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SUMMARY 
We show that system architectures based on artificial intelligence (AI) techniques can be 
applied to the automation of seismic signal interpretation. In particular, blackboard systems 
appear to provide flexible and efficient ways to model the strategy a human expert adopts for 
the analysis. We also present the design of the Seismic Network Analyser, (SNA), a 
blackboard system applied to the interpretation of signals from a local seismometric network. 
Results, examples and performances of a prototype implementation of SNA are reported and 
extensively discussed. 
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1 INTRODUCTION 

Seismic networks are the main source of information in 
seismology. Much effort has been devoted so far to the 
automation of signal acquisition, specific steps in the 
analysis, and preliminary interpretation. As a result, many 
tasks are now successfully accomplished by means of 
numerical packages (Allen 1982; Blandford 1982). How- 
ever, the goal of automating the whole routine seismological 
analysis (Keilis-Borok 1972) is far from achieved, and 
seismogram interpretation is still a bottleneck in the routine 
work of observatories, as the skill of trained analysts is 
required to recognize seismic waveforms. Furthermore, the 
interpretation is to some extent subjective: different analysts 
may give different interpretations, and the interpretation of 
the same analyst may vary with time. Therefore the use of 
automatic systems for routine analysis can guarantee a 
higher degree of homogeneity in seismic databases. 

2 ARTIFICIAL INTELLIGENCE APPROACH 
TO SIGNAL INTERPRETATION 

We address our attention to the control schemes which have 
been used so far in the analysis programs. All of them 
exhibit a rigid, pre-defined control flow, according to the 
technique known as procedural programming: default steps 
in a program are sequential, branchings are explicitly coded 
(as if-then-else constructs, for instance) and cannot be 
modified at run-time. 

This poses severe limitations when the data to be 
processed show highly variable patterns, are incomplete 
and/or affected by a substantial noise level. Then, 
branchings are the rule, not the exception, and a program 

must exhibit enough flexibility to handle a quantity of 
unexpected situations. In these cases (i.e. when our 
knowledge is uncertain or incomplete) it is desirable for a 
program to adapt its strategy based on the actual data and to 
integrate useful contextual information, simulating the 
human expert analyst when doing his/her interpretive work. 
In addition, modelling the control flow in a non-procedural 
way helps to avoid an inappropriate use of numerical 
modules, postponing expensive computations to the stage in 
which they are actually needed. 

Artificial intelligence (AI) (Barr & Feigenbaum 1982) 
provides a potentially useful approach to signal understand- 
ing. We shall now give an outline of the most relevant 
techniques to be applied in seismic network signal 
interpretation. 

3 KNOWLEDGE-BASED SYSTEMS 

In a previous paper (Chiaruttini & Roberto 1988a) we 
analysed the objects, strategies and reasoning techniques 
involved in the analyst’s job. We identified two distinct 
aspects of the expert knowledge: a domain knowledge, 
concerning all basic notions on seismic wave generation, 
propagation and detection; and a problem-solving 
knowledge, including the ways to organize and use the 
domain knowledge when interpreting data. This twofold 
character of knowledge is closely reflected in a software 
architecture, named knowledge-based system (KBS), which 
has been proposed in the A1 literature (see for example 
Frost 1986). A typical KBS architecture is sketched in 
Fig. 1. 

Three basic modules are present: 
(a) User interface. Two major tasks are accomplished by 

223 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/98/2/223/638439 by U

.S. D
epartm

ent of Justice user on 16 August 2022



224 C. Chiaruttini et ai. 

Knowledge 
Base 

Inference 
Engine 

Figure 1. Basic scheme of a knowledge-based system. 

this module: 

- User-system dialogue; 
-Justification: the path to the interpretation is traced 

back, and the reasoning chain is expressed as a set of 
strings in natural language. 

(b) Knowledge base. A collection of data and symbol 
structures to include the necessary domain knowledge, and 
to keep track of the status of computation. 

(c) Inference engine. The encoding of what has been 
called problem-solving knowledge. The purpose of this 
module is to select the currently relevant fragments of 
knowledge, i.e. those who match the current status of the 
knowledge base, and execute the actions suggested by the 
selected fragments. This, in turn, has the effect of modifying 
the knowledge base itself, thus triggering a new 
selection-execution cycle. 

In order to meet our need of a flexible signal 
understanding system, two further capabilities are required 
of a KBS. 

First, numerical signal processing modules are necessary 
and must be suitably interfaced to non-numerical ones (i.e. 
those implementing logical operations like inferences, 
associations, decisions). 

Second, suitable focus-of-attention mechanisms must be 
provided in order to assure acceptable performances. This 
means, for example, that spurious or noisy tracks have to be 
quickly recognized as such, and excluded from the 
subsequent analysis tasks. Stated more generally, the system 
has to gain as soon as possible a rough idea of the 
information content of the data (if any), and consequently 
choose the most appropriate strategy of analysis. 

A specialization of the KBS non-procedural programming 
scheme, known as blackboard system (Nii 1986), has been 
proposed for similar signal understanding goals (Nii & 
Feigenbaum 1978; Erman et al. 1980; Nii et al. 1982). 

4 BLACKBOARD SYSTEMS 

A blackboard system shows a number of distinctive features. 
Besides the user interface module, there are two major 
components: 

(a) Knowledge sources (KS). Separate and independent 
programs performing specialized tasks. The aim of a KS is 
to provide information which contributes to the construction 
of an event interpretation. Each KS is not ‘called’ by 
another program, but knows its own activation conditions, 
and is self-activating. 

(b) Blackboard data structure. This is the system global 

database, sometimes divided into a permanent and a volatile 
substructure. The latter, also named working memory, 
contains all information concerning the current status of the 
computation. It may be in turn divided into a current best 
hypothesis (CBH), reporting the current interpretation of 
the data, a problem lkt, with all the problems the system is 
not currently able to solve, and an agenda, containing all KS 
whose activation conditions currently fit the database. It 
should be observed that the KS produce changes on the 
blackboard, and only on it; in addition, interactions among 
KS take place solely through changes on the blackboard. 

As far as control is concerned, no explicit control 
structures are coded in a pure blackboard system. The 
computation flows via successive KS self-activations: a KS 
responds to a situation on the database; its activation, in 
turn, modifies the blackboard, thus allowing a new KS to be 
activated as a consequence according to the scheme outlined 
in the previous section. 

An interesting situation arises when more than one KS 
matches the blackboard configuration. Since on a sequential 
machine only one KS at a time can be executed, one must 
define suitable criteria to select a KS among the set of 
potentially active ones. A Control module may be added to 
perform this task, as well as any kind of knowledge 
application strategy which is peculiar of the problem to be 
solved. 

A few observations are of interest to our signal 
understanding goals. A blackboard system, being a 
collection of specialized modules, naturally includes all 
data-processing tasks, which cooperate to construct an event 
interpretation in an incremental way. Furthermore, a high 
degree of modularity is desirable in order to guarantee 
readability, modifiability, expandability to the system itself. 
Focus-of-attention strategies can be embedded in a 
blackboard architecture in a number of ways: for example, 
scheduling the KS execution by means of a suitable control 
module. 

On this basis we designed the Seismic Network Analyser 
(SNA), a KBS for the interpretation of data from a local 
seismometric network. 

5 SNA: DESIGN A N D  IMPLEMENTATION 

5.1 Architecture 

SNA is composed of four basic units, whose functions are 
now briefly discussed. The structural scheme is shown in 
Fig. 2. 

(a) User interface. It is intended for user-system dialogue 
and justification. 

(b) Permanent database. It is made up of: 

-Facts: encode the static knowledge about the domain 
(e.g. the coordinates of the stations and the velocities of 
seismic phases); 

- Rules: implement the basic inferential processes in the 
form of condition-action pairs; 

- Knowledge sources: are the true problem-solving units 
in SNA. 

At the data level the KS extract features and transform 
numbers into symbols; at the symbolic level, they build or 
modify the current hypothesis. In particular, at this level the 
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AZ in seismic signal interpretation 225 

and execute single rule prescriptions; 

executed. 
-Scheduler, which is the priority selector for a KS to be 

Control Module 

Working 
Memory 

Agenda 

Current Best 
Hypothesis 

Problem List 

Reasoning chain 

Justif ier D 
I I User Interface 

Permanent 
Database 

I Rules 

Facts 1 

Figure 2. Architecture of SNA. 

KS perform three kinds of activities: evaluation and solution 
of pending problems; validation of hypothesis elements; 
increment of the hypothesis. 

From a structural point of view, a KS is made up of the 
following subunits: Activator: logical unit to check the KS 
activation conditions against data in the blackboard; 
Executor: logical unit to perform the KS problem-solving 
task; Feature-extractor : numerical processing unit, working 
at the signal level; Translator: interface unit between 
numerical and logical processing modules. The first two 
units are present in all the KS, the last two are present in 
the KS that manipulate the data. 

(c) Working memory. A data and symbol structure 
composed of: 
- Agenda: keeps track of all the KS whose pre-conditions 

match those of the current situation; 
- Current best hypothesis (CBH): contains the current 

state of the interpretation and is structured according to 
an object hierarchy (Chiaruttini & Roberto 1988b), 
corresponding to the semantically relevant concepts in 
the expert analysis: the event, the trace, the 
seismogram, the noise, and the phase; 

-Problem list: contains unresolved situations to be 
subsequently analysed; 

-Reasoning chain: a list of explanations in natural 
language of the inferences made by the system; also this 
data structure reflects the aforementioned object 
hierarchy. 

(d) Control module. It is made up of 

-Rule interpreter acting at the rule level, to select, match 

Stated in a different way, our architecture may be seen as 
a hybrid problem-solving paradigm, made up of two basic 
kinds of activities: the numerical processing and the 
symbolic reasoning. We shall briefly analyse both in the 
following sections. 

5.2 Numerical processing in SNA 

Numerical processing techniques in SNA are adopted by the 
feature extractor parts of the KS. The purpose of the 
numerical processing modules is essentially to individuate 
the semantically relevant elements in the data, if any. 

This should be done, initially, through simple computa- 
tions, in order to quickly discard noisy traces, and/or 
generate hypotheses for candidate events; this, in turn, will 
drive the subsequent processing steps. In other words, 
numerical processing should help in the simulation of the 
focus-of-attention activity of the expert analyst. The 
techniques we adopt, in the present version of the system, 
are segmentation, statistical estimates and spectral 
estimates. 

After pre-processing, in which wide-band noise is 
removed, the traces are segmented into intervals of fixed 
duration (e.g. 1s). Each interval is described in terms of 
amplitude and frequency: the former is estimated by the 
peak absolute amplitude, the latter by half the zero-crossing 
rate. This segmentation results in data compression of about 
two orders of magnitude, still preserving the relevant 
features of the signals. The segmented time series is treated 
as a bivariate distribution and scanned by a signal detection 
procedure in order to estimate the onset of a candidate 
seismogram, identify its possible end, extract the basic 
features (amplitude, frequency and duration) both in the 
signal and in the initial noise sequence. All this processing is 
done by the feature extractor of the KS named Initialize. 

The signal-to-noise ratio and the duration of the candidate 
signals are used to rate their clarity with the following 
criteria: signals of high amplitude and long duration are 
more likely seismograms than short and low amplitude ones. 
The clarity is rated in three levels: clear, probable and 
possible. Too short signals (1 s or less) are immediately 
discarded, and the same holds for signals with an envelope 
exceedingly skewed with respect to the baseline. A detailed 
account on this processing is given by Chiaruttini (1989). 

The above procedure provides a first arrival time estimate 
that is correct in most cases. When a more sensitive 
algorithm is necessary for the identification of the signal 
onset, we use a frequency domain detector. The algorithm 
we implement is that of Goforth & Herrin (1981) after 
replacing the Walsh transform with the Fourier transform. 
The detector is the feature extractor part of the KS 
Search-P. The best results are obtained analysing non- 
overlapping intervals 0.7 s wide. This allows arrival time 
determinations accurate enough for the preliminary analysis, 
while the lowest spectral amplitude estimate (at about 
1.4Hz) is adequate to the pass-band of short period 
instruments. 
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226 C. Chiaruttini et al. 

The combination of these algorithms provide both 
efficiency and sensitivity: the whole record is quickly 
scanned and the more sophisticated processing is applied 
only when necessary, as will be illustrated later. Precise time 
picking procedures are not yet implemented: in the SNA 
design this task is left to a later stage in the analysis when a 
sound event hypothesis exists. 

5.3 Reasoning techniques in SNA 

SNA basically adopts an opportunistic reasoning model (Nii 
1986; Erman et al. 1980) which means that signal data are 
used to build the hypothesis elements, as well as to validate 
some of them, with no pre-defined order: in principle, the 
KS are loosely coupled pieces of knowledge whose 
activation is controlled by the current status of the working 
memory. 

More specific reasoning strategies can be combined to the 
basic scheme; as an example, we briefly outline some ways 
in which the focus of attention of an expert analyst is 
modelled in SNA. 

The features of the traces, extracted by the numerical 
processors, are used to quickly understand whether an event 
is present. The number and clarity of seismograms is used to 
rate the clarity of the event again in three levels: clear, 
probable and possible. Only clear and probable events are 
analysed. Possible events are those made of a small number 
of ambiguous signals: they are simply indicated as such for 
later inspection by the analyst. For the events selected in 
this way, a true problem-solving process is started: the 
seismograms with the highest clarity pattern are used to 
formulate an hypothesis at all semantically relevant levels. 
All subsequent steps are driven by this hypothesis, which is 
gradually incremented or modified, according to the results 
of the KS activations. 

A meta-level reasoning strategy (Davis 1980) is also 
implemented in SNA by assigning priority levels to the KS: 
as pointed out earlier, the scheduler is charged with 
selecting a KS according to the assigned priority. The top 
priority level is given to the problem evaluation, then to the 
validation, the KS incrementing the hypothesis are executed 
with the lowest priority. This reasoning strategy models that 
of a ‘cautious’ analyst, who prefers to base his reasoning on 
checked information. In addition, within the KS sharing the 
same priority, those acting at the higher semantic levels are 
privileged, as will be further clarified in Section 6.1. 

We stress here that the strategy can be changed by just 
changing the priority table of the KS. 

6 THE PROTOTYPE: RESULTS A N D  
EXAMPLES 

A prototype version of SNA has been designed and 
implemented on a DEC Microvax I1 machine, equipped 
with VMS 4.7 operating system. 

The logical part of SNA is written in the production 
system language OPS5 (Brownston et al. 1985), and consists 
of nearly 230 rules, for a total of roughly 7000 lines of code. 
The numerical operations on seismic traces, the input/ 
output and part of the justification are performed by 
FORTRAN 77 modules, which include roughly 5000 lines, 
suitably interfaced to the OPS5 code. 

The prototype has been designed to interpret the digital 
records collected by the North Eastern Italy Seismometric 
Network. The network is installed for the surveillance of 
the local seismicity and is equipped with short period 
instruments. A data-acquisition system monitors the 
seismometers and starts recording when some trigger occurs. 
The output of this system in 1987 February is currently used 
as test sample for SNA. The automatically recording 
stations were 11, at that time, covering the whole Friuli 
area, all equipped with single component instruments. The 
aperture of this subnetwork is about 100 km. 

The small aperture of the network allows the assignment 
of a distance class also to events, not only to seismograms: 
local events are those occurring within 200km from the 
network centroid, regional events are those located at 
distances from 200 to 2000 km, and teleseismic events are 
those farther away. 

The implementation of SNA reflects the characteristics 
of the test network: reliability and efficiency in the 
interpretation of local events is emphasized; teleseismic 
events are considered of least importance; only the vertical 
component is considered. 

Apart from pre-processing, a typical event is fully 
anaiysed in 60-150 CPU-seconds, while false triggers are 
discarded in about 10 s. 

6.1 The knowledge sources 

At the moment, SNA is composed of 12 KS. For the most 
relevant of them we list the activation conditions and the 
actions taken. The KS are listed in the order of their priority 
in the strategy table. 

Sek-Cons - Prob 

Activation. There is some consistency problem, i.e. at least 
a pair of inconsistent seismograms has been found (see the 
KS Seis-Cons for the definition of inconsistency). 

Execution. The problems are examined to find the 
seismogram(s) responsible for the inconsistencies. The basic 
criterion is that the signal with the largest number of 
inconsistencies is excluded from the analysis. In case this 
condition occurs for more than one signal, that with the 
lowest signal-to-noise ratio is discarded. 

Comp-Prob 

Activation. There is some compatibility problem, i.e. at 
least a pair of incompatible phases has been detected (see 
the KS Compatibility for the definition of incompatibility). 

Execution. The problems are examined to sort out the 
phase(s) more likely responsible for the incompatibilities. 
Phases incompatible with seismograms of higher clarity are 
considered wrong; at the same clarity level, the phases with 
the highest number of incompatibilities are considered 
wrong; if this number is the same for two phases, they are 
both considered suspect. It is inferred whether the wrong 
phase times are early or late, and an hypothesis of arrival 
time window is made, based on the available information: 
the event location or the time of the phase in compatible 
stations. 
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AI in seismic signal interpretation 227 

Seis-Cons 

Activation. There is some seismogram not checked for 
consistency. 

Execution. For each pair of seismograms, the ratio of 
frequencies and duration is checked. The seismograms are 
inconsistent if one of the ratios is greater than (or smaller 
than) an upper (lower) threshold value (set, for example, at 
10 and 1/10, respectively). This test guarantees that the 
signals examined do not show totally different patterns. 

Compatibility 

Activation. There is some phase not checked for 
compatibility. 

Execution. The compatibility of the arrival time of the 
phase on each pair of stations is checked. The times are 
compatible if their difference does not exceed the travel 
time for the distance between the stations. 

Event 

Activation. There are consistent seismograms not yet 
considered, or the attributes (e.g. initial time) of some 
seismogram have been updated. 

Execution. An event hypothesis is made, if there is none; 
consistent seismograms are assigned to the event; the clarity 
of the event is rated; its distance class is inferred; the focal 
parameters are also determined. The event is rated as clear, 
probable or possible, based on the number and clarity of its 
seismograms. The distance class is determined from the 
majority of seismogram distance classes. The location is 
presently based on the first recording station: in case of a 
local event, the coordinates of the station and the first 
arrival time are taken as preliminary estimates of the event 
parameters; in case of a distant event, it is assigned an 
azimuth range. For local events the duration magnitude is 
evaluated. 

Initialize 

Activation. No trace has been scanned. 

Execution. Traces are pre-processed to eliminate wide-band 
noise (e.g. spikes) and correct the baseline; segmentation 
and scanning of traces, clarity rating of candidate signals, 
exclusion of short and skewed ‘signals’ are also performed. 
The hypotheses of candidate signals (also named intervals) 
are made here. 

Seismogram 

Activation. Some phase attribute was modified, or the 
distance class of a seismogram differs from that of the event. 

Execution. If the time of the first arrival was modified, then 
the seismogram initial time is updated. The distance class of 
the seismogram is inferred, based on the frequency of the 
first arrival. Above 7 Hz the distance is local, between 3 and 
7Hz is regional and below 3 H z  teleseismic. The distance 
class of the seismogram is redefined equal to that of the 

event, if they are different. The first amval phase type is 
determined according to the seismogram distance class: Pg 
for local, Pn for regional, and P or PKP for teleseismic 
events respectively. 

Intv-to-Seism 

Activation. On a trace there is a candidate signal (interval) 
but there is still no seismogram. 

Execution. The candidate signal is shifted from the class 
interval to the class seismogram; a hypothesis of first arrival 
is formulated. The distance class is defined local if the 
seismogram frequency is greater than the corresponding 
threshold. 

Intv -to - Noise 

Activation. The interpretation of the event is over and some 
candidate signal is still not processed. 

Execution. The left-over interval is shifted to the class 
noise. Note that we assume here that there is at most one 
event in a record. 

Search-P 

Activation. There is an hypothesis of time window for an 
incompatible first arrival. 

Execution. The detector is initialized by analysing the noise 
spectrum, and is run on the expected window. The first of 
these actions is performed only once for a trace, as obvious. 

From the above list it is apparent that besides the 
aforementioned hierarchy of KS types, within a type, the KS 
making inferences on the higher levels of the hypothesis 
have higher priority (e.g. Seb-Cons, acting on seismograms, 
has higher priority than Compatibility, acting on phases, and 
similarly Event has higher priority than Search-P). A third 
control level on the clarity of seismograms exists: the 
interpretation starts with the signals of higher clarity and the 
less clear ones are in turn included. This is also a part of the 
focus-of-attention strategy in SNA, as pointed out in Section 
5.3. 

6.2 An event and its interpretation 

A typical recording from the network, a clear local event of 
magnitude about 2.0, is reported in Fig. 3. The same figure 
shows also the Pg times detected by SNA with an accuracy 
of 1 .O-1.5 s, depending on the signal-to-noise ratio. 

The interpretation developed by SNA is reported in Fig. 
4: it is the content of the CBH when no more KS can be 
fired. All the semantically relevant levels are present: the 
event, the trace, the seismogram, the phase (only one 
station has been reported): the capability of SNA to develop 
a global interpretation right at the beginning of its analysis is 
one of its distinctive features. This is due to the 
problem-solving paradigm adopted, which integrates coarse 
and fine grain knowledge in a unique framework. 

A further peculiarity is that such interpretation has been 
reached with the simple numerical techniques outlined in 
Section 5.2: this is because the logical operations play an 
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I I  ' 
R C L  

Figure 3. A clear local event recorded by the North-Eastern Italy Seismometric Network. The time unit is 1 s; the first 10 s of background 
noise are not shown; the black vertical arrows indicate the arrival times of Pg phases detected by SNA. 

essential role in our system, namely inferences, associations 
of facts and findings, consistency analyses of features 
detected in different seismograms. In essence, logical 
processing allows a more efficient use of contextual 
information and its integration in the problem-solving 
process. The redundancy of information (i.e. typically more 
than one station record the same event) is fully exploited by 
compatibility and consistency analyses, which cures possible 
instabilities. 

On the other hand, the limits of the present status of the 
interpretation are also apparent from this example: for 
instance, no S-wave analysis is performed, which prevents 
the system from locating regional events; in addition, the 
event location and origin time are affected by a large 
uncertainty, due to the crudeness of the estimates. 

However, these faults are due to lack of knowledge coded 
in the system: its modularity guarantees that new knowledge 
can be added in a natural way, for example by adding 
further KS modules. 

Let us now make a brief overview on the test performed 
so far. The test data were chosen to contain a few tens of 
particularly noisy network records. All records containing 
no events were quickly discarded, most of them as purely 
noisy records; the others, having some strong noise bursts, 
were classified as possible events left to the inspection of the 
analyst. 

All the events were correctly interpreted at the event 

level; misinterpretations occurred at the seismogram and 
phase levels, at a rate of roughly one per event; this is also 
due to the fact that not enough knowledge is presently 
coded in SNA. 

6.3 Decision-making and justification in SNA 

Let us look more closely at the problem-solving activity in 
SNA, still referring to the event in Fig. 3. 

If we think in terms of sequential activation of modules, 
we can only a posteriori show the list of knowledge sources 
which were activated to solve the quoted problem; we also 
give a brief account on the related processing tasks. 

Initialize. The traces in the record are pre-processed. The 
trace of station RCL is found to be null (i.e. mostly made of 
zeros) and therefore discarded. Clear candidate signals are 
found at BAD, DRE, UDI, COLI, probable signals at 
BOO and BUA, and possible ones at ZOU, BAD, MPRI, 
CAE, COLI, TAL. Note that two signals are found at BAD 
and COLI: in both cases one is clear and the other possible. 
A noise lasting less than 1 s is also detected at BAD. 

Zntu-to-Seism. Seismogram hypotheses are made from 
clear and probable candidate signals (BOO, BUA, BAD, 
DRE, UDI, COLI). The distance class of all these 
seismograms is inferred to be local. Pg-phase hypothesis is 
made accordingly for the first arrivals. 

Seis-Cons. Consistency check of clear seismograms 
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AI in seismic signal interpretation 229 

C U R R E N T  B E S T  H Y P O T H E S I S  
- 

In Record 0 3 I have identified the following EVENTS: 

1 LOCAL CLEAR 

The STATIONS are: 

ZOU BOO BUA BAD DRE HPRI RCL CAE UDI COLI TAL 

E V E N T  D I S P L A Y  

EVENT X 1 is LOCAL and rated CLEAR 

Hagnitude : 2.2 
Origin time : 12.0 6 
Eplccntre latit. and longit.: 46.2 13.3 de9 

+/- 20 .  km 

Recorded at Stations: 

CAE ZOU MPRI TAL BOO BUA BAD DRE UDI COLI 

b) 
T R A C E  D I S P L A Y  

The TRACE of Station ZOU has the following attributes: Normal 

The Background Noise features are: 

Duration : 11.0 6 
Amplitude : 25. mv 
Frequency : 20.7 Hz 
Number of Spikes: 24 

I identified the following Intervals: 

1 POSSIBLE Seismogram 

S E I S M O G R A H  D I S P L A Y  

Seismogram rated POSSIBLE recorded at ZOU 
of Event t 1 LOCAL CLEAR 

Initial time: 19.3 +/- 0.7 S 
Duration : 19.6 I 
S. N. R. : 2.5 

I have recognized the fol1.owinq Phase(s): PG 

P H A S E  D I S P L A Y  

PG Phase of Seismograiii recorded at ZOU 

Arrival time: 19.3 +/- 0.7 5 

of Event X 1 LOCAL 

S. N. R. : 3.5 
Frequency : 11.2 Hz 

Figure 4. The CBH for some of the interpreted elements. All the semantically relevant levels are shown: the event (a), the trace (b), the 
seismogram (c), and the phase (d). 
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(BAD, DRE, UDI, COLI) is done; no error has been 
found. 

Compatibility. Compatibility check of Pg phases of clear 
and probable seismograms is done; no error found. 

Event. A hypothesis of clear local event is made, based 
on clear seismograms. The event is located close to the 
station COLI; its magnitude is evaluated. 

Seis-Cons. The consistency of probable seismograms at 
BOO and BUA is checked; no error is found. 

Event. The probable seismograms are added to the event; 
the event parameters are up-dated. 

Znfu-to-Seism. Hypotheses of possible seismograms are 
made for stations ZOU, MPRI, CAE, TAL. For the same 
stations a hypothesis of first arrival is made, but the phase 
type is left undefined as there is no frequency estimate, due 
to the low signal-to-noise ratio. 

Seis-Cons. The consistency of possible seismograms is 
checked; no error is found. 

Event. Possible seismograms are added to the event; the 
event parameters are up-dated. 

Seismogram. The distance class of possible seismograms 
is inferred to be local according to that of the event. No 
such hypothesis was made before, due to lack of reliable 
frequency information. The first arrival is inferred to be Pg. 

Compatibility. The Pg phase at CAE is incompatible with 
those at BOO, BUA, BAD, MPRI, UDI, COLI, TAL; the 
Pg phase at ZOU is incompatible with those at BOO, BUA, 
BAD, DRE, MPRI, UDI, COLI, TAL. The initial 
hypothesis of onset time was in fact 32s at CAE (the 
S-wave) and 33 s at ZOU (the peak of the seismogram). 

Comp-Prob. The Pg phase times at ZOU and CAE are 
inferred to be late; arrival time windows are hypothesized 
based on the event location. 

Event. The event parameters are up-dated. 
Search-P. The first arrival is searched and found by the 

Compatibility. The time of Pg phases at ZOU and CAE 

Seismogram. The initial time of seismograms of ZOU and 

Event. The event parameters are updated. 
Zntu-to-Noise. The possible candidate signals from BAD 

and COLI are considered noise. 
The example illustrates how contextual analysis is 

implemented in SNA, and how the hypothesis is built up 
incrementally: information about seismograms and phases 
yield information about the event, and information about 
the event, in turn, yield information and expectations about 

detector at ZOU and CAE. 

is found compatible with all the others. 

CAE is updated. 

1 An EVENT HYPOTHESIS iS tentatively made Since there is 
at least one consistent Seismogram. 

1 BAD This SEISMOGRAH is PART OF the EVENT, 
as it is part of a consistent set. 

as it is part of a consistent set. 

as it is part of a consistent set. 

as it is part of a consistent set. 

1 DRE This SEISMOGRAM is PART OF the EVENT, 

1 UDI This SEISMOGRAH is PART OF the EVENT, 

1 COLI This SEISMOGRAH iS PART OF the EVENT, 

1 

1 

The EVENT was assigned a DISTANCE CLASS based on the 
relative majority of Distance Clarees of its Seismograms. 

The EPICENTRE and ORIGIN TIME of the LOCAL EVENT 
were evaluated. 

1 The DURATION MGNITUDE of the Local Event Was EVALUATED. 

I The EVENT is rated aS CLEAR, 
since it consists of more than NSisCl clear Seismograms. 

1 BOO This SEISMOGRAH is PART OF the EVENT, 
as it is part of a consistent set. 

as it is part of a consistent set. 
1 BUA This SEISMOCRAH I S  PART OF the EVENT, 

1 The PREVIOUS LOCATION Of the event is CONFIMED. 

1 The DURATION MGNITUDE Of the Local Event was EVALUATED. 

1 zou This SEISMOGRAH iS PART OF the EVENT, 
as it is part of a consistent set. 

as it is part of a consistent set. 

as it is part of a coneistent set. 

as it is part of a consistent set. 

1 MPRI This SEISMOGRAM iS PART OF the EVENT, 

1 CAE This SEISMOGRIII is PART OF the EVENT, 

1 TAL This SEISMOGRAH is PART OF the EVENT, 

1 

1 

The PREVIOUS LOCATION of the event is CON?IRHED. 

The DURATION MGNITUDE of the Local Event was EVALUATED. 

Figare 5. The justification of reasoning about the hypothesis elements shown in Fig. 4: the event (a), the trace (b), the seismogram (c), and the 
phase (d). 
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zou The number of SPIKES in the Trace, and the NULL-TRACE flag 

zou The TRACE has been scanned to define the still missing 

are added to the Trace attributes. 

attributes and to Identify CANDIDATE SIGNALS. 

ZOU The CANDIDATE SIGNAL wa6 rated as POSSIBLE. 

ZOU ZOU A hypothesis of SEISMOGRAPI is .ad0 out of the 
candidate signal of higher clearness in the trace. 

zou zou A hypothesis of SEISMOGRAH is made as there is an Event 

zou A PHASE is HYPOTHESIZED at the beginning of Seismogram; its 

hypothesis and a candidate signal rated POSSIBLE 

TYPE is left UNDEFINED €46 the Seismogram has no distance class 

as it is part of a consi6tent set. 

and set equal to that of the Event. 

1 zou This SEISHOGRAM is PART OF the EVENT, 

zou The SEISMOGRAM DISTANCE CLASS was REVISED 

zou The time of the first arrival was modified, 
then the INITIAL TIME Of the SEISMOGRAM 16 UPDATED. 

EV Sei Ph Tr 

ZOU PG 

TAL PG 
ZOU PG 

MPRI PG 
ZOU PG 

BOO PG 
ZOU PG 

BUA PG 
ZOU PG 
BAD PG 
ZOU PG 

DRE PG 
ZOU PG 

UDI PG 
ZOO PG 

COLI PG 
ZOU PG 

ZOU PG 

ZOU PG 

R E A S 0 N I N G C H A I N -------------- _ _ _ _ _ _ _ _ _ _ _ _ _ _  
The FIRST ARRIVAL PHASE TYPE was inferred, based on the 
Seismogram distance class. 

The TIMES of these PHASES are INCOMPATIBLE. 

The TIMES of these PHASES are INCOMPATIBLE. 

The TIHES of these PHASES are INCOHPATIBLE. 

The TIHES of these PHASES are INCONPATIBLE. 

The TIMES of these PHASES are INCOHPATIBLE. 

The TIUES of these PHASES are INCOHPATIBLE. 

The TIMES of these PHASES are INCOHPATIBLE. 

The TIMES of these PHASES are INCONPATIBLE. 

The PHASE TIME is LATE a6 it iS not compatible 
with the Phase of Seisnogram(s) of higher Clearness. 

The FIRST ARRIVAL was searched and FOUND by the Detector. 

seismograms and phases. As a consequence, the processing 
focus switches between the hypothesis elements in an 
opportunistic way: no systematic loop in the sequence of KS 
activation may be traced. 

We point out that although feedback can be implemented 
also in procedural systems (Anderson 1978), it is a natural 
outcome when using A1 techniques, where the design 
mainly concerns the conditions for module activation rather 
than the sequence of activation. 

Figs 3 and 4 also show the ability of SNA to exploit the 
information available in the data, down to very low 
signal-to-noise ratios - note the correct identification of first 
arrivals at ZOU, MPRI, CAE and TAL. 

Another distinctive feature of SNA is its capability to 
trace back the reasoning chain followed to reach an 
interpretation. 

The justifier module in our system adopts the already 
mentioned object hierarchy: therefore the user can ask the 
system to justify its behaviour at any semantic level. Fig. 5 
reports the justification for some of the hypothesis elements. 

7 CONCLUSIONS 

In this paper we argued that artificial intelligence techniques 
provide a new and promising approach to the problem of 
automating the interpretation of seismic network recordings. 

In particular, knowledge-based systems with blackboard 
architectures offer a suitable problem-solving paradigm, 
which can model in an effective way the activity of the expert 
analyst. On this basis, the expert system SNA has been 
designed; a prototype has been developed and is being 
tested on real data. 
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The results we presented and discussed in the previous 
sections confirm our expectations. 

We believe that a number of distinctive features have 
proved to be very interesting when compared with the 
current procedural systems. 

First of all, the integration of knowledge of different kinds 
and from different domains guarantees at the same time 
high sensitivity and robustness to the analysis. In this 
respect, the interpretation of records with low signal-to- 
noise ratio can be afforded. 

Secondly, the logical control in the system, not 
pre-defined nor explicitly coded, ensures flexibility to the 
problem-solving process. In this context, we have shown 
how focus-of-attention techniques and the ease of feedback 
ensure efficiency to the interpretation. As a result, 
simple-minded and inexpensive numerical computations are 
sufficient to reach a thorough hypothesis of the event; more 
precise computations can be postponed to later stages in the 
analysis. 

Moreover, the modularity of the architectural scheme 
allows an easier maintenance and expandibility: for 
example, new knowledge can be added by adding new KS. 

Finally, the justification allows the user to gain a deeper 
insight into the system’s behaviour. Therefore the 
comparison with the analyst’s reasoning is direct, which 
greatly simplifies testing and debugging procedures; in 
addition, justification may prove very useful for teaching 
and training purposes. 

Work is in progress to further extend the capabilities of 
SNA. 
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