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Abstract

Background: Authors have been advocating the research 

ideology that a computer-aided diagnosis (CAD) system 

trained using lots of patient data and physiological signals 

and images based on adroit integration of advanced signal 

processing and artificial intelligence (AI)/machine learning 

techniques in an automated fashion can assist neurologists, 

neurosurgeons, radiologists, and other medical providers to 

make better clinical decisions. Summary: This paper pres-

ents a state-of-the-art review of research on automated di-

agnosis of 5 neurological disorders in the past 2 decades us-

ing AI techniques: epilepsy, Parkinson’s disease, Alzheimer’s 

disease, multiple sclerosis, and ischemic brain stroke using 

physiological signals and images. Recent research articles on 

different feature extraction methods, dimensionality reduc-

tion techniques, feature selection, and classification tech-

niques are reviewed. Key Message: CAD systems using AI 

and advanced signal processing techniques can assist clini-

cians in analyzing and interpreting physiological signals and 

images more effectively. © 2019 S. Karger AG, Basel

Introduction

Neurological disorders are the diseases connected with 
peripheral and central nervous systems. The common 
symptoms include muscle weakness, paralysis, seizures, 
pain, poor coordination, and loss of consciousness [1]. 
There are > 600 diseases related to the nervous system 
such as brain tumor, Parkinson’s disease (PD), Alzheim-
er’s disease (AD), multiple sclerosis (MS), epilepsy, de-
mentia, headache disorders, neuroinfections, stroke, and 
traumatic brain injuries among others. Various viral in-
fections (i.e., HIV, Zika, West Nile Virus, Enteroviruses), 
bacterial infections (such as Neisseria meningitides and 
Mycobacterium tuberculosis), fungal-related infections 
(such as Aspergillus and Cryptococcus), and parasitic in-
fections (such as Chagas and malaria) can affect the entire 
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nervous system [1–6]. The aforementioned neurological 
symptoms possibly occur due to immune response or in-
fection itself. Hundreds of millions of people worldwide 
are affected by neurological disorders [7–10]. More than 
6 million people die because of stroke each year; majority 
of these deaths take place in low- and middle-income 
countries [1, 11, 12]. It is reported that around 50 million 
people will have epilepsy [1], and 47.5 million people will 
suffer from dementia [1, 13–17]. 

The abnormal or the anomalous neurological condi-
tions are commonly identified by a neuropathological ex-
amination. Anomalous neurological conditions are found 
in majority of the population and are not always associ-
ated with a neurological disorder [18]. 

Dementia is usually progressive in nature. The demen-
tia syndromes disturb multiple cortical functions, that is, 
memory, orientation, thinking, calculation, language, 
comprehension, judgment, and learning capacity. AD is 
found to be the most common cause of dementia, which is 
characterized by neurofibrillary and cortical amyloids ac-
counting for 3 quarters of the cases [16, 19, 20]. Dementia 
affects mainly older people, above 65 years, but also 2% of 
the people under 65 years old. The prevalence of dementia 
doubles with age every 5 years. A genetic polymorphism 
increases the risk for 25% of entire population [21, 22]. 

Epilepsy, a chronic neurological disorder, is defined as, 
“disorder of brain characterized by enduring predisposition 
to generate the epileptic seizures.” [23–25]. The epilepsy def-
inition requires at least occurrence of one epileptic seizure 
[26, 27]. It affects both male and female sexes and people of 
all ages. The diagnosis for epileptic seizures is performed by 
first determining the event of epilepsy and later differenti-
ating between the conditions called provoked or chronic 
epileptic seizures [28, 29]. The overall incidence of epilepsy 
is found to be 23–190 per 100,000 of population [30]. The 
prevalence is lower in early ages and gradually increases 
with aging [31–34]. Since the pioneering work of Adeli et 
al. [35], wavelet transform (WT) has been used extensively 
for electroencephalogram (EEG) analysis, seizure detec-
tion, and epilepsy diagnosis [36, 37]. Kugiumtzis et al. [27] 
investigate the dynamics of epileptiform discharges in-
duced by transcranial magnetic stimulation in epilepsy. 
Yuan et al. [38] present a method for epileptic seizure pre-
diction using diffusion distance and Bayesian linear dis-
criminate analysis [39] in intracranial EEG.

MS, a disorder caused by a condition called inflamma-
tory demyelinating of the nervous system, is the most 
common among all neurological disorders. MS causes 
disabilities in young adults and affects nearly 2.5 million 
people worldwide. The diagnosis of MS is generally per-

formed by magnetic resonance imaging (MRI). There are 
no treatments available for this disease [40, 41]. 

PD is a chronic neurodegenerative disorder often 
characterized by the presence of predominantly motor 
symptomatology [42, 43], but it can have nonmotor hy-
posmia, paresthesia, depression, and pain [44]. PD is a 
universal disorder with incidence rate of 4.5–19 per 
100,000 of population per year [45–47] for both females 
and males of all ages. The therapy depends on severity, 
mental status, and age of the patient. Gálvez et al. [48] in-
vestigate the short-term effects of Binaural Beats on EEG 
power, functional connectivity, cognition, gait, and anxi-
ety in PD patients.

Stroke is a clinical syndrome of cerebral deficit that 
lasts for > 24 h with no apparent cause except the vascular 
one [49]. In the modern developed countries, 75–80% of 
the strokes are attributed to brain ischemia, and 10–15% 
are attributed to intracerebral hemorrhage. Stroke diag-
nosis is made accurately completely based on clinical 
grounds by a specialist alone.

Traumatic brain injury is one of the foremost causes of 
disability and death in young adults and children world-
wide. More than five million people suffer from the trau-
matic brain injury disability in the United States alone 
[50–52].

Authors have been advocating the research ideology 
that a computer-aided diagnosis (CAD) system trained 
using lots of patient data and physiological signals and im-
ages based on adroit integration of advanced signal pro-
cessing and artificial intelligence (AI)/machine learning 
(ML) techniques in an automated fashion can assist neu-
rologists, neurosurgeons, radiologists, and other medical 
providers to make better clinical decisions. Research in 
this area has been growing at an accelerating rate in the 
past decade. In this paper, authors explore and review re-
cent articles on the applications of AI-based CAD systems 
for the diagnosis of 5 major neurological disorders: epi-
lepsy, AD, PD, MS, and ischemic brain stroke. 

Figure 1 shows the functional block diagram of a typi-
cal ML-based CAD system consisting of 5 stages: (1) sig-
nal transformation, (2) feature extraction, (3) feature di-
mensionality reduction, (4) optimal feature selection/
ranking, and (5) classification. 

ML-Based CAD

Input Data Description
Input data for a CAD system are normally signals and/

or images. For PD, many CAD systems use speech and 
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EEG for the diagnosis. Image-based approaches normally 
use MRI and single-photon emission computed tomog-
raphy scan. For epilepsy, most authors have used Bonn 
University EEG data set [53]. In MS, T1 and T2 weighted 
MRI images are commonly used for the diagnosis, where 
T1 and T2 refer to the time taken between magnetic puls-
es and the image is taken. Most of the AD systems have 
used T2-weighted MRI images from Alzheimer Disease 
Neuro Imaging [54] and Open Access Series of Imaging 
Studies [55] databases.

Image Transformation
In general, image transformation is performed first 

where the redundant information is removed and then 
features are extracted from the transformed images. This 
step helps in gathering significant information that can be 
used for feature extraction.

Feature Extraction
Signal-Based Approach
Discrete wavelet transform (DWT) is often used to 

convert the signal to low- and high-frequency compo-
nents [56–58]. The curvelet transform that is a higher di-
mensional DWT represents the images in multiple angles 
and scales [59]. The higher-order spectra (HOS) features 
are also used for feature representation and extraction 
[60, 61]. The extracted features must represent the hidden 
clues present in the input data. 

Image-Based Approach
In image preprocessing methods, intensity normal-

ization, adaptive histogram equalization [62], and back-
ground subtractions are performed prior to level set 
segmentation to detect the region of interest [63]. 
The  gray level co-occurrence matrix features are 
most commonly used for the images [64]. The entropy 
and energy features are also used in many articles [65–
70]. The wavelet-based energy and entropy features are 
also employed [71–74]. Various statistical measures 
such as Hu’s moments [75], Zernike moments [76], 

central moments [77], and statistical moments [77] are 
used as features both in signal- and image- based ap-
proaches for developing CAD systems for neurological 
disorder.

Dimensionality Reduction
Feature extraction techniques often yield a large num-

ber of features that may be redundant and result in exces-
sive computational requirements which in turn may 
make their real-time application impractical or unneces-
sarily difficult. Hence, various feature dimensionality re-
duction techniques are commonly used. The most com-
monly used methods are principal component analysis 
(PCA) [78], linear discriminant analysis [78], and inde-
pendent component analysis [79]. Extended versions of 
PCA such as kernel PCA have also been employed in the 
literature [80]. 

Optimal Feature Selection and Ranking
Majority of features exhibit redundant information, 

which need to be removed to obtain optimum classifi-
cation performance. The analysis of variance [81] is the 
most commonly used method when 3 or more classes 
are involved. Other commonly used optimal feature se-
lection techniques are Student t test [82], entropy [83, 
84], Wilcoxon rank tests [85–88], Bhattacharyya dis-
tance [89], receiver operating characteristic [90], genet-
ic algorithm [91], particle swarm optimization [92, 93], 
and ant colony optimization [94]. A number of re-
searchers have combined different selection methods in 
order to obtain the most significant features [95]. The 
fuzzy logic-based min-redundancy and max-relevance 
feature selection have been used for diagnosis of PD 
[96].

Feature Classification
Classification techniques generally have 2 phases: (i) 

training and (ii) testing. They need to be trained using 
previously collected data. Once trained, they can be used 
for classification of new cases. The most commonly used 

Signal
transformation

Feature
extraction

Input Diagnosis

Dimensionality
reduction

Optimal
feature

selection/
ranking

Classification

Fig. 1. General block diagram of a typical 
ML-based CAD system.
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Table 1. Summary of CAD systems for diagnosis of epilepsy (modality: EEG)

Authors, years Methodology/features Classifier Accuracy, %

Acharya et al. [149], 2009 CD, Hurst exponent (H), ApEn GMM + SVM EPacc = 100

Acharya et al. [150], 2011 WPD and HOS Fuzzy EPacc = 98.5

Acharya et al. [151], 2011 RQA features SVM EPacc = 95.6

Acharya et al. [152], 2012 Entropies + HOS + higuchi FD +
hurst/nonlinear features

Fuzzy EPacc = 99.7

Acharya et al. [153], 2012 Entropy parameters Fuzzy EPacc = 98.1

Acharya et al. [154], 2012 Eigen values + WPD coefficients + PCA GMM EPacc = 99

Acharya et al. [155], 2013 DWT + ICA SVM EPacc = 96

Aslan et al. [156], 2008 – RBFNN + MLPNN EPacc = 95.2

Chua et al. [157], 2011 HOS-based features GMM EPacc = 93.1

Faust et al. [158], 2010 Frequency parameters + Burg’s method SVM EPacc = 93.3

Ghosh-Dastidar et al. [159], 2007 Mixed-band feature space LMBPNN EPacc = 96.7

Ghosh-Dastidar et al. [160], 2008 Mixed-band feature space + PCA RBFNN EPacc = 96.6

Ghosh-Dastidar et al. [161], 2009 Mixed-band feature space MuSpiNN EPacc = 94.8

Guler et al. [162], 2005 Lyapunov exponents RNN EPacc = 96.79

Guo et al. [163], 2009 Relative wavelet energy ANN EPacc = 95.2

Guo et al. [164], 2010 ApEn + wavelet transform ANN EPacc = 99.85

Guo et al. [165], 2010 Line length features + wavelet
transform

ANN EPacc = 99.6

Guo et al. [166], 2011 Genetic programming KNN EPacc = 99.2

Iscan et al. [167], 2011 Cross correlation and power
spectral density

SVM EPacc = 100

Kannathal et al. [168], 2005 Entropy measures ANFIS EPacc = 90

Lima et al. [169], 2010 DWT SVM EPacc = 100

Martis et al. [170], 2012 EMD C4.5 EPacc = 95.33

Nigam and Graupe [171], 2004 Nonlinear filter LAMSTAR ANN EPacc = 97.2

Orhan et al. [172], 2011 DWT and K-means clustering MLPNN EPacc = 100

Polat and Gunes [173], 2007 FFT DT EPacc = 98.72

Polat and Gunes [174], 2008 FFT + PCA AIRS EPacc = 100

Polat and Gunes [175], 2008 AR C4.5 EPacc = 99.32

Sadati et al. [176], 2006 DWT ANFN EPacc = 85.9

Srinivasan et al. [177], 2005 Time and frequency domain features EN EPacc = 99.6

Srinivasan et al. [178], 2007 ApEn PNN, EN EPacc = 100

Subasi [179], 2007 DWT + statistical measures ME EPacc = 94.5

Subasi and Gursoy [180], 2010 DWT + PCA SVM EPacc = 100

Tzallas et al. [181], 2007 Time–frequency methods ANN EPacc = 99.28 
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Authors, years Methodology/features Classifier Accuracy, %

Jaiswal and Banka [182], 2017 SpPCA and SubXPCA SVM EPacc = 94.60

Ubeyli [183], 2010 AR LS-SVM EPacc = 99.56

Wang et al. [184], 2011 Wavelet + entropy KNN + HKB EPacc = 100

Swami et al. [185], 2016 DTCWT GRNN –

Peker et al. [186], 2016 DTCWT CVNN EPacc = 100

Sharma and Pachori [187], 2017 TQWT LS-SVM + FD EPacc = 100

Patidar et al. [188], 2017 TQWT and kraskov entropy LS-SVM EPacc = 97.75

Gandhi et al. [189], 2011 DWT, energy, SD, entropy PNN EPacc = 99.9

Chen [190], 2014 DTCWT, fourier features NN EPacc = 100

Swami et al. [191], 2014 Energy, SD, entropy features SVM EPacc = 99.53

Pachori and Patidar [192], 2014 EMD and SODP ANN EPacc = 100

Sharma and Pachori [193], 2015 EMD and PSR of IMF LS-SVM EPacc = 98.67

Bhattacharyya et al. [194], 2017 TQWT and KNN entropies SVM EPacc = 100

Bhattacharyya et al. [195], 2016 Empirical wavelet transform LS-SVM EPacc = 90

Bhati et al. [196], 2017 Time–frequency localized three-band
biorthogonal linear phase wavelet
filter bank

MLPNN EPacc = 99.33

Sharma et al. [197], 2017 Orthogonal wavelet filter banks LS-SVM EPacc = 94.25

Kaya et al. [198], 2014 1D – LBP FT EPacc = 99.5

Zhu et al. [199], 2014 FWHVA KNN EPacc = 100

Samiee et al. [200], 2015 DSTFT MLPNN EPacc = 99.8

Riaz et al. [201], 2016 EMD SVM EPacc = 96.2

Diykh et al. [202], 2017 Weighted complex network
combined with time domain features

LS-SVM EPacc = 98

Li et al. [203], 2017 MODWT and LND RFC EPacc = 100

Acharya et al. [7] – CNN Eac = 88.7

Ghayab et al. [205], 2016 SRS and SFS LS-SVM EPacc = 99.9

Sharma et al. [206], 2018 MMSFL-OWFB based KE SVM EPacc = 100

Tiwari et al. [207], 2017 Pyramid scheme for key-point
localisation and LBP

SVM EPacc = 99.89

Bajaj and Pachori [208], 2012 EMD based intrinsic mode functions
and hilbert transform

LS-SVM EPacc = 100

Nicolaou and Georgiou [209], 2012 Permutation entropy SVM EPacc = 93.55

Xie and Krishnan [210], 2013 Wavelet-based sparse functional
linear model

KNN (1NN) EPacc = 100

Mursalin et al. [211], 2017 ICFS RFC EPacc = 100

Upadhyay et al. [212], 2016 DWT based features LS-SVM EPacc = 100

Table 1. (continued)
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Authors, years Methodology/features Classifier Accuracy, %

Kabir et al. [213], 2016 Optimum allocation technique LMT EPacc = 95.33

Murugavel and Ramakrishnan 
[214], 2016

Wavelet transform based features H-MSVM
with ELM

EPacc = 93.63

Pippa et al. [215], 2016 Time domain and frequency domain
features

Bayesian net EPacc = 95

Kumar et al. [216], 2014 LBP kNN (1-NN) EPacc = 98.33

Naser et al. [217], 2019 DWT and approximation and
abe entropies

SVM EPacc = 98.75

Tzimourta et al. [218], 2018 Wavelet transform based features Random forest
classifier

EPacc = 95

Lamhiri and Shmuel [219], 2019 Hurst exponent k-NN EPacc = 100

Raghu et al. [220], 2019 Sigmoid entropy SVM EPsen = 100

Wang et al. [221], 2019 Symlet wavelet processing,
and grid search optimizer

Gradient boosting
machine

EPacc = 96.5

Bose et al. [222], 2019 Multifractal detrended
fluctuation analysis

SVM EPacc = 100

Dalal et al. [223], 2019 FAWT and FD RELS-TSVM EPacc = 90.2

Sriam et al. [224], 2018 Teager energy feature Supervised back
propagation neural net-
work

EPsen = 96.66

Shaikh et al. [225], 2017 EMD ANN EPacc = 96.1

Osman and Alzahrani [226], 2019 SOM RBFNN EPacc = 97.47

Sudalaimani et al. [227], 2018 Sub-frequency band features GRNN EPacc = 91.6

Raghu and Sriram [228], 2018 NCA SVM EPacc = 98.8

Li et al. [37], 2018 GMM and GLCM features,
RFE-SVM

SVM EPacc = 100

Cooman et al. [229], 2018 HRI features SVM + Adaptive
Heuristic classifier

EPsen = 83.3

Li et al. [230], 2018 WPT and KDE LS-SVM EPacc = 99.6

Cruz et al. [231], 2018 ACC and EMG SVM on cloud
computing platform

EPsen = 83.3

Kocadagli and Langari [232], 2017 DWT and fuzzy relations ANN EPacc = 99.9

Zhang et al. [233], 2018 WPD, fDistIn kNN EPsen = 98.33

Feng et al. [234], 2018 WPD SVM EPacc = 98.67

Tanveer et al. [235], 2018 FAWT and entropy-based features RELS-TSVM EPacc = 100

Choudhury et al. [236], 2018 XHST kNN EPacc = 100

Torse et al. [237], 2017 EMD CSM-SVM EPacc = 96.4

Tomanik et al. [238], 2019 Complex networks – EPacc = 98.2

Wani et al. [239], 2018 DWT ANN EPacc = 95

Table 1. (continued)
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classifiers for diagnosis of the neurological disorder are 
probabilistic neural network classifier [97], support vec-
tor machine (SVM) with different kernel functions such 
as polynomial (Poly) of orders 1, 2, and 3 [58, 98], Naive 
Bayes [99, 100], k-nearest neighbor [101], linear discrim-
inant analysis, quadratic discriminant analysis [102], de-
cision tree [101], random forest, and Gaussian mixer 
model [103, 104]. Among these, SVM classifier is one of 
the most commonly used. More recently, enhanced prob-
abilistic neural network has been used for accurate diag-
nosis of PD [105].

The consolidated lists of various machine ML-based 
CAD systems for the diagnosis of neurological disorders 
are presented in Tables 1–7 for epilepsy, PD, AD, isch-
emic brain stroke, and MS. 

Deep Learning-Based Techniques

To solve the limitations of ML-based techniques, deep 
learning techniques have recently been advanced. An ex-
ample of deep learning is the convolutional neural network 

Table 1. (continued)

Authors, years Methodology/features Classifier Accuracy, %

Deep learning based techniques
Yuan et al. [136], 2017 STFT-Mssda Softmax EPacc = 93.82

Ullah et al. [137], 2018 P-1D-CNN EPacc = 99.9

Johansen et al. [135], 2016 CNN AUC = 94.7

Antoniades et al. [134], 2016 CNN EPacc = 87.51

Qi et al. [240], 2014 MCC-based R-SAE model SVM EPsen = 100

Lin et al. [241], 2016 SSAE Softmax EPacc = 96

Gogna et al. [242], 2017 Semi-supervised stacked autoencoder EPacc = 96.9

Acharya et al. [9], 2018 CNN EPacc = 88.67

Tjepkema-Cloostermans et al. 
[139], 2018

Convolutions (1D and 2D) and/
or LSTMs

EPspe = 99.9

Hussein et al. [243], 2019 LSTM + FC EPspe = 100

Thodoroff et al. [244], 2016 CNN + RNN EPsen = 85

Emami et al. [245], 2019 CNN Detection rate = 100

Van Putten et al. [139], 2018 CNN + RNN EPspe = 100

Jang and Cho [246], 2019 Dual deep neural network – EPsen = 100

Zuo et al. [247], 2019 CNN – EPsen = 83.23

Wei et al. [248], 2016 Multichannel CNN – EPacc = 92.40

Achilles et al. [249], 2016 CNN – AUC = 78.33

Yuvaraj et al. [250], 2018 CNN – EPsen = 86.29

Maria Hugle et al. [251], 2018 CNN – EPsen = 96

Thomas et al. [252], 2018 CNN SVM EPacc = 83.86

CAD, computer aided diagnosis; CD, correlation dimension; EEG, electroencephalogram; ApEn, approximate entropy; SVM, sup-
port vector machine; RQA, recurrence quantification analysis; HOS, higher order spectra; PCA, principal component analysis; KNN, 
k-nearest neighbour; DWT, discrete wavelet transform; ICA, independent component analysis; GMM, gaussian mixer model; PNN, 
probabilistic neural network; SRS, simple random Sampling; SFS, sequential feature selection; HRI, heart rate increases; XHST, cross 
hyperbolic S-transform; CNN, convolutional neural network.
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Table 2. Summary of CAD systems for diagnosis of PD using measurable indicators (modality: EEG)

Authors, years Methodology/features Classifier Accuracy, %

Yuvaraj et al. [253], 2014 HOS (6 basic emotional states) KNN, SVM PDacc: 93.42
(happiness)

Yuvaraj et al. [254], 2014 BNoA (bispectrum feature), ICA SVM, RBF PDacc: 76.90±1.08

Yuvaraj et al. [255], 2016 Bispectral functional connectivity
index

SVM PDacc: 51.66±1.02

Nilashi et al. [256], 2017 Data mining technology CART –

Tucker et al. [257], 2015
(modality: sensors)

Data mining driven technology Naïve Bayes PDacc: 78.00

Prashantha et al. [258], 2018 Machine learning techniques Logistic regression, random
forests, boosted trees, SVM

Acc: >95

Deep learning based techniques
Ali et al. [259], 2016 DBF (handwriting analysis) – Acc: 94.00

Caliskan et al. [260], 2017 Deep neural network
(speech dataset)

Softmax classifier Acc: 86.09, sensitivity:
58.27, specificity: 95.38

Grover et al. [261], 2018 Deep neural network
(voice data)

UPDRS Total UPDRS
accuracy: 62.73

CAD, computer-aided diagnosis; PD, Parkinson’s disease; EEG, electroencephalogram; HOS, higher-order spectra; ICA, indepen-
dent component analysis; DBF, deep belief network; SVM, support vector machine.

Table 3. Summary of CAD systems for the detection of PD using brain images (modality: MRI)

Authors, year Methodology/features Classifiers Accuracy, %

Oliveira et al. [262], 2015 Voxel features SVM PDacc: 97.86, PDsen: 97.75, PDspe: 98.09

Hirschauer et al. [105], 2015 – EPNN PDacc: 92.50

Banerjee et al. [263], 2016 CDT + FA PGA PDacc: 98.53, PDsen: 98, PDspe: 100

Cigdem et al. [264], 2018 GM + WM + PCA SVM PDacc: 93.75, PDsen: 95, PDspe: 92.50

Segovia et al. [265], 2015
(modality: PET CT)

NB SVM PDacc: 78.16

Ahmadlou et al. [266], 2010
(modality: SPECT)

Gaussian Kernel – PDacc: 92.5

Deep learning-based techniques
Choi et al. [267], 2017
(modality: SPECT)

Deep neural network Softmax
classifier

Acc: 98.8, sensitivity: 98.6,
Specificity: 100

Sivaranjini et al. [268], 2019 CNN Alexnet Acc: 88.90, sensitivity: 84.40,
specificity: 884.40

CAD, computer-aided diagnosis; PD, Parkinson’s disease; MRI, magnetic resonance imaging; PCA, principal component analysis; 
NB, Naive Bayes; CNN, convolutional neural network; SVM, support vector machine; PGA, principal geodesic analysis.
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Table 4. Summary of CAD systems for the detection of PD using physiological signals (modality: EEG)

Authors, year Methodology/features Classifiers Accuracy, %

Han et al. [269], 2013 WPE AR Burg –

Yuvaraj et al. [270], 2016 HOS, PD diagnosis index SVM PDacc: 99.62,
PDsen: 100,
PDspe: 99.25

Hariharan et al. [271], 2014 Dysphonia + GMM + PCA + LDA + SFS SVM PDacc: 100

Zhang et al. [272], 2017 Dysphonia + stacked autoencoders KNN PDacc: 94–98

Hlavnicka et al. [273], 2017 Zero-crossing rate + VAC function GMM PDacc: 71.30,
PDsen: 56.70,
PDspe: 80

Joshi et al. [274], 2017 DWT SVM PDacc: 90.32

Ornelas-Vences et al. [275], 2017 Turn analysis + biomechanical features Fuzzy model –

Sama et al. [276], 2017 Butterworth filter SVM PDacc: <90

Oung et al. [277], 2018 EWPT, wavelet energy, entropy ELM PDacc: 95.93 

Little et al. [278], 2019 Preselection filter, exhaustive Search SVM PDacc: 91.4

Shahbaba and Neal [279], 2009 Dirichlet process mixtures Decision tress, SVM PDacc: 87.70

Das [280], 2010 Back-propagation learning algorithm ANN PDacc: 92.9

Sakar and Kursun [281], 2010 Mutual information-based feature selection SVM PDacc: 92.75

Psorakis et al. [282], 2010 Improved mRVMs SVM PDacc: 89.47

Guo et al. [283], 2010 Genetic programming and the expectation
maximization algorithm

GP-EM PDacc: 93.10

Ozcift and Gulten [284], 2011 CFS RF PDacc: 87.10

Li et al. [285], 2011 Fuzzy-based nonlinear transformation SVM PDacc: 93.47

Luukka [286], 2011 Fuzzy entropy measures Similarity classifier PDacc: 85.03

Spadoto et al. [287], 2011 PSO, harmony search, gravitational search Optimum path forest
classifier

PDacc: 73.53

Astrom and Koker [288], 2011 Nine layer neural networks PNN PDacc: 91.20

Ozcift [289], 2012 RF ensemble of IBk (a KNN variant)
algorithm

SVM PDacc: 97.00

Polat [290], 2012 FCMFW KNN PDacc: 97.93

Tsanas et al. [291], 2012 Feature selection: LASSO, mRMR,
RELIF, LLBFS

SVM PDacc: ~90.00

Daliri [292], 2013 STFT, FDR SVM PDacc : 91.20

Chen et al. [293], 2013 PCA FKNN PDacc: 96.07

Zuo et al. [294], 2013 PSO FKNN PDacc: 97.47

Ma et al. [295], 2014 SCFW KELM PDacc: 99.49

Drotár et al. [296], 2016 Entropy and energy SVM, RBF PDacc: 81.30

Connolly et al. [297], 2015 
(modality: sensors)

Feature reduction SVM –

Wahid et al. [298], 2015 Neural networks SVM PDacc: 86.00
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(CNN) with a number of advantages over conventional 
ML-based CAD systems. First and foremost is that it can 
handle large data sets using its multilayer architecture. It 
can also handle imbalanced data samples and execute the 
results without biasing toward majority class. The CNN ar-
chitecture generally includes a convolution layer, a pooling 
layer, and fully connected layers [106]. These layers can be 
extended with few additional layers based on the require-
ments. Recently, various CNN-based techniques have 
shown good results in detecting neurological disorders 
[107–116]. But, detection of such abnormalities in its early 
stage may require more deeper architecture. Such deeper 
architecture can pick distinct features from the signals by 
convolving with kernels defined in each layers [106].

In the past few years, deep neural network learning 
techniques have been used to solve intractable problems 
in a variety of disciplines such as image recognition [117–
119], pavement crack detection [120], structural damage 
detection [121, 122], vehicle-type detection [123], trans-
portation systems [124, 125], concrete strength estima-
tion [126], big data time series forecasting [127], and com-
puter-brain interface [128]. Following that trend, a num-
ber of researchers have developed CAD systems using 

deep learning techniques. These techniques can discover 
structures or patterns in the biological signals or images. 
Its effectiveness in signal and image-based CAD systems 
has been demonstrated recently [117, 127, 129–133]. 

Deep learning techniques can be broadly classified into 
2 types: (1) supervised learning and (2) unsupervised learn-
ing. The CNN belongs to the first and auto encoders belong 
to second type. Antoniades et al. [134] analyze the epileptic 
intracranial EEG data using deep learning. Johansen et al. 
[135] use CNN for epileptiform spike detection. Yuan et al. 
[136] employ a combination of deep learning and short-
time Fourier transform for epileptic seizure detection. Ul-
lah et al. [137] report application of deep learning for epi-
lepsy diagnosis. Martinez-Murcia et al. [138] employ the 
CNN for analysis of neuroimaging in PD.

The most common architecture of CNN includes a 
bank of convolution, max-pool, fully connected, and soft-
max layers as shown in Figure 2 [129–131]. The 3D CNN 
and CNN – Recurrent neural network (RNN) are more 
recent networks used in the diagnosis of epilepsy [139], 
PD [140] and AD [141]. Other CNN variants are also ex-
perimented on PD and ischemic brain stroke detection. 
The list of approaches used is presented in Tables 1–7. It 

Authors, year Methodology/features Classifiers Accuracy, %

Smith et al. [299], 2015 
(modality: sensors)

Evolutionary algorithms ROC PDacc: 78.00

Hirschauer et al. [105], 2015 Neural networks EPNN PDacc: 92.5

Shamir et al. [300], 2015 Clinical decision support systems SVM PDacc: 71.00

Procházka et al. [301], 2015 
(modality: sensors)

Bayesian Bayesian probability
classifiers

PDacc: 94.1

Nilashi et al. [302], 2018 Partial least squares, self organizing map SVM UPDRS acc: 
46.56

Deep learning based techniques
Tagaris et al. [140], 2017 Deep neural network CNN-RNN Acc: 74

Kim et al. [303], 2018 Neural networks CNN PDacc: 85

Oh [304], 2018 CNN – Acc: 88.25, 
sensitivity: 
84.71,
specificity: 
91.77

CAD, computer aided diagnosis; ICA, independent component analysis; EEG, electroencephalogram; HOS, higher order spectra; 
PD, Parkinson’s disease; WPE, wavelet packet entropy; SVM, support vector machine; GMM, gaussian mixture model; KNN, k-nearest 
neighbour; DWT, discrete wavelet transform; CNN, convolutional neural network; PSO, particle swarm optimization; PNN, probabi-
listic neural network; PCA, principal component analysis.

Table 4. (continued)
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Table 5. Summary of CAD systems for the detection of AD (modality: MRI)

Authors, years Methodology/features Classifier Accuracy, %

Al-nuaimi et al. [305], 2015 Tsallis entropy K-means clustering ADacc: 77

Silveira and Marques [306], 2010  
(modality: PET CT)

Boosting classification method Boosting classifier ADacc: 90.97
MCIacc: 79.63

Mahanand et al. [307], 2011 PCA + VBM + ANN SRAN Eff: 91.18

Mahmood and Ghimire [308], 2013 PCA + ANN Feed forward multilayer
neural network

ADacc: 90

Yi Ding et al. [309], 2015 VBM + GLCM + gabor filters SVM ADacc: 92.86

Herrera et al. [310], 2013 DWT + PCA SVM ADacc: 93.90

Sweety and Jiji [311], 2014 PCA + PSO SVM + decision tree
classifier

ADacc: 91.89

Saraswathi et al. [312], 2013 PSO + VBM GA-ELM-PSO classifier ADacc: 94.57

Mahanand et al. [313], 2013 VBM + ICGA + ELM ELM classifier ADacc: 91.86

Mahanand et al. [314], 2014 VBM + RFE PBL-McRBFN classifier ADacc: 89.81

Mathew et al. [315], 2016 DWT + PCA + FDR SVM ADacc: 84

Escudero et al. [316], 2013 Machine learning biomarkers Locally weighted learning ADacc: 80

Gunawardena et al. [317], 2016 CNN SVM Error: 13.13

Zhang et al. [318], 2017 PCA SVM ADacc: 84.40

Escudero et al. [319], 2011 K-means clustering + bioprofile
analysis

Semi-supervised classifier –

Zhang et al. [320], 2016 Landmark-based AD diagnosis
system

SVM ADacc: 83.7

Iftikhar et al. [321], 2016 Cortical thickness-based features +
volume based features + F-score method

SVM ADacc: 83.65

Bates et al. [322], 2011 Point-cloud laplacian + spectral
signatures + shape analysis

Linear SVM ADacc: 77.5

Ye et al. [323], 2011 KNN + RAVENS maps + ISOMAP
algorithm

LapSVM ADacc: 94.1

Rabeh et al. [324], 2017 NLMS Bayes probability ADacc: 92

Ullah et al. [325], 2018 CNN SVM ADacc: 80.25

Donini et al. [326], 2016 MKL RFE SVM RFE ADacc:
96.14±3.55

Deep learning based techniques
Sarraf et al. [327], 2016 CNN LeNet and GoogleNet

binary classifier
ADacc: 99.9
(fMRI)
AD acc: 98.84
(MRI)

Cheng and Liu [129], 2017  
(Modality: PET CT)

3D-CNN – ADacc: 92.2
ADsen: 91.4
ADspe: 92.4

Cullen et al. [130], 2018 CNN – ADmean:
0.9969
ADSD: 0.0018
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is observed that, in general, CNN-based techniques out-
performed conventional handcrafted techniques with the 
limitation of requiring more training samples to achieve 
the optimal performance. 

Discussion

Research on automated CAD systems is more prevalent 
first on epilepsy followed by PD and then AD. For seizure 
detection and epilepsy diagnosis, they are based on EEG 
signals. For PD, they are developed using different modali-
ties such as EEG, speech, handwriting, and brain images. 
The automated systems proposed in last 2 decades are sum-
marized in Tables 1–7. Table 1 summarizes the application 
of AI techniques used for automated seizure detection and 

epilepsy diagnosis. It can be seen from Table 1 that WT is 
the dominant method for multiresolution analysis. The 
SVM and the back propagation neural network are more 
commonly used classifiers. Tables 2–4 summarize research 
on the automated diagnosis of PD using different modali-
ties. WT, HOS coupled with entropy and energy features 
are found to perform well. SVM is the most commonly used 
classifier with different kernels for the diagnosis of PD. 

For Alzheimer disease, DWT and different dimen-
sionality reduction techniques have been widely used [19, 
142–148]. The gray level co-occurrence matrix-based 
techniques with SVM classifier are the commonly used 
classifier techniques (Table 5). 

Most of the ischemic brain stroke CAD systems are 
developed using fuzzy clustering and SVM and random 
forest classifiers (Table 6). It is observed that very little 

Authors, years Methodology/features Classifier Accuracy, %

Islam et al. [131], 2018 DCNN Softmax classifier ADacc: 93

Liu et al. [141], 2018 CNN-RNN Softmax classifier ADacc: 91.2
ADsen: 91.4
ADspe: 91.0

Liu et al. [328], 2018 Cascaded CNN Softmax classifier ADacc: 93.26
ADsen: 92.55
ADspe: 93.94

McCrackin et al. [329], 2018 CNN – –

Basaia et al. [330], 2019 CNN – ADacc: 99.2
ADsen: 98.9
ADspe: 99.5

Hosseini-Asl et al. [331], 2016 CNN 3D-ACNN ADacc: 97.60

Awate and Bangare [332], 2018 CNN Softmax classifier ADacc: 99

Billones et al. [333], 2016 CNN DemNet ADacc: 98.33
ADsen: 98.89
ADspe: 97.78

Gunawardena et al. [334], 2017 CNN Fully connected layer ADacc: 96.50
ADsen: 96.00
ADspe: 98.00

Farooq et al. [335], 2017 CNN GoogLeNet ADacc: 98.8

Luo et al. [336], 2017 CNN Fully connected layer ADsen: 100
ADspe: 93.00

Lin et al. [337], 2018 CNN – ADacc: 79.9

CAD, computer-aided diagnosis; MRI, magnetic resonance imaging; DWT, discrete wavelet transform; PSO, particle swarm opti-
mization; ICGA, integer coded genetic algorithm; RFE, recursive feature elimination; FDR, fisher discriminant ratio; CNN, convoluti-
onal neural networks; VBM, voxel-based morphometry; NLMS, non local means; MKL, multiple kernel learning.

Table 5. (continued)
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Table 6. Summary of CAD systems for the detection of ischemic brain stroke (modality: MRI)

Authors, years Methodology/features Classifier Accuracy, %

Li et al. [338], 2004 Manual lesion tracing MSSC + PVVR BSsimilarity: 0.97

Filho et al. [339], 2017
(modality: CT)

ABTD extractor used to
extract features

MLP, SVM, kNN, OPF, and
Bayesian

BSacc: 95

Lutsep et al. [340], 1997 Radiologic techniques Acute stroke trearment (TOAST)
classification scheme

Wang et al. [341], 2013 Novel framework LLC

Alpert et al. [342], 2012 Probabilistic framework Clustering algorithm BSfscore: 0.52

Ji et al. [343], 2017 Asymmetric
Distribution

Gaussian
Mixture
Model

BSacc: 5% more

Sridevi et al. [344], 2019 Image segmentation
(ACM and SOM)

Supervised model –

Agrawal et al. [345], 2014 OBPD method FCM –

Monteiro et al. [346], 2018 Novel hybrid GA-BFO-
CM algorithm

l1 regularized logistic regression;
decision tree; SVM; random forest;
Xgboost

BSauc: 0.936

MateSin et al. [347], 2001 Rule-based approach Expert system –

Ghosh et al. [348], 2011 HRS Expert system –

Mitra et al. [349], 2014 Bayesian-MRF Random forest BSsensitivity: 0.53±0.13
BSmeanpositivevalue:
0.75±0.18

Maier et al. [350], 2015 FCM approach Random forest BSdicecoeff: 0.65

Griffs et al. [351], 2016 Probabilistic tissue
segmentation

NB classifier –

Pustina et al. [352], 2016 Manual lesion tracing Region wise LSM BSavgcorr: 0.77

Pennisi et al. [353], 2016 Skin lesion image
segmentation

NB, Adaboost, KNN, and
random trees

BSSensitivity: 93.5
BSSpecificity: 87.1

Chen et al. [354], 2017 Novel framework Convolutional neural networks BSacc: 0.67

Muda et al. [355], 2015 FCM algorithm Expert system BSAverage dice indices
0.73 (acute stroke),
0.68 (tumour) and
0.82 (chronic stroke)

Paul Bentley et al. [356], 2014
(modality: CT)

CT brain machine learning SVM BSAUC: 0.744

Lebedev et al. [357], 2018 Artificial intelligence RetinaNet network detector –

Subudhi et al. [358], 2018 Delaunay triangulation
and fractional order DPSO

Random forest BSsen: 0.93
BSacc: 0.95

Subudhi et al. [359], 2018 Watershed-based lesion
segmentation algorithm

Random forest BSacc: 0.85
BSDSI: 96

Deep learning based techniques
Chin et al. [360], 2017 Deep learning CNN BSacc: 0.90

CAD, computer aided diagnosis; MRI, magnetic resonance imaging; NB, Naive Bayes; kNN, k-nearest neighbour; FCM, fuzzy C-means; 
CNN, convolution neural network; LSM, lesion�to�symptom mapping; SVM, support vector machine; LLC, locally linear classification; OBPD, 
optimum boundary point detection; HRS, hierarchical region splitting; MRF, markov random field.
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research is done on the automated diagnosis of MS. The 
SVM and k-nearest neighbor classifiers are the most com-
monly used classifier for the diagnosis of MS. 

The transform methods such as DWT and HOS have 
been widely used with good performances. This can be 
explained by the fact that after the transformation, these 
methods can indicate minute changes in the frequency 
domains. The entropies and energy values of these DWT 
and HOS coefficients are able to separate the classes. 

Conclusion

This study has explored different state-of-the-art AI-
based CAD systems developed in last 2 decades for the 
diagnosis of 5 different neurological disorder. Results are 
summarized Tables 1–7. 

The future research can be in one of 3 directions: 

Creation of a Large Public Database for the 
Validation of All Developed Techniques
As observed in Tables 1–7, the number of subjects used 

in published research is often small. As such, the conclu-
sions reported should be considered tentative. There is a 
need to create a large standard public database for all 
aforementioned neurological disorders. 

ML-Based CAD for Early Detection of Neurological 
Disorders
As more data become available, especially longitudinal 

data, the research should shift to ML-based CAD systems 
for early detection of the neurological disorders. 

Remote Access by Nonexpert Clinicians
Highly trained and specialized neurologists and associ-

ated facilities for diagnosis of neurological disorders may 
not be available in remote towns and villages. Figure 3 

Table 7. Summary of CAD systems for the detection of MS (modality: MRI)

Authors, years Methodology/features Classifier Accuracy, %

Elliott et al. [361], 2013 Joint time point bayesian
formulation

Bayesian +
random-forest

MSsen: 99

Anbeek et al. [362], 2004 MBRASE KNN MSsen: 0.791

Ashton et al. [363], 2003 GEORG + DMSS Bayesian Coefficient of variation: manual: 8.2, GEORG: 
2.4, DMSS: 2.1

Lao et al. [364], 2008 BET SVM –

Yamamoto et al. [107], 2010 Rule-based method, level
set method

SVM MSsen: 81.5

Zacharaki et al. [108], 2008 BET SVM TVR (% vol increase): 7.58–375,
IVR (% vol increase): 11.14–340.32

Deep learning-based techniques
Zhang et al. [365], 2018 CNN – Acc: 98.23

Wang et al. [366], 2018 CNN – Acc: 98.77

CAD, computer-aided diagnosis; MRI, magnetic resonance imaging; CNN, convolutional neural network; MS, multiple sclerosis; SVM, support vector ma-
chine; kNN, k-nearest neighbour.
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presents the prototype of a cloud-based CAD system for 
diagnosis of neurological disorders using Internet of 
things. The signals or images of patients are transmitted to 
the cloud where a trained ML-based CAD can provide the 
diagnosis. The outcome of the model is sent to the cell 
phone of a nonexpert clinician for a preliminary diagnosis. 
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