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From its beginnings, artificial intelligence

has borrowed freely from the vocabulary of psychol-

ogy. The use of the word "intelligence" to label
our area of research is a case in point. Other
terms referring originally to human mental proces-
ses that have considerable currency in Al are

"thinking," "comprehending," and, with increasing
frequency in the past five years, "understanding."
In fact, these terms are probably used more freely

in Al than in experimental psychology, where a
deep suspicion of "mentalistic" terminology still
lingers as a heritage of behaviorism.

It is not my intent to engage in a barren lexi-
cographic exercise, nor to bait those among us who
are aroused to indignant emotion whenever terms
from human psychology are used in reference to
computers. We employ these anthropomorphic terms
because we find them useful in defining our re-

search goals, and therefore it is important that
we attach clear operational meanings to them.
Before discussing computer programs that under-

stand, we need to consider how we can judge whether
such programs are successful.

When we attribute intelligence to a computer,
we mean that it is doing something which, if done
by a human, would be called "intel 1 igent" (Felgenbaun
and Feldman, 1963, p.3)- The criteria we use to

judge whether a man or woman is acting intelli-
gently are generally external criteria; we do not
often attach electrodes to our subject's head,
much less open it up to peer inside. Instead, we

"Is he behaving appropriately
"Is she solving the

ask questions like,
to the circumstances?" or
problem?"’

We do not get much help from either experimental

psychology or ordinary speech in defining "under-
standing" in a precise way. It is doubtful that
there is a single, unambiguous concept lying behind

This vagueness of everyday
language should prepare us to encounter a multi-
plicity of different kinds of understanding, and a
corresponding multiplicity of criteria that we must
apply to behavior (whether of a computer or a human
being) to test whether understanding has been
achieved.

the diversity of usage.

'"The discussion here is limited to the goals of
Al, as usually defined by its practitioners. On
the other hand, when we are using the computer as
an instrument of psychological research, to simu-
late human thinking, the criteria for defining
intelligence are stricter. In the latter case we
must insist on similarity of process as well as
similarity of product. See A. Newell and H. A.
Simon, Human Problem Solving, ch. 1-5.

Moore and Newell (1974), p.203) have offered a
portmanteau definition of understanding as a rela-
tion between a system, S, and some knowledge, K:

S understands knowledge K if S uses K whenever
appropriate.

it does
use of

While the definition
not help us decide what

is comprehensive,
is an "appropriate"

knowledge. Appropriateness must be judged in re-
lation to the tasks the system is required to per-
form. A system may understand multiplication well

the product of 3 and 4, but not well
the distributive law to numerical

to state how multiplication is de-
the positive intergers.

enough to find
enough to apply
expressions, or
fined by Peano's axioms for

In everyday language, we speak not only of
understanding knowledge (e.g., "l understood the
textbook pretty well."), but also of understanding
how to do a task; and so may define:

S understands task T if S has the knowledge
and procedures needed to perform T.

From these two definitions, we see that under-
standing is a three-termed relation among S, K, and
T, and that either the knowledge, K, or the task,
T, may be taken as the object of the understanding.
We may expect, therefore, that research progress in
constructing systems that understand will consist
in enriching both the bodies of knowledge available
to the systems, and the procedures for using that
knowledge in the performance of wider and wider
ranges of tasks. Knowledge without appropriate
procedure for its use is dumb, and procedure with-
out suitable knowledge is blind.

Some Simple Understanding Capabilities

The plan of this paper will be to illustrate the
reciprocal interaction between knowledge and task
in systems that understand, with examples of arti-
ficial intelligence programs that incorporate vary-
ing amounts and kinds of knowledge, using them to
perform a correspondingly varying range of tasks.
The plan will, very approximately, parallel the
historical development of understanding systems by
starting with systems that incorporate modest
amounts of knowledge and perform limited tasks,
then proceed to systems that are relatively rich in
knowledge and in the range of tasks to which they
are applicable. The earlier and simpler systems
will be treated briefly in the next three parts of
this section; some examples of more recent and more
elaborate systems are in the next three sections. The
primary examples | shall develop in these latter
sections are two systems, UNDERSTAND and THERMO,
developed by my colleagues and myself, which have
not previously been described in the Al literature.
I will also compare these examples with other
systems that have been reported in the literature.?

2No attempt will be made in this paper
the whole range of computer systems that
For leads to the literature of the subject, |
recommend Bobrow £ Collins (1975), Simon and

to survey
understand.
would
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Parsing and Inferential Capabilities

One of the earliest applications of the term
"understanding" to a computer program (perhaps the
earliest) occurs in the title of R. Lindsay's
chapter in Feigenbaum & Feldman (1963): "Inferen-
tial Memory as the Basis of Machines Which Under-
stand Natural Language."” In Lindsay's words (p.
221), "the program. .parses sentences written in
Basic English and makes inferences about kinship
relations. To do this it constructs two types of
complex structures in the computer memory, one
corresponding to a sentence diagram of the sort
produced by high-school students, the other corre-
sponding to the familiar family tree." Performance
of two kinds of tasks demonstrates the system's use
of knowledge "whenever appropriate." When it is
presented with a sentence like, "John is Mary's
father," it can annex the information in that sen-
tence to the genealogical chart of John and Mary's

family. If it has also stored in that chart the
fact that Joe is John's brother, it can then make
a simple inference to answer a question like,

"Name one of Mary's uncles."

Thus, to Lindsay, understanding meant encoding
information from natural language input and answer-
ing questions about that information, including
drawing inferences from it. Essentially, he iden-
tified understanding systems with a particular
class of question-answering systems. This identi-
fication persisted through most of the 1960's.
When the terms "comprehend" and "understand," which
were not much employed during the middle of that

decade, came into frequent use again (Weizenbaum,
1966; Simmons, Burger & Schwarcz, 1968; Quillian,
1968), it was in reference to systems with these

sorts of capabilities. In all of these systems,
the knowledge they understand is "book larnin'."
They read sentences; they store the information
from them; they answer questions relating to this
information, possibly drawing inferences in order
to do so. But they know nothing of the real world
to which the information purports to refer. If the
BASEBALL program (Green, Wolf, Chomsky ¢ Laughery,
1961) can answer the question, "Where did the Red
Sox play on July 7?", it is because it has been
told the answer, and not because it remembers having
been at the game.

The definition of understanding
these early
systems might

implicit in
natural-language question-answering
be phrased:

A question-answering system,
knowledge, K, if it can answer
questions about the explicit

S, understands
natural-language
content of that

Sikl6ssy (1972), and Winograd (1972). For some of
the more recent developments in the area of automa-
tic programing, see Heidorn (1976). The particular
examples discussed in the present paper, in addi-
tion to UNDERSTAND (Hayes & Simon, 1972) and THERMO
(Bhaskar 6 Simon, 1977), were selected because of
my familiarity with them, or because they illu-
strate specific points about the nature of under-
standing systems.

knowledge, or questions involving (relatively
simple) inferences from that knowledge.

The knowledge that the system understands falls
in two categories. The first is knowledge of the
syntax of the inquiry language, perhaps embodied in
a program for analysing and generating grammatical

sentences in that language together with lexical
knowledge of word meanings. The second is substan-
tive knowledge about the domain of inquiry, e.g.,

about some family tree in the case of Lindsay's

system. These different kinds of knowledge will

not always be segregated in different parts of the
program structure; the boundary between syntax and
semantics may be (and, in complex systems, gener-
ally will be) quite vague.
Intensional

Understanding Meanings.

A different dimension of understanding is rep-
resented by programs that begin to appear at the
end of the 1960's (Coles, 1967, 1972; Siklossy,
1968, 1972; Winograd, 1972). These programs accept
natural language input, but they also are able to
acquire information from an independent channel
(simulated visual information in each case) about
an outside world, and to relate the language to
that world. We may call systems that communicate
with such a real or simulated world quasi-robots.

Coles' program, for example, demonstrates its
understanding by answering questions about a pic-
ture drawn with a light pen on a graphic display,
and by parsing ambiguous sentences, selecting the

particular parsing that corresponds to the picture.
Thus, when required to answer "true" or "false" to
the statement, "Each polygon smaller than a black
triangle is a square," it arrives at its answer by
inspecting the information in the picture to see

what polygons, triangles, and squares are displayed
in it, and whether these objects satisfy the con-

ditions of the sentence. Coles' program, there-
fore, must have available intensional meanings for
words like "polygon," "smaller," and so on, in the
form of programs that will actually test whether a
particular object, property, or relation in the
visual representation fits the meaning. It must

also be capable of matching these meanings against
the corresponding natural language statements--a
translational capability.

Siklossy's system has similar translational
capabilities. It learns the vocabulary and syntax
of a natural language by being shown paired sen-

tences and "pictures" that the sentences describe,
in the manner of the I. A. Richards books, English
Through Pictures, German Through Pictures, etc.

The particular
quasi-robots lead
sort:

requirements of understanding in
to a definition of the foltowing

A quasi-robot, S, understands language, L,
if S possesses intensional definitions of ex-
pressions in L that enable it to determine
what objects and events in an independently
described world are denoted by these expressions.
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Self-Referential Meanings

SHRDLU system combines these kinds of
understanding with a few others.
it must be

it knows is

Winograd's
capabilities for
Like the two systems just described,
considered a quasi-robot, for the world
a synthetic one, and not the real one. SHRDLU both
answers questions about its block world, and
carries out commands to make changes in it. To do
this, it needs the same forms of understanding--of
both language and its environment—as do the pro-
grams of Coles and Slklossy. But SHRDLU exhibits
also some introspective forms of understanding that
were only implicit in earlier problem-solving pro-
grams. Any program that makes use of goal and sub-
goal structures for its problem solving understands
the motivations of its own actions, and uses that
understanding to guide its search activities.

SHRDLU is able also to access this information in

response to a user's inquiry, and thereby to state

reasons for its actions.

Contrast of Intensional with "Verbal"
Understanding

The important distinction between understanding

that involves the ability to apply intensional

tests to "external" objects (I will resist the

temptation to call it real understanding) and

understanding that involves only verbal knowledge

is illustrated by the following SHRDLU dialogue re-
ported by Winograd (1972, p.11). The statements

prefixed by a "+" are a user's assertions (to be
added to SHRDLU's data base) or questions. The
other statements are SHRDLU's replies:

+ | own blocks which are not red, but | don't

own anything which supports a pyramid.
| UNDERSTAND.

+ Do | own the box?

NO.

Now although SHRDLU's answer to the question is
quite correct, the system cannot be said to under-
stand the meaning of "own" in any but a sophistic
sense. SHRDLU's test of whether something is
owned is simply whether it is tagged "owned." There
is no intensional test of ownership, hence SHRDLU
knows what it owns, but doesn't understand what it
is to own something. SHRDLU would understand what
it meant to own a box if it could, say, test its
ownership by recalling how It had gained possession
of the box, or by checking its possession of a re-
ceipt in payment for it; could respond differently
to requests to move a box it owned from requests to
move one it didn't own; and, in general, could per-
form those tests and actions that are generally
associated with the determination and exercise of
ownership in our law and culture.

Understanding Problem Solutions

In distinguishing the kinds of understanding
that are incorporated in natural language question-
answering systems (language-parsing and inferential
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capabilities) from the additional kinds that are
required for quasi-robots and robots, we have by
no means exhausted all the species of understanding.
In this section, | shall discuss what it means to

understand the solution of a problem; in the next
section, what it means to understand the problem
Itself. In both bases, as In previous sections, |

will use existing Al Illustrate the

discussion.

systems to

The Gestalt psychologists have placed consider-
able emphasis upon the distinction between solving
problems In "meaningful” and "meaningless" ways.
We can use the familiar Tower of Hanoi puzzle to
explicate what this distinction might mean. The
Tower of Hanoi puzzle consists of three vertical
pegs and N doughnut-shaped disks graded In size.
At the outset, all the disks are arranged in a pyr-
amid, from largest to smallest, on the first peg.
The problem is to arrange them in a similar pyramid
on the third peg. Only one disk may be moved at a

time, and a disk may never be placed atop another
that is smaller than it is. A pyramid of N disks
can be transfered with a minimum of 2M-1 moves.

The N-disk Tower of Hanoi problem can be solved

by many different algorithms. I shall mention

four.®

1. A rote algorithm simply consists of a sequence
of 2M-1 instructions corresponding to the suc-

cessive moves. A different algorithm is re-
quired for each N.

2. The familiar recursive algorithm requires
essentially three instructions: If the problem
is to move N disks from Peg X to Peg Z, move
N-I disks from Peg X to Peg Y, then the largest
disk from Peg X to Peg Z, then N-lI disks from
Peg Y to Peg Z. This recursive algorithm works
for any finite number of disks.

3. A means-ends algorithm avoids the necessity for
retaining a goal stack. (a) If the problem is
to move N disks from Peg X to Peg Z, find the
largest disk not on Peg Z, and set up the goal
of moving it. (b) If this disk can be moved to
its target peg, move it, delete the goal, and
go to (a). (c) Otherwise, delete the goal of
moving it and find the largest of the disks
that either lie above it or lie on its target
peg. (d) Set up the goal of moving that disk
to the remaining peg, and go to (b).

4.A Pattern algorithm. Suppose the problem is to
move N disks from Peg X to Peg Z. (a) On odd
moves, move the smallest disk; on even moves,
the other movable disk. (b) If N is odd, move
the smallest disk in the cycle, Z, Y, X, etc.;
if N is even, in the cycle, Y, Z, X, etc.
(These rules define the strategy uniquely,
since there is only a single legal move for
"other movable disk.")

the

The
first,

last
rote,

three algorithms are different from the
algorithm in making use of knowledge

®For a fuller and more formal description of
these algorithms, see Simon (1975).

Simon



about the problem structure to encode the move
strategy parsimoniously. It might be argued that
algorithm (2) reveals the deepest "understanding"
because It is very easy to prove that this algo-
rithm constitutes a minimum-path solution of the
problem; whereas that proof is somewhat more diffi-
cult for algorithms (3) and (4). These comments,
however, depart from our operational definitions of
understanding; we must ask how the apparently
greater depth of understanding exhibited by algo-
rithm (2) can be detected in the overt behavior of
the system.

In human psychology, the parsimony of algorithms
for solving problems has a variety of behavioral

consequences. Generally speaking, the more parsi-
monious the algorithm, the less the time required
to learn it, the better it is retained in memory,

and the wider the
which

range of problem situations to
it can be applied (transfer).

Although the appropriate experiments have not
been carried out for the Tower of Hanoi problem,
experimental studies on other puzzle-like problems
(Katona, 1940), together with theoretical consider-
ations, make it fairly obvious that the rote algo-
rithm would take much longer for a person to learn
than the others. Similarly, experimental evidence
(Katona, 1940) suggests strongly that algorithms
like the first one would be less well remembered
after a lapse of time than the others. It would
be difficult, however, to interpret these differ-
ences as differences in the depth of understanding
represented by the algorithms. They say nothing
about whether the knowledge embedded in the respec-
tive algorithms will be applied whenever
appropriate.

hand, the
the knowl-
unlike the

With respect to transfer, on the other
differences in range of application of
edge are obvious. The rote algorithm,

others, only works for a particular value of N; it
will not transfer to problems that differ in even
the smallest detail from the original one. At the
other extreme, the means-ends algorithm will solve

the problem from any initial starting distribution
of the disks, and not just from the usual initial

pyramid or from other distributions that lie along
the solution path. In this important respect, it

exhibits greater understanding than algorithms (2)
and (4), being capable of using its knowledge over
a wider range of circumstances. From this example,
we see how we can attribute different degrees of

understanding to problem-solving programs, and how
the degree of understanding is related to incorpo-
rating knowledge about the problems in

Those Tower of Hanoi programs--the means-ends
and recursive algorithms—which incorporate
problem-reduction techniques, also possess the
basic capabilities for the kind of self-referential
understanding that was illustrated earlier by the
SHRDLU example. The means-ends and recursive algo-
rithms can answer the question, "Why did you do
that?" in the same way that SHRDLU answers it: by
reporting the goal and subgoal structure that led
to each move. By this test, the means-ends and

the programs.

recursive algorithms would exhibit understanding,
the rote and pattern algorithms would not.

Understanding Problems

We have just seen how a problem-solving algo-
rithm can be said to exhibit understanding of a
problem. Usually, however, when we say that some-
one understands a problem, we do not mean that he
has an algorithm that can solve it. It Is very
easy, for example, to understand what problem is
posed by Goldbach's conjecture: Prove (or disprove)
that every even number can be expressed as a sum of
exactly two primes. The problem itself is a very
hard one, which no one has yet succeeded in solving.
Hence, we cannot test anyone's understanding of
Goldbach's conjecture by asking him to produce the
solution. How can we test it?

Consider a language acquisition program that can
encode the natural language strings that are input
to it and store them in long-term memory. What is
an appropriate way to encode a problem 1 ike
Goldbach's conjecture? Suppose that the system al-
ready possesses some kinds of general problem
solving capabilities--some version, say, of GPS.
Then for the system to go to work on a problem, the
problem will have to be encoded into a form which
its problem-solving mechanisms can accept as input.
That is to say:

A problem-solving system, S, understands a
problem, P, when it can encode the input in-
structions, t, that describe P into an internal
representation, R, that is suitable as an
input to the problem-solving subsystem of S.

Of course, if the problem-solving component of S
is very weak in the face of problems like P, we may
not be impressed by the depth of understanding
achieved by the encoding. We say the understanding
is deeper, the more efficient is the problem-solving
subsystem of S for problems represented in format
R.

Several cases need to be distinguished, on the
basis of what the system already knows about prob-
lems of the class of the one newly presented to it.
If the system already has a general scheme of rep-
resentation for such problems, then understanding
a new problem of the same kind may require little
more than a parsing capability. The SHRDLU system,
for example, deals with problems in a single block
world, with a fixed representation. When it is in-
structed to "pick up a big red block," it needs

only to associate the term "pick up" with a proce-
dure for carrying out that process; identify, by
applying appropriate tests associated with "big,"
"red," and "block," the argument for the procedure;
and use its problem-solving capabilities to carry
out the procedure. In saying "it needs only," it
is not my intention to demean the capabilities of

SHRDLU. It is precisely because the program
already possesses stored programs expressing the
intensions of the terms used in inquiries and in-
structions that its interpretation of those inqui-
ries and instructions Is relatively straightforward
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Those stored programs are the foundation of its

understanding.

The situation is different for a problem solver
that is expected to understand problems for which
it does not already possess complete representa-
tions. In the remainder of this section, | wish to
discuss what is involved in this case, and to de-
scribe a system, capable of handling simple situa-
tions of this kind, which has been constructed by
J. R. Hayes and myself (Hayes ¢ Simon, 1974, 1977;
Simon & Hayes, 1976). In this system, called
UNDERSTAND, the boundary between the problem-
understanding subsystem and the problem-solving
subsystem will be sharper than it is in a system
like SHRDLU, for the UNDERSTAND system has been
constructed in ignorance of the problem domain with
which it will have to deal. Consequently, the
problem-understanding subsystem will have a more
complicated task than just mapping the input lan-
guage onto the intensions stored in a lexicon. It
will also have to create a representation for the
information it receives, and create meanings for
the terms that are consistent with the
representation.

In designing a system to understand problems,
there is a tradeoff, then, between providing the
system with prior knowledge of the problem domains
it is expected to handle, and providing it with
procedures for creating problem representations
that eliminate the need for that prior knowledge.
SHRDLU is an example of the former strategy,
UNDERSTAND of the latter.

The UNDERSTAND Program

Consider a problem-solving system consisting of
two components, UNDERSTAND and SOLVE, organized to
operate serially. UNDERSTAND receives as its input
a statement of a problem, written in natural lan-
guage, and produces as its output a representation
of the problem that is suitable as an input to
SOLVE. SOLVE takes the latter input and undertakes
to produce from it a solution of the problem. My
concern here is with the design of UNDERSTAND, but
in order to make that design problem definite, it
is necessary to say something about SOLVE and the
form in which it takes its inputs. I will assume
that SOLVE is a variant of the General Problem
Solver (GPS)*; that is, given a representation of a
starting situation and a goal situation, it under-
takes to transform the former into the latter. Its
techniques for doing this comprise processes for

detecting differences between pairs of situations,
processes for finding operators relevant for re-

ducing differences of each kind it can recognize,
and processes for applying operators to the given
situation in order to transform it into a new
situation.

The basic mechanisms of GPS are independent of

the particular problem it is asked to solve, or the
“Ernst ¢ Newell, 1969; Newell ¢ Simon, 1972,
Chapter 9.

domain to which that problem belongs. In order to
apply itself to any given problem, however, it
must be provided with: (1) means for representing
situations in the space, S, of the given problem
or class of problems, (2) a set of processes for
detecting differences, D, between pairs of situa-
tions so represented (these processes then being
functions from SXS to D), (3) a set of operators,
0, for transforming one situation into another
(i.e., functions from S into S), (4) a function
(table of connections) from differences into sets
of operators which defines the subset of operators
that is relevant to reducing each kind of differ-
ences, and (5) an ordering of the differences to
determine priority in their elimination.

Several investigators have shown how GPS, given
only a representation for problem situations (1)
and a set of appropriately represented operators

(3), can be augmented with relatively simple learn-
ing capabilities that enable it to build its own
ordering of differences (5), its own table of

connections (A), and even its own set of differ-
ences (2).° It will be assumed that the GPS under
consideration here has been augmented in this way,
so that the UNDERSTAND program need provide it only
with the problem situation representation and the
set of operators.

As a further specification of GPS input require-
ments, and hence of the output of UNDERSTAND, |
will assume that the two programs will communicate
in a list-processing language like LISP or SNOBOL.
A situation will be represented by list structures,
which may incorporate description lists (property
lists).® The operators provided to GPS by
UNDERSTAND will take the form of LISP (or
programs.

SNOBOL)

Consider, as a simple example, the Tower of
Hanoi problem, which we have already discussed.
We can associate with the symbol, SITUATION, a de-
scription list with attribute, PEGS. The value of
PEGS can be the list of three pegs, PEGA, PEGB, and
PEGC. With each peg, we associate the attribute,
DISKS, whose value is the list of disks on that
peg (see Figure 1).

Of course, this particular representation of the
Tower of Hanoi problem is not unique. A situation
could just as well have the attribute, DISKS, and
each disk the attribute, PEG, whose value would be
the name of the peg on which that disk was
currently situated. (See Figure 2.)

These learning programs are described and dis-
cussed in Eavarone ¢ Ernst, 1970; Ernst ¢ Newell,
1969; and Newell, Shaw, &€ Simon, 1960.

cA description list, or property list, is

simply a device for associating with a symbol, s,
sets of functors of the form A(s) = v, where A is
an attribute of s and v the value of that attribute.
Thus with a symbol, APPLE, we can associate a list
'‘COLOR RED SHAPE ROUND FLAVOR TART', say, to
describe it.
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SITUATION
PEGS
PEGA
DISKS
DISKI
D15SK2
DISK3
PEGB
DISKS
DISK
PEGC
D15KS
DISKS
Tower of Hanoi

Figure |I. Representation

SITUATION
DiSKS
DI5KI
PEG
PEGA
DISK2
PEG
PEGA
DISK3
PEG
PEGA
DISKY
PEG
PEGB
DISKS
PEG
PEGC
Figure 2. Alternate Tower of Hanoi Representation
The basic operator for the Tower of Hanoi prob-
lem changes the association of a disk from one peg
to another, subject to certain conditions of
"legality." The disk that is moved must be the
smallest on its peg, and it must be smaller than
any other disk that may already be on the target
peg. For the moment, however, let us disregard the
conditions and consider the bare move. Clearly,
the algorithm required to carry out MOVE(DISK4,PEGB,
PEGC), "move Disk 4 from Peg B to Peg C," will be
different for the representation of Figure 1 than
for the representation of Figure 2. In the former
case, what is wanted is something like:

DELETE (DI SKA, DISKS, PEGB),INSERT(DISKA, DISKS, PEGC)

In the latter case, on the other hand, we want:

CHANGE(PEG,DISKA,PEGB,PEGC)

Even if we used a deletion and an insertion in
the latter case, we would still arrive at a differ-
ent program for the second than for the first
representation:

DELETE (PEGB, PEG, DISKA) , INSERT (PEGC , PEG, DISK4)

We see that it is not enough for the UNDERSTAND
program to construct from the problem instructions
a list-structure representation of the space of
problem situations, and an algorithm for moves.

The algorithm must
lar representation

be designed to fit the particu-
that has been chosen.

Organization of the UNDERSTAND Program

To show how the UNDERSTAND program goes about

its work, its operation on a simple task will be
sketched. Figure 3 gives the written instructions
for the Monster problem.

A MONSTROUS PROBLEM

Three five-handed extraterrestrial monsters
were holding three crystal globes. Because
of the quantum-mechanical peculiarities of
their neighborhood, both monsters and globes

come in exactly three sizes with no others
permitted: small, medium, & large. The medium
size monster was holding the small globe; the
small monster was holding the large globe;
and the large monster was holding the medium-
size globe. Since this situation offended
their keenly developed sense of symmetry, they

proceeded to transfer globes from one monster
to another so that each monster would have a
globe proportionate to his own size.

Monster etiquette complicated the solution
of the problem since it requires: (1) that
only one globe may be transfered at a time,

(2) that if a monster is holding two globes,
only the larger of the two may be transfered,
and (3) that a globe may not be transfered to

a monster who is holding a larger globe.

By what sequence of transfers could the
monsters have solved this problem?
Figure 3- Problem Instructions

A little consideration of this problem reveals that
it is isomorphic to the three-disk Tower of Hanoi
problem. Pegs have been mapped onto monsters and
disks have been mapped onto globes. The somewhat
more baroque language of the monster problem will
perhaps underline some of the points | want to make.

The UNDERSTAND program operates in two main
stages (see Figure A). First, it does a certain
amount of syntactic and semantic parsing to trans-
form the natural language sentences into somewhat
more tractible form. I will call this part of the
program the LANGUAGE algorithm. In the second

stage, UNDERSTAND actually generates the representa-
tion and operators. I will call this the CONSTRUCT
stage.

The Language Subsystem

There is little that is noteworthy about the
LANGUAGE portion of UNDERSTAND. Quite conventional
parsing methods are used. (In the first version of

the program, these were largely home-grown. In a
revised version now under construction, the machine-
ry of Woods' parser (Woods, 1970) is being used.)
The parsing routines will generally simply ignore
any part of the text they cannot cope with. If
these portions turn out to be inessential for deriv-
ing the representation and operators, no harm will
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be done by the
any event, the

incompleteness of the product. In
intended output of the program is

not a parsing tree or a set of deep-structure ker-
nel sentences, but the information that is essen-
tial for the construction processes.

UNDERSTAND
LANGUAGE
PARSING
IDENTIFICATION
(of objects
and relations)
CONSTRUCT
GENERATE REPRESENTATION
("Situation")
DESCRIBE REPRESENTATION
CONSTRUCT OPERATORS

Figure 4. Subroutine Structure of
UNDERSTAND Program

The LANGUAGE processes undertake, in particular,
to identify the sets of objects that appear in the
problem statement (in our illustrative example, the
two principal sets are the monsters and the globes)
as well as the relations that are mentioned as
holding among members of these sets (in the example

the holding relation between a monster and a globe,
and the transfering relation between a globe and a

pair of monsters).

The LANGUAGE processes are also responsible for
identifying which sentences in the problem text
describe situations in the problem space (using
such temporal cues as, "was holding," and such ex-
plicit designations as "this situation"); and for
identifying sentences that describe the operators
(the modal verb "may" is one of the cues employed).

The CONSTRUCT Subsystem

The CONSTRUCT program has three main subtasks:
(1) to generate the representation of situations,
(2) to construct a description of that representa-
tion, and (3) to find one or more appropriate
operator algorithms in semantic memory, from which
the problem operator can be built. The description
of the representation is interpretable by the oper-
ator algorithms that are stored in semantic memory,
thereby providing the information that is needed to
adapt the operator to the particular representation
that is chosen. By the use of this device, the
problem, raised in a previous paragraph, of select-
ing the right form of the operator, is solved.

From a statement like "the medium-size monster

was holding the small globe," the system infers
that situations are describable in terms of a rela-
tion of the form: HOLDS(MONSTERGLOBE). Notice
that the system uses a many-sorted logic in which

relations are described in terms of the types of
their arguments. By a straightforward encoding,
the relational information is now translated into
a list-structure format like that depicted in
Figure 1. Had the problem instructions been worded
a little differently, they might have produced,
instead, HELD.BY(GLOBE,MONSTER), in which case a
list-structure resembling the format of Figure 2,
instead of Figure 1, would have been created.
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The DESCRIBE algorithm now takes the list struc-
ture named SITUATION, and creates a description of
it, a symbolic string, which in the case of
Figure 1 would read:

MONSTER MEMBER VALUE MONSTERS OF SITUATION

GLOBE MEMBER VALUE GLOBES OF MONSTER

Operators
There remains the portion of CONSTRUCT that de-
signs the operators to represent the legal moves

for the problem space. The accomplishment of this
task is greatly facilitated by the fact that the
situation is now represented by means of abstract
and uniform list structures. All operators will be
processes for changing list structures or making

tests of the characteristics of list structures.
Hence, the semantic information the system needs to
have at its disposal, stored in its long-term

memory, is (like the information needed by GPS)
task-independent information: to wit, a basic set
of primitive list-processing operations. It needs
to have the capability of removing an item from a
list, adding an item to a list, finding and chang-
ing a value on a description list, and so on.

Since the primitives act in the abstract world of
list structures, and not in the real world of phys-
ical and social actions, only a small finite set of

them is needed. The system has no capability for
adding to this set if it proves inadequate in any
problem context.

The basic operators that are available in

UNDERSTANDS semantic memory are classified accord-
ing to the number and distribution of types of
their arguments. Thus A(X,Y) would represent a
process that takes two arguments that are possibly
(but not necessarily) of different types. B(X,X,X)
would represent a process that takes three argu-
ments, all of the same type. The operator we re-
quire for the Monstrous Problem would be represen-
ted as C(X,Y,Y), for it takes three arguments, one
of one type and two of another type. There are
only a few basic operations on list structures
have this structure: change the value of the
attribute on a list is one, transfer X from Yl to
Y2 is another, copy X from Yl to Y2 is a third
(differing from the second only in that it is non-
destructive). Hence, the system requires only a
relatively small amount of lexical information
about the relational terms used in the problem
statement (e.g., "transfer") in order to select the
proper operator in memory.

that

In particular, verbs like "move," "transfer,
"change," all map to the same algorithm. This al-
gorithm, however, must be sufficiently sophisti-
cated to carry out the particular action that is
required by the specific representation that has
been selected by CONSTRUCT. This requirement is
met by writing the algorithms for the primitive

processes so that they are executed interpretively
under control of the description of SITUATION.
Thus, for the description corresponding to the rep-

resentation of Figure 1, TRANSFER(GLOBE,MONSTER1,
MONSTER2) would find MONSTER1 on the list of
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monsters of SITUATION, find GLOBE on the list of
globes of MONSTERI, remove GLOBE from that list,
find MONSTER2 on the list of monsters of SITUATION
and add GLOBE to the list of globes of MONSTER2.

On the other hand, if the representation had
been described as corresponding to Figure 2, the
same TRANSFER operator, executed interpretively
under control of this description, would first
find GLOBE on the list of globes of SITUATION,
then find the monster of GLOBE, and finally change
the value of the monster from MONSTER1 to MONSTER2

A relatively simple interpretive scheme with
capabilities for recursion allows for indefinite
variety in representation without unduly compli-
cating the algorithms for the primitive operators.
Most of the flexibility is embedded in the "find"
process. The legality tests for moves are handled
in the same way. In the problem at hand, "size"
induces an ordering on the globes. This ordering
is represented internally simply by storing the

globes in a list described by the ordering dimen-
sion. To interpret a phrase like "the largest
globe he is holding," the system first abstracts

to an operator like: LARGEST(MONSTER(GLOBE)),
which finds the appropriate globe. Such an opera-
tor is executed interpretively, in the first rep-
resentation, say, by finding the monster associated
with GLOBE, finding the list of globes of that mon-
ster, and (using the ordered list of globes) find-
ing the last (i.e., "largest") of the monster's
globes on that list.

UNDERSTAND can speed up its execution of opera-
tors, once the representation has been fixed, by
retaining a trace of its interpretive execution of
a function, then using that trace to compile out a
specialized function applicable specifically to the
given representation. With many of the tests for
branches thereby eliminated, the compiled operators
as might be expected, are an order of magnitude
faster than the interpreted operators.

The Mechanisms of Understanding

To assess UNDERSTANDS understanding, several
features of the program's structure call for addi-
tional comment, and for comparison with other pro-
grams having similar capabilities. The task
performed by'the conjunction of UNDERSTAND with
GPS is essentially an automatic programing task, or
as Goldman, Balzer and Wile (1977) put it, a task
of "translating a process description written in an
informal, imprecise language with English-like
semantics. .into a process specification language
with formal syntax and semantics." Its structure
is similar in many respects to the structure of
those authors' SAFE system
1977). UNDERSTAND + GPS derives its general archi-
tecture from an earlier automatic programming
scheme, the HEURISTIC COMPILER (Simon 1963, 1972).7

"Specifically, UNDERSTAND corresponds to the
representation-generating portion of the HEURISTIC
COMPILER that is described in Simon (1972), pp. 31-
42.
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(Balzer, Goldman, & Wile,

A first characteristic of UNDERSTAND, dictated
by the fact that it is to provide input to GPS, is
that it treats the objects and relations mentioned
in the problem instructions in an abstract way.
All it needs to learn about them from the text is
how to interpret them as list structures and oper-
ations on list structures. Since a programing
language for operating on list structures needs
only a relatively small number of basic operations,
the semantics of UNDERSTAND, which is embedded in
such operations, can be correspondingly lean.

The operations used by UNDERSTAND invite com-
parison with Schank's ACTs (Schank, 1975)-
Although Schank emphasizes that there is no magic
number of primitive processes required to express

meanings, he argues that "it is possible to build
an adequate system. . .using only eleven ACTs."
(Schank, 1975, p.269). When we examine the list

of ACTs that he proposes (pp.269-271), we see that
he too goes the route of abstraction. At least
three of the eleven ACTs are forms of TRANSFER,
specialized by constraints on the types of objects
that may appear as arguments. For example, the ACT
that he calls ATRANS denotes the transfer of an
abstract relation, while PTRANS denotes a change in
physical location of an object. Both of these (as
well as other transfer operations) would be handled
in UNDERSTAND by the semantics of TRANSFER combined
with tests on the types of its arguments. Hence,
UNDERSTAND might be expected to handle a consider-
able range of problems with only eight or ten
operat ions.

The UNDERSTAND program shows that this simpli-
fication of basic operations need not be interpre-
ted as a claim that there are only a few kinds of
actions in the real world. Rather, it is a claim
that real world actions, of whatever kinds, can be
represented internally by a few kinds of actions
on list structures.

When the system has only a small number of
primitive operators, then the task of mapping the
actions named in the problem instructions onto
these operators is correspondingly simplified. As
was indicated in the last section, knowledge of the
number of arguments in an operator and their dis-

tribution by types goes a long way toward identify-
ing the operator in semantic memory that is appro-
priate for translating a particular action,

although it will not do the whole job (e.g., it will

not distinguish between a "copy" and a "transfer").

The system of Balzer, Goldman, and Wile (1977)
carries this abstraction even a step further. In
their system, all knowledge is handled in a uniform
format as a set of assertions of relations, i.e.,
in some such form as (RELATION1 ARGUMENT1 ARGU-
MENT2). Clearly, the only operations needed for
manipulating a data base in this form are operations
for ascertaining the presence or absence of a rela-
tion, an operation for inserting a new relation,
and an operation for deleting a relation. Since
there is only one possible form of representation,
their system does not require the capability,
needed by UNDERSTAND, for describing its represen-
tation and modifying its operations (or interpreting
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them) to fit that representation. The operations
are fixed, once and for all. In the present imple-
mentation of the system, the price paid for this
simplicity is a high cost of search for relations
in the data base,® but | know of no demonstration
that more efficient search methods could not be
found without sacrificing the simplicity of rep-
resentation. Such questions of processing effi-

ciency lie outside the scope of this paper.

A second important characteristic of the UNDER-
STAND program is that its capabilities for syntac-
tic processing are relatively simple. It analyses
the natural language instructions only to the
extent it needs to in order to extract the objects
and the relations that are relevant to the problem
formulation. Perfect and unambiguous parsing of
the natural language inputs is not usually essen-
tial, and semantic power is more important than
syntactic sophistication in the language processor.
This same conclusion has been reached by other
designers of contemporary understanding systems.
Brown ¢ Burt (1975, p.324) say, for example, of
their SOPHIE system, which carries on dialogues
relating to electronic circuits: "SOPHIE had to
cope with problems such as anaphoric references,
context-dependent deletions, and ellipses which
occur naturally in dialogs. In fact handling these
constructs seemed more important than building a
system endowed with great syntactic paraphrase
capabilit ies."

A third characteristic of UNDERSTAND is that
design decisions made by one component of the pro-
gram while processing one part of the problem text
are accessible to other components of the program
processing other parts of the problem text. Balzer,
Goldman & Wile obtain this accessibility by their
uniform representation of all relations. In the
UNDERSTAND system, it is achieved by constructing
descriptions of the representation which can be
read and interpreted by UNDERSTANDs primitive
operations. The algorithm that writes the descrip-
tions is a self-referential procedure thatgathers
information about the data structures being assem-
bled by UNDERSTAND and describes them in a language
readable by the system itself. Obviously, the pro-
gram could easily be augmented to demonstrate this
component of its understanding capabilities by
answering questions of the form: "How have you
represented problem situations in terms of list
structures?"”

Conclus ion

The foregoing discussion illustrates how a
system can be designed to understand new problems--
that is, to encode them so they will be accessible
to a problem solver. In the UNDERSTAND system,
this capability appears to be limited to problems
that are abstract. We now return to a considera-

tion of understanding in task domains that are re-
latively rich in semantic information.
R. Balzer, personal communication.
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Understanding in Semantically Rich Domains

A large part of the current research effort on
understanding systems is directed at the develop-
ment of problem solving systems to operate in
semantically rich domains. By a semantically rich
domain | mean one in which a good deal of substan-
tive information must be supplied to the problem
solver, and be understood by it, in order for it to
represent and solve, the problems. Among recent
understanding programs that fit this description
are the SOPHIE program of Brown & Burton (1975),
whose domain of understanding is electronic
circuits, the ISAAC program of Novak (1976), which
deals with physics problems in the domain of
statics, and a collection of programs, which |
shall call THERMO, designed by R. Bhaskar and
myself to generate problems in chemical engineering
thermodynamics.9 Each of these programs possesses
the knowledge that is acquired in a portion of a
college-level course, and uses this knowledge
either to understand and solve natural-language
problems (ISAAC), to generate problems in its
domain (THERMO), or to work in tutorial mode with
students (SOPHIE). Among the points of interest
in programs of these kinds is that they begin to
provide us with estimates of the amounts of seman-
tic knowledge that are required to represent real-
world domains, and that are acquired by students
in their courses at school.

These programs resemble SHRDLU, in that almost
all of their semantic knowledge about the problem
domain is provided to them in the form of built-in
or programmed-in data structures and algorithms
stored in advance of the presentation of specific
tasks. This is especially true of SOPHIE, which
has to be supplied with explicit representations of
the specific circuits it will later use in its
tutorial interaction with students. While both
ISAAC and THERMO are supplied with semantic knowl-
edge about the components of the sorts of systems
with which they deal, they have the additional
capability of assembling those components into
specific, instantiated situation descriptions.
Thus, THERMO knows about processes, like heat ex-
change, devices, like ducts and pumps, and working
substances, like steam and nitrogen. It can use
this information to generate, for example, a prob-
lem about heat exchange through a device where air
enters at one temperature and pressure, and leaves
at another (Figure 5). ISAAC knows about weights,

°Limitations of space prevent me from discussing
speech understanding programs, which also make use
of large amounts of stored information in perform-
ing their task, but belong to a very different
species from the programs mentioned here. It would
perhaps be less confusing to talk of "speech recog-
nition" rather than "speech understanding”, for the
purpose of these programs is to find the graphemic
transcriptions for oral natural language inputs,
and not to understand those inputs. However, some
recent speech recognition systems, like Hearsay-Il
try to attain semantic understanding to aid recogni-
tion. See, for example, Erman & Lesser (1975).
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levers, pivots, ladders, walls, and the like, and

can use this information to represent statics

problems described, say, in terms of persons

standing on ladders that are braced against walls.
THE WORKING FLUID OF A AHOW SYSTEM IS AIR.

THE WORKDONE IS 592 LBF.FT/SEC.

THE INLET.TEMPERATURE IS 46.1 F..

THE OUTLET.VELOCITY IS 15-8 FT/SEC.

THE HEAT. INPUT IS 154.97 BTU/SEC.

THE INLET.AREA IS 4.6 SQ.FT..

THE INLET.PRESSURE IS 16.8 PSIA.

THE OUTLETAREA IS 36 SQ.FT..

THE OUTLET.SPECIFIC.VOLUME IS 0.32 CFT/LBM..

WHAT IS THE OUTLET.PRESSURE?

Figure 5. Example of Problem
Generated by THERMO

Each of these three programs, then, combines,
in varying proportions, two kinds of semantic knowl-
edge: (1) pre-stored general knowledge, and (2)
specific knowledge obtained from the problem state-
ment (in the case of THERMO, the latter is created
by the program itself as it generates problems).
Programs designed to operate in semantically rich
domains can be classified not only with respect to
the total amount of semantic information they use,
but also with respect to the relative proportions
of it they acquire through these two routes.
SHRDLU and SOPHIE stand at one end of this continu-
um, relying mostly on pre-stored knowledge, while
THERMO and ISAAC lie somewhere closer to the
middle. If we were to place an abstracting program
like UNDERSTAND on the same continuum, it would lie

at the other end: all of the knowledge it uses is
extracted from the problem instructions. I will
return to this taxonomy later, for | think it has

significant implications for the design of under-
standing systems with broader capabilities than the
existing ones.

The Knowledge Content of THERMO

It will be useful to sketch out a bit more con-
cretely the kinds of knowledge required by a system
that is to understand problems in thermodynamics,
and a possible method of storing that knowledge so
that it will be accessible. The THERMO system is
at present limited to steady-state flow problems
in chemical 'engineering thermodynamics.10 The in-
formation that THERMO possesses about devices,

processes, and substances is stored in the form
"There is as yet no publised description of
THERMO in the literature. Two components, ENTIR

and REVIEW has been implemented, each capable of
generating complete problems, but specialized
along different dimensions. A more general pro-
gram, combining and augmenting the capabilities of
the existing components, has been designed but not
implemented. An analysis of human problem solving
in thermodynamics that provided part of the moti-
vation for the design of the THERMO programs will
be found in Bhaskar € Simon, 1977.

of schemas. Schemas, in turn, are simply repre-
sented as description lists. A working substance,
for example, has a name, upper and lower bounds
for the values of its state variables (temperature,
pressure, etc.), and equations of state that deter-
mine each of these state variables as a function
of two of the others. A device is described in
terms of its sequence of processes, and the working
substances that are admissible for use with it. A

process is described in terms of default values of
variables, including variables assumed constant

through the process.

In addition to its descriptions of working sub-
stances, devices, and processes, THERMO holds In
memory the equations of conservation of energy and
conservation of mass. The energy conservation
equation is stored in a quite general form that
can be specialized, for use in particular problems,
by the omission of unnecessary terms. As already
mentioned, equations of state are stored with each
of the working substances, since these equations
are different for different substances,

THERMO makes up thermodynamics problems by
selecting (using random numbers when appropriate)
a system that consists of a sequence of devices
(possibly including cycles), and a sufficient set
of values of input and output variables to deter-
mine the behavior of the system uniquely. THERMO
knows that the values of output variables at each
stage of a process must equal the input values at
the next stage, and that the changes in values
must zero out over any cycle. Various equation-
counting procedures are available to the program
so that the system will be neither under- nor over-
determined. The program selects a particular vari-
able or variables as dependent variables, selects
values for a sufficient set of independent vari-
ables, and formulates a problem for the user of
computing the values of these dependent variables.

"It is regrettable that Minsky has chosen to
use the term "frame" instead of "schema" for this
concept. | committed a similar sin by using
"template" to refer to the schemas (of exactly the
same kind) that | employed in the HEURISTIC
COMPILER (1963, 1972). There are two substantial
reasons for preferring "schema." First, the term
has become well established since it was Introduced
by the psychologist Bartlett in 1932, and has been
widely used in this sense by both psychologists and
researchers in artificial intelligence (e.g.,
Norman & Rumelhart, 1975, pp.406-407). Second,
Hayes and McCarthy (McCarthy 6- Hayes, 1968; Hayes,
1971, 1973) had already introduced the term "frame"
into the artificial intelligence literature with an
entirely different sense, in connection with the
so-called "frame problem." Since using the term in
two such disparate ways in the same literature can
only cause confusion—and already has—"schema"

should again become the standard usage. It would
seem to be a matter of indifference whether
"schemas," "schemata," or both, are used in the

plural, since no confusion can result in either case.
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Since, in the course of constructing a problem,
THERMO also solves it, it holds in memory informa-
tion that could be used for tutoring a student
interactively, somewhat in the manner of SOPHIE.

It could provide a student not only with feedback
on the correct values of particular unknowns, but
also about possible solution paths, i.e., the most
convenient order in which to solve the equations in
order to reach a conclusion. These tutorial capa-
bilities have not yet been implemented.

The Frame Problem

The frame problem (Hayes, 1973) is the problem
of keeping track of the consequences of performing
an action or of making some alteration to a rep-
resentation of a situation. Updating the repre-
sentation of a complex situation as it undergoes
successive modifications is a distinctly non-

trivial task. We need to consider how the frame
problem is handled in programs of the sorts we are
discussing in this section.

in which THERMO's under-
standing exhibits itself is in its ability to
assemble the information stored in individual
schemas associated with devices, substances, and
processes into descriptions of compound systems
made up of these elements, and to formulate consis-
tent problems (i.e., instantiations) for these
systems. The basis for this understanding, in
turn, lies in THERMO's means (1) for keeping track
of equations and variables so that the system will
be just determined, and (2) for equating input and
output values of subprocesses to assure consisten-
cy, including consistency around loops.

The fundamental way

One can identify similar mechanisms in SOPHIE,
which has the capability of changing the values of
one or more circuit parameters, and then calculating
the resulting values of all circuit variables.

Likewise, the ISAAC system is able to fit together
components like levers, pivots, and weights into
descriptions of a total problem situation, taking

account of the constraints at junction points im-
posed by the physics of the situation (e.g., the
resultant force at each junction must be zero).

The mechanisms in THERMO, SOPHIE, and ISAAC for
coordinating system components and assembling prob-
lem situations from these components may be recog-
nized as solutions of the frame problem for these
systems. For, in addition to the descriptive
information associated with each schema, informa-
tion is needed that allows the effects of inter-
actions between instantiated schemas to be taken
into account. Notice that in no case is a general
solution provided to the frame problem. In each
case, the mechanisms for handling interactions
derive from the conservation laws peculiar to the
semantic domain under consideration--in SOPHIE,
the circuit laws, in THERMO, laws of conservation
of mass and energy, and in ISAAC, laws of static
equilibrium.

In abstract systems, like UNDERSTAND and the
other programs discussed in the previous section,
the frame problem is handled by assuming that all
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interactions are explicitly mentioned
lem formulation—that in the abstract representa-
tion of the situation, moves have no Implicit side
effects. In the domains we are now considering it
is the function of a theory of the domain—of elec-
tronic circuits, of statics, of thermodynamics--to
predict the side effects. The frame problem is
solved in each domain by incorporating in the pro-
gram the capability of using the relevant scientif-
ic theory of that domain. Hence, we may say that:

in the prob-

A system, S, understands a scientific theory,
T(D), for domain D if it can use its knowledge
of T to calculate the consequences, direct and
indirect, of assumptions about situations and
changes in situations in D.

A "correct'" theory of any body of phenomena
allows inferences to be made from the values of
certain variables to the values of others. The
simplicity or complexity of the computations re-
quired to make these inferences will depend on the
mathematical structure of the theory. If the
theory takes the form of N linear algebraic equa-
tions in N variables, then the capability of draw-
ing correct inferences means the capability of
solving systems of N simultaneous linear equations.
If the theory takes the form of a set of linear
equations and inequalities, combined with a maxi-
mization condition, then the capability of drawing
correct inferences means the capability of solving
linear programming problems.'?

We should not, therefore, expect to find some-
thing that would constitute a general solution to
the frame problem. There are as many frame prob-
lems as there are forms of mathematical and logical
systems, and to solve the frame problem for any
such system is simply to have an efficient compu-
tational algorithm for the theory of systems of
that kind. For systems operating in semantically
rich domains, the frame problem is solved by incor-
porating in the system a theory of the domain,
together with computational algorithms appropriate
to a theory having that structure.

The Acaquisition of Knowledge

It is time now to return to our earlier discus-
sion of knowledge acquisition in systems designed
to operate in abstract and semantically rich
domains, respectively. One can distinguish two
kinds of knowledge acquisition, which in the psy-
chological literature are often called accommoda-
tion and assimllation, respectively (Moore & Newell,
197'0 ."® Accommodation involves the acquisition of

2 For a further development of this point of
view, see Simon, 1965, 1967, 1972. In these papers
| argue that the attempt to deal with the frame
problem by constructing modal logics is misguided,
and suggest as the alternative essentially the pro-
cedure outlined here.

"The terms are due to Piaget (Piaget & Inhelder

1969), and are used mainly in the literature of
child development.
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the modification
Assimilation involves relating
representations that are
information that is

new internal
of existing ones.
new information to
already available and to
already stored in memory.

representations, or

At a local level, the assimilation problem
arises initially in the language parsing stage of
acquisition from the problems of anaphoric refer-
ence. At a slightly more global level , it arises
in a system like UNDERSTAND from the necessity of
coordinating the representation it has created of
situations with the algorithms it has associated
with operators. In systems like SHRDLU and SOPHIE,

which contain large amounts of pre-stored informa-
tion, it arises in accessing the l|exical informa-
tion associated with terms in the jnput text.

Consider a system that begins processing a
lengthy text without any substantive knowledge of
the semantic content of that text. At the begin-
ning, the system is faced with a task of accommoda-
tion, for the only meanings it can attach to the
terms of the text are the meanings they acquire
from the internal symbol structures that the
system builds up to represent them. In this sense,
all new knowledge begins as "abstract" knowledge.
As the system proceeds through the text, however,
more and more of the content depends for its inter-
pretation upon information that has been presented
earlier, and which has presumably been stored
internally in some form. In order to process this
new content appropriately, the system must rely
less and less upon its capability for creating
representations de novo (accommodation), and more
and more on its ability to match new information
with information stored in semantic memory
(ass imilation).

For simple assimilative tasks, the system needs
knowledge-accessing capabilities like those pos-
sessed by SOPHIE or ISAAC. For more complex assim-
ilative tasks, which require the discovery and use
of metaphoric and analogic relations between old

and new knowledge, understanding calls for powerful
and elaborate matching capabilities like those pro-
posed in my HEURISTIC COMPILER scheme, by Moore and
Newell (1974 in their design for MERLIN, or by
Kling (1971) in his scheme for theorem proving by
analogy.

Out of this welter of possibilities, we begin
to see directions for the further development of
systems to operate in semantically rich domains:
systems that would not have to be provided with
their full complement of semantic knowledge at the
outset, but that could gradually acquire knowledge
of a domain from a continuous input of text,
starting with procedures for handling abstract
(i.e., novel) material, and gradually shifting the
burden of processing to procedures for matching
new knowledge onto knowledge previously stored--a
kind of hybrid between UNDERSTAND-like systems,
and ISAAC- or MERLIN-like systems. The basic com-
ponents from which we can manufacture such systems
are becoming increasingly well understood.

Summary

Our discussion of semantically rich domains has
focused on the frame problem, and upon the need of
understanding systems to have strong capabilities
for assimilation and accommodation of new informa-
tion. A solution of the frame problem for any
complex domain with strong interactions among its
components implies having a theory of the domain,
and adequate computational means for calculating
the theoretical implications of system changes.

To understand the information that is presented
to it, a system operating in semantically rich
domains needs both capabilities for assimilating
information to internal structures it already has,
and capabilities for accommodating internal struc-
tures to novel information. There now exist
systems with some capabilities in each of these
directions, and an obvious next direction of
research is to try to combine them more effectively.

Conclusion: The Varieties of Understanding

In this paper | have argued that understanding
is a relation among a system, one or more bodies of
knowledge, and a set of tasks the system is
expected to perform. The development of under-
standing systems over the past twenty years has
been a kind of two-part fugue, in which the propos-
al of a class of tasks to be performed generates a
set of knowledge requirements for the system; while
the knowledge a system acquires, in turn, enlarges
its capabilities for understanding new tasks. |
have sketched out a whole sequence of task-
knowledge pairs that represent, in a rough way,
the historical course that understanding systems
have followed from the origins of Al to the present

(Figure 6).
Knowledge Tasks
1. Syntax Parse ¢ store sentences

2. Inference
3. Intensional

procedures
meaning

Answer questions

Act on real or simu-
lated environment

Give reasons for actions

Solve problems

4. Goal stacks
5. Problem-solving
algorithms

6. Representation Represent novel problems
generat ion
7. Domain-specific Understand semantically

schemes
(ass imilation)

rich problems

Figure 6. The Varieties of Understanding

The knowledge available to early understanding
programs was mainly knowledge of the syntax of
English (or some other natural language), and their
understanding was demonstrated by their ability to
use that knowledge to encode and store in memory
information presented in natural language, and to
recover that information in response to natural
language inquiries.

A second kind of knowledge that the programs
possessed to varying degrees was knowledge of cer-
tain rules of inference, which enabled them to
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derive information that was only implicitly pre-
sented to them, and to use this implicit informa-
tion to answer a broader range of inquiries. This
inferential capability was sometimes limited to a
knowledge of rules of logical deduction, but
increasingly incorporated also semantic knowledge
about the problem domain.

Intensional definitions of classes of objects
and relations constitute a third kind of knowledge
that a system may be equipped to use to answer
questions about a real or simulated environment,
or to manipulate objects in that environment. In
these terms, a system (quasi-robot) understands
what a snark is if it can apply tests that
discriminate snarks from non-snarks; it understands
what "turn" means if it has knowledge in the form
of programs that enable it to execute a turn in
response to a command.

A fourth kind of knowledge, associated with yet
another class of tasks for testing understanding,
is knowledge about the reasons for actions. When-
ever a system's program enables it to engage in
means-ends analysis in order to select its actions,
it can be programmed to retain knowledge about the
goal hierarchies it creates, and to use that
knowledge to answer "why" questions about its own
behav ior.

Knowledge of algorithms for solving problems
represents a fifth basis for understanding. In
the case of humans, we test this understanding by
measuring the time and effort required to acquire
the algorithm (an inverse measure), the ease of
its retention, and the range of problems over
which it can be applied. We may also test it by
asking "why" questions about the steps in the algo-
rithm. We judge understanding to be deeper, the
more successful the problem solver is in explaining
the reasons for his actions.

A sixth kind of knowledge, knowledge that
enables a system to create a representation and
operators for a new and unfamiliar problem, can be
distinguished from knowledge of how to solve the
problem. If the problem is genuinely novel to the
system, then understanding requires the ability
(accommodation) to abstract the sets of objects
and relations the problem is "about," and to encode
them in a form that makes them accessible to a
system component that understands how to go about
solving problems so encoded.

Novelty is a matter of degree. That is, a
system may have had varying degrees of experience
with problems of a given sort, and may have been
provided with varying amounts of semantic knowledge
about such problems. A system may require not only
knowledge of how to abstract and encode a problem
text, but also knowledge of how to map terms and
sentences contained in that text on knowledge
structures already stored in semantic memory
(assimilation). Such a capability constitutes a
seventh kind of knowledge that is required by the
compleat understanding system.
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We do not have any assurance that the list of
Figure 6 is complete--that there are not other
kinds of knowledge and other kinds of tasks to

which it can be applied. Even within the bounda-
ries of this list of problems, it Is not evident
that the repertory of mechanisms that we have

employed in our programs is sufficient for
achieving understanding at human or near-human
levels; indeed, | would suppose that most
researchers in artificial intelligence would think
that they are not. We have no reason to be dis-
satisfied, however, with the progress we have made
in the past two decades toward understanding the
processes of understanding. We can well echo the
sentiments of David Hume, in the opening pages of
his Enquiry Concerning Human Understanding:

It becomes. . .no inconsiderable part of
science barely to know the different opera-
tions of the mind, to separate them from
each other, to class them under their proper
heads, and to correct all that seeming dis-
order in which they lie involved, when made
the object of reflexion and enquiry. .And
if we can go no farther than this mental
geography, or delineation of the distinct
parts and powers of the mind, it is at least
a satisfaction to go so far; and the more
obvious this science may appear (and it is
by no means obvious) the more contemptible
still must the ignorance of it be esteemed,
in all pretenders to learning and philosophy.
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