 2011 to 2021, were 
used for this study. We conducted an experiment using weather station data from Ethio-
pia’s 92 stations to evaluate and compare the ANFIS and ANN predictive models. We 
used different evaluation metrics to evaluate these models, and the experimental result 
shows the ANFIS model performs better than the ANN model. In general, the ANFIS 
model was found to be better than the other models in long-term monthly rainfall pre-
diction. It gave the best prediction accuracy of the nine stations.
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