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Abstract

Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. 
However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug 
design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also 
impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role 
in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized 
the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such 
as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring 
and release, pharmacophore modeling, quantitative structure–activity relationship, drug repositioning, polypharmacology, 
and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learn-
ing in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently 
developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent 
opportunity for rational drug design and discovery process, which will eventually impact mankind.

Graphic abstract

The primary concern associated with drug design and development is time consumption and production cost. Further, inef-
ficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and 
development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms 
can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as 
superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, 
and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug 
design and development. The artificial neural network, deep neural network, support vector machines, classification and 
regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to 
the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and develop-
ment process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative struc-
ture–activity relationship to drug repositioning, protein misfolding to protein–protein interactions, and molecular pathway 
identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and 
inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker 
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development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, 
and identification of mode of action.

Keywords Artificial intelligence · Machine learning · Deep learning · Virtual screening · Drug design and discovery · 
Artificial neural networks · Computer-aided drug design · Quantitative structure–activity relationship · Drug repurposing

Abbreviations

VS  Virtual screening
AI  Artificial intelligence

DL  Deep learning
ML  Machine learning
ANN  Artificial neural network
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SVM  Support vector machine
LSTM  Long short-term memory
GPU  Graphic processing unit
GAN  Generative adversarial networks
HTS  High-throughput sequencing
GEO  Gene Expression Omnibus
TCGA   The Cancer Genome Atlas
GWAS  Genome-wide association studies
NCIGDC  National Cancer Institute Genomic Data 

Commons
LINCS  Library of integrated network-based cellular 

signature
PDB  Protein data bank
CADD  Computer-aided drug design
QSAR  Quantitative structure–activity relationship
PLS  Partial least square
HSVR  Hierarchical SVM
SARS  Severe acute respiratory syndrome
ADME  Absorption, distribution, metabolism, and 

excretion
MD  Molecular dynamics
FDA  Food and drug administration
PCA  Principal component analysis
LS-SVM  Least-square SVM
IACS  Image-activated cell sorting
SMILES  Simplified molecular input line-entry system
MMP  Matched molecular pair
RF  Random forest
GBM  Gradient boosting machines
AMPs  Anti-microbial peptides
GENTRL  Generative tensorial reinforcement learning
DEL  DNA-encoded small molecule libraries
PRS  Parabolic response curve
MIMIC II  Multiparameter intelligent monitoring in 

intensive care II database
KronRLS  Kronecker-regularized least squares
DTBA  Drug target binding affinity
PADME  Protein and drug molecule interaction 

prediction
PPIs  Protein–protein interactions
PPNIs  Protein–protein non-interactions
DT  Decision tree
EELM  Ensemble extreme learning machine
PBDs  Proteins binding domains
HSMM  Hierarchical statistical mechanical modeling
SBVS  Structure-based VS
LBVS  Ligand-based VS
Keap-Nrf2  Kelch-like ECH-associated protein-nuclear 

factor erythroid 2-related factor 2
GSK-3β  Glycogen synthase kinase 3 beta
MPTP  Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MAO-B  Monoamine oxidase B
CNN  Convolutional neural network

AD  Alzheimer’s disease
EPA  Environmental protection agency
SEA  Similarity ensemble approach
RNN  Recursive neural network
PD  Parkinson’s disease
RASAR  Read-across structure–activity relationships
RVM  Relevance vector machine
PPB  Polypharmacology Browser
SPiDER  Self-Organizing Map-Based Prediction of 

Drug Equivalence Relationship
QED  Quantitative estimate of drug-likeness
SAS  Synthetic accessibility score
GAN  Generative ill-disposed organization
QAAI  Question–answer artificial system
NDDs  Neurodegenerative diseases
ALS  Amyotrophic Lateral Sclerosis
HD  Huntington’s disease
BACE1  Beta-secretase 1
Aβ  β-Amyloid
NLRP3  NLR family pyrin domain containing 3
ADRs  Adverse drug reactions
HMM  Hidden Markov models
GO  Gene ontology

Introduction

From the past two decades, the development of efficient and 
advanced systems for the targeted delivery of therapeutic 
agents with maximum efficiency and minimum risks has 
imposed a great challenge among chemical and biological 
scientists [1]. Further, the cost of development and time con-
sumption in developing novel therapeutic agents was another 
setback in the drug design and development process [2]. To 
minimize these challenges and hurdles, researchers around 
the globe moved toward computational approaches such as 
virtual screening (VS) and molecular docking, which are 
also known as traditional approaches. However, these tech-
niques also impose challenges such as inaccuracy and inef-
ficiency [3]. Thus, there is a surge in the implementation 
of novel techniques, which are self-sufficient to eliminate 
the challenges encountered in traditional computational 
approaches. Artificial intelligence (AI), including deep 
learning (DL) and machine learning (ML) algorithms, has 
emerged as a possible solution, which can overcome prob-
lems and hurdles in the drug design and discovery process 
[4]. Additionally, drug discovery and designing comprise 
long and complex steps such as target selection and valida-
tion, therapeutic screening and lead compound optimization, 
pre-clinical and clinical trials, and manufacturing practices. 
These all steps impose another massive challenge in the 
identification of effective medication against a disease. Thus, 
the biggest question that arises in front of pharmaceutical 
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companies is managing the cost and speed of the process [5]. 
AI has answered all these questions in a simple and scientific 
manner, which reduced the time consumption and cost of the 
process. Moreover, the increase in data digitization in the 
pharmaceutical companies and healthcare sector motivates 
the implementation of AI to overcome the problems of scru-
tinizing the complex data [6].

AI, which is also referred to as machine intelligence, 
means the ability of computer systems to learn from input 
or past data. The term AI is commonly used when a machine 
mimics cognitive behavior associated with the human brain 
during learning and problem solving [7]. Nowadays, bio-
logical and chemical scientists extensively incorporate AI 
algorithms in drug designing and discovery process [8]. 
Computational modeling based on AI and ML principles 
provides a great avenue for identification and validation of 
chemical compounds, target identification, peptide synthesis, 
evaluation of drug toxicity and physiochemical properties, 
drug monitoring, drug efficacy and effectiveness, and drug 
repositioning [9]. With the advent of AI principles along 
with ML and DL algorithms, VS of compounds from chemi-
cal libraries, which comprises more than  106 million com-
pounds, become easy and time-effective. Further, AI models 
eliminate the toxicity problems, which arise due to off-target 
interactions [10]. Herein, we briefly discuss the evolution of 
AI from ML to DL and big data involvement in revolution-
izing the drug discovery process. Later on, we presented an 

overview on the congregation of AI and conventional chem-
istry in the improvement of the drug discovery process and 
the application of AI in the improvement of the traditional 
drug discovery process. Afterward, we discuss the numerous 
AI applications throughout the drug design and discovery 
processes such as primary and secondary screening, drug 
toxicity, drug release and monitoring, drug dosage effective-
ness and efficacy, drug repositioning, and polypharmacol-
ogy, and drug-target interactions.

Evolution of arti�cial intelligence: machine 
learning to deep learning

In September 2015, the Google search trend showed that 
after the introduction of ML, AI was the most searched term. 
Some describe ML as the primary AI application, while oth-
ers describe it as a subset of AI [11, 12]. AI is an umbrella 
term where computer programs are able to think and behave 
as humans do, whereas ML is beyond that where data are 
inputted in the machine along with an algorithm like Naïve 
Bayes, decision tree (DT), hidden Markov models (HMM) 
and others, which helps the machine to learn without being 
explicitly programmed. Later, with the development of neu-
ral networks, machines could classify and organize inputted 
data that mimics like a human brain, which further shows 
advancement in AI. Around twentieth century, Igor Aizen-
berg and his colleagues, while talking about the artificial 
neural network (ANN), brought up the term “deep learning” 
for the first time. DL is a subset of ML, which itself is a 
subset of AI, and thus, the evolution goes like AI > ML > DL 
[13, 14]. ML either uses supervised learning, where the 
model is trained to use labeled data, which means that the 
input has been tagged with corresponding preferred output 
labels or uses unsupervised learning, where the model is 
trained to use unlabeled data but looks for recurring pat-
terns from the input data [15]. Others are semi-supervised 
learning that uses the combination of both supervised and 
unsupervised learnings; self-supervised learning, which is 
a special case, uses a two-step process where unsupervised 
learning generates labels for unlabeled data and its ultimate 
goal is to make supervised learning model; reinforcement 
learning is a type of ML which improves its algorithm over 
time with the help of a constant feedback loop and lastly 
DL where there are many layers of ML algorithms which is 
called as a brain-inspired family of algorithms which mim-
ics human brain but requires high computational power for 
training and big data to succeed [16, 17]. The origin of ML 
dates back to 1943 when McCulloch and Pitts published 
an article named “A logical calculus of the idea immanent 
in nervous activity,” where they gave the first-ever math-
ematical model of a neural network [18]. Alan M. Turing 
theorized the concept of ML in his seminal paper published 

Fig. 1  a History of artificial intelligence in healthcare: the first break-
through of artificial intelligence in healthcare comes in 1950 with 
the development of turning tests. Later on, in 1975, the first research 
resource on computers in medicines was developed, followed by 
NIH’s first central AIM workshop marked the importance of artificial 
intelligence in healthcare. With the development of deep learning in 
the 2000s and the introduction of DeepQA in 2007, the scope of arti-
ficial intelligence in healthcare has increased. Further, in 2010 CAD 
was applied to endoscopy for the first time, whereas, in 2015, the first 
Pharmbot was developed. In 2017, the first FDA-approved cloud-
based DL application was introduced, which also marked the imple-
mentation of artificial intelligence in healthcare. From 2018 to 2020 
several AI trials in gastroenterology were performed. b Classification 
of artificial intelligence: there are seven classifications of artificial 
intelligence, which are reasoning and problem solving, knowledge 
representation, planning and social intelligence, perception, machine 
learning, robotics: motion and manipulation, and natural language 
processing, as discussed by Russel and Norvig in their book “Artifi-
cial Intelligence: A Modern Approach.” Machine learning is further 
divided into three significant subsets: supervised learning, unsuper-
vised learning, and deep learning, whereas vision is divided into two 
subsets, such as image recognition and machine vision. Similarly, 
speech is divided into two subsets: speech to text and text to speech, 
whereas natural language processing is classified into five main sub-
sets, including classification, machine translation, question answer-
ing, text generation, and content extraction. c Artificial intelligence in 
the healthcare and pharmaceutical industry has five significant appli-
cations, which change the entire scenario. These applications include 
research and discovery, clinical development, manufacturing and sup-
ply chain, patient surveillance, and post-market surveillance

◂
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in 1950 [19]. In 1952, Arthur L. Samuel popularized the 
term “machine learning” by writing a checker-playing pro-
gram for IBM [20]. In 1957, Frank Rosenblatt developed 
perceptron, which was built for image recognition [21]. 
Henry J. Kelley developed the continuous backpropagation 
model in 1960, and a simpler version based only on-chain 
rule was developed by Stuart Dreyfus in 1962 [22, 23]. In 
1965, Ivakhnenko and Lapa developed the first working DL 
networks. Around 1980, Kunihiko Fukushima developed an 
ANN called neocognitron that had a multilayered design 
that could help the computer learn how to recognize visual 
patterns [24]. He also developed the first convolutional neu-
ral network (CNN) which was based on the visual cortex 
organization found in animals [25] [Fig. 1].

David Rumelhart, Geoffrey Hinton, and Ronald J. Wil-
liams published a paper entitled “Learning Representations 
by Back-propagating Errors” in 1986, which demonstrated 
that backpropagation could provide an improvement in 
shape recognition and word prediction [26]. After the initial 
success, there were some setbacks, but Hinton kept work-
ing during the second AI Winter to achieve new heights. 
Thus, he is considered as the Godfather of DL. Soon, in 
1989, Yann LeCun gave the first practical demonstration of 
backpropagation at Bell Labs [27]. The same year, Chris-
topher Watkins published his thesis entitled “Learning 
from Delayed Rewards,” which introduced the concept of 
Q-learning, which further improved reinforcement learning 
in computer programs [28]. In 1995, Corinna Cortes and 
Vladimir Vapnik developed support vector machines (SVM) 
to map and recognize similar data [29]. After two years, in 
1997, Jürgen Schmidhuber and Sepp Hochreiter developed 
long short-term memory (LSTM) for recurrent neural net-
works [30].

In 1999, a graphic processing unit (GPU) was launched 
as a microprocessor circuit, which was developed initially 
to accelerate 3D graphics processing for computer gaming. 
Later on, GPUs became popular in the field of technology 
and research as well because of their ability of parallel com-
puting. A research report presented by META Group in 2001 
stated that volume, speed, source and types of data were 
increasing, which was a call to prepare for the attack of Big 
Data. In 2007 Nvidia introduced compute unified device 
architecture (CUDA), a framework that allowed program-
mers and researchers to use GPU for general purpose com-
puting [31]. Since then, with the help of CUDA, researchers 
started using GPUs for DL-driven operations, as high mem-
ory bandwidth of GPUs allowed easy handling of massive 
data involved in DL algorithms, and thousands of cores in 
GPUs allowed simultaneous parallel processing of neural 
networks. In 2009, Fei-Fei Li launched ImageNet, which is 
a free database containing millions of labeled images that 
can be used for research purposes [32]. AlexNet, a convo-
lutional neural network, was created by Alex Krizhevsky 

around 2012, which helped in strengthening the speed and 
dropout using rectified linear units [33]. In the same year, 
“the cat experiment” conducted by Google Brain concluded 
that the network correctly recognizes less than 16% of the 
presented objects [34]. In 2014 Nvidia introduced CUDA 
deep neural network (cuDNN), a CUDA-based DL library, 
which accelerated DL-based operations [35]. Similarly, 
“Deep Face” was developed and released in 2014 to identify 
faces with 97.5% accuracy [36]. In the same year, generative 
adversarial networks (GANs) were introduced, using two 
competing neural networks to check whether the data are 
genuine or generated [37]. In 2016, Cray Inc. used Micro-
soft’s neural network software on its XC50 supercomputer 
with 1000 Nvidia Tesla P100 GPUs that could perform the 
task and gave output in a fraction of seconds. In 2017 Nvidia 
introduced Tesla V100 GPU, which had tensor cores that 
accelerated AI-based operations. However, DL is still in its 
growth phase, and creative ideas are required for further 
advancement in this field.

Revolutionizing drug discovery process: role 
of big data and arti�cial intelligence

Big data can be defined as data sets that are too gigantic and 
intricate to be analyzed with the conventional data analyzing 
software, tools, and techniques. The three main character-
istic features of big data are volume, velocity, and variety, 
where volume represents the huge amount and mass of data 
generated, velocity represents the rate at which these data 
are being reproduced, and variety represents heterogenicity 
present in the data sets [38]. With the advent of microar-
ray, RNA-seq, and high-throughput sequencing (HTS) tech-
nologies, a plethora of biomedical data is being engendered 
every day, due to which contemporary drug discovery has 
made a transition into the big data era. In drug discovery, 
the first and foremost step is the identification of appropri-
ate targets (e.g., genes, proteins) involved in disease patho-
physiology, followed by finding suitable drugs or drug-like 
molecules which can meddle with these targets, and now we 
have access to a constellation of biomedical data repositories 
which can help us in this regard [39]. Moreover, the evolu-
tion of AI has made big data analytics a lot easier as there is 
a myriad of ML techniques available now, which can help in 
extracting useful features, patterns, and structures present in 
these big biomedical data sets [40]. For target identification, 
a feature like a gene expression is widely used to understand 
disease mechanisms and find genes responsible for the dis-
ease. Microarray and RNA-seq technologies have generated 
a large amount of gene expression data for various disorders. 
NCBI Gene Expression Omnibus (GEO) (https:// www. ncbi. 
nlm. nih. gov/ geo/) [41], The Cancer Genome Atlas (TCGA) 
(https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ resea 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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rch/ struc tural- genom ics/ tcga) [42], Arrayexpress (https:// 
www. ebi. ac. uk/ array expre ss/) [43], are some of the big 
repositories which contain gene expression data. By analyz-
ing gene expression signatures, we can find out target genes 
responsible for different disorders. For example, using the 
ML approach and gene expression data, van IJzendoorn et al. 
2019 found out novel biomarkers and potential drug targets 
for rare soft tissue sarcoma [44].

Further, genome-wide association studies (GWAS) can 
determine the interrelation of genomic variants with par-
ticular complex disorders [45]. GWAS central (https:// www. 
gwasc entral. org/) [46], NHGRI-EBI GWAS Catalog (https:// 
www. ebi. ac. uk/ gwas/ home) [47] are some of the reposito-
ries which contain GWAS data. Further, with the help of 
GWAS, we can ascertain the disease-associated genetic loci, 
and it has been observed that genes linked with these loci 
are potential therapeutic targets. For instance, Li et al. [48] 
used the GWAS catalog, gene expression, epigenomics, and 
methylation data to determine target genes associated with 
juvenile idiopathic arthritis loci through ML analysis . In 
addition, specific genes whose mutations can lead to dif-
ferent threatening diseases are also promising therapeutic 
targets. These risk genes can be identified by analyzing the 
various genome and exome sequencing data. For sequencing 
data, we have public repositories like Sequence read archive 
(https:// www. ncbi. nlm. nih. gov/ sra) [49], which contains 
sequencing data obtained from next-gen sequencing tech-
nology. The National Cancer Institute Genomic Data Com-
mons (NCIGDC) (https:// gdc. cancer. gov/) [50] and TCGA 
are data repositories that contain sequencing data related to 
cancer. Moreover, taking advantage of big data and AI, Han 
et al. 2019 have developed DriverML (https:// github. com/ 
Hello YiHan/ Drive rML), a supervised ML-based tool that 
can point out driver genes related to cancer [51] [Fig. 2].

Moreover, sometimes even published literature can be 
used for target identification, and PubMed (https:// pubmed. 
ncbi. nlm. nih. gov/) [52] is a major repository of the vari-
ous published biomedical literature, whose data mining can 
help in identifying targets for different disorders. After an 
appropriate target has been identified and validated, the next 
step is to find suitable drugs and/or drug-like molecules that 
can interact with the target and elicit the desired response 
[53]. In the age of big data, the multitude of big chemical 
databases is at our disposal, which can help in finding per-
fect drugs for a specific target. Likewise, PubChem (https:// 
pubch em. ncbi. nlm. nih. gov/) [54] is a freely accessible 
chemical database that contains data of various chemical 
structures, including their biological, physical, chemical, 
and toxic properties [55]. Further, the ChEMBL database 
(https:// www. ebi. ac. uk/ chembl/) [56] is an open access big 
database containing data of numerous bioactive compounds 
exhibiting drug-like properties [57]. The ChEMBL data-
base also contains information on absorption, distribution, 

metabolism, and excretion (ADME), toxicity properties of 
these compounds, and even their target interactions. Fur-
ther, DrugBank (https:// go. drugb ank. com/) [58] is another 
open access pharmaceutical data repository which contains 
data of various drugs, their targets, and mechanism [59]. 
Additionally, the library of integrated network-based cellular 
signature (LINCS) L1000 (https:// lincs proje ct. org/ LINCS/) 
[60] is another repository that contains information on the 
change in gene expression signatures of human cell lines 
when treated with different chemical compounds. LINCS 
L1000 data-driven search engine, known as  L1000CDS2, is 
an open-access search engine that contains data of drugs that 
can revert the expression of differentially expressed genes; 
hence, they too can be used for drug discovery [61]. Further, 
the protein data bank (PDB) (https:// www. rcsb. org/) [62] 
is another freely accessible online repository that contains 
data of three-dimensional structures of proteins, DNA, RNA 
[63]. PDB data are also widely used to assess protein–ligand 
interactions and then find appropriate inhibitors of a target 
protein. Xu et al. [64] combined ML and molecular docking 
to find inhibitors of COVID 3CL proteinase; here, the crystal 
structure of COVID 3CL proteinase was obtained from PDB.

Congregation of arti�cial intelligence 
and conventional chemistry: improves drug 
discovery

In the pharmaceutical industry, AI has emerged as a possible 
solution to the problems raised due to classical chemistry or 
chemical space, which hampers drug discovery and develop-
ment. With the advancements in technologies and the devel-
opment of high-performance computers, AI algorithms such 
as ML to DL have been increased in computer-aided drug 
design (CADD). AI is not a new technique for scientists in 
drug discovery and development; neither chemists’ desire to 
accurately forecast chemical activity-structure relationships. 
For example, Hammett relates equilibrium constants with 
reaction rates, whereas Hansch performed computer-assisted 
prediction of drug compounds’ physicochemical properties 
and biological activity. The success of Hansch provides an 
avenue for research that will focus on (a) detailed identifi-
cation and prediction of the chemical structure along with 
the characterization of properties such as pharmacophores 
and three-dimensional structure and (b) hypothesize com-
plex mathematical equations that will relate to chemical 
representation and biological activity of the predicted com-
pound. However, scientists’ main aim in the current era is to 
improve the drug discovery and development process with 
high accuracy and confidence scores through ML algorithms 
based on classical chemistry activities. This will encour-
age chemists to identify the potential of AI techniques for 
answering two crucial questions of medical chemistry, such 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.gwascentral.org/
https://www.gwascentral.org/
https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home
https://www.ncbi.nlm.nih.gov/sra
https://gdc.cancer.gov/
https://github.com/HelloYiHan/DriverML
https://github.com/HelloYiHan/DriverML
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://lincsproject.org/LINCS/
https://www.rcsb.org/
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as "what should be the next compound?” and "what is the 
process of making a compound?”. Thus, the last two dec-
ades developed many techniques and tools for computational 
drug discovery, quantitative-structure activity relationship 
(QSAR) methods, and free-energy minimization techniques. 
For example, [65] distinguish compound cell activity using 
machine intelligence methods such as DT, random forest 
(RF) method, CNN, SVM, LSTM network, and gradient 
boosting machine. Among the mentioned models, in some 
models, the compounds were expressed as a string by the 

simplified molecular input line entry system and directly 
used as input data instead of any chemical descriptor and 
act as natural language processing. They have used two dif-
ferent cutoffs for the single data set (Z-score = 3) and the 
whole data set (Z-score = 5 or 6). Later on, they incorporated 
nine different metrics used to evaluate the model’s precision, 
accuracy, the area under the curve, and Cohen’s K value. The 
results demonstrated that the gradient boosting machine is 
competent at balanced data distribution. The experiment’s 
outcomes also concluded that classical ML methods and 
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DL methods could classify compound cell activity [65]. 
Similarly, [66] predicted the PAMPA effective permeability 
using a two-QSAR approach, where the authors developed 
a classical QSAR model and an ML-based QSAR model 
using a partial least square (PLS) scheme and hierarchi-
cal SVM (HSVR) scheme. The authors concluded that the 
HSVR scheme executed better than the PLS scheme in the 
training set, test set, and statistical analysis [66]. Further, for 
the synthesis of new compounds, chemical scientists read-
ily depended on published literature. With advancements in 
automated drug discovery methods involving AI and ML, it 
is relatively simple to distinguish between existing drugs and 
novel chemical structures. For example, [67] applied a com-
putational approach to screen the hepatotoxic ingredients in 
traditional Chinese medicines, whereas [68] demonstrated 
the phylogenetic relationship, structure–toxicity relationship, 
and herb-ingredient network using computational technique. 
Recently, Zhang et al. implemented computational analy-
sis against a novel coronavirus, where the authors screened 
different compounds that were biologically active against 
severe acute respiratory syndrome (SARS). Later on, the 
compounds were subjected to ADME and docking analysis. 
The results concluded that 13 existing Chinese traditional 
medicines were effective against novel coronavirus [69]. 
Thus, conventional chemistry-oriented drug discovery and 
development concepts combined with computational drug 

designing provide a great future research platform. Moreo-
ver, system biology and chemical scientists worldwide, in 
coordination with computational scientists, develop modern 
ML algorithms and principles to enhance drug discovery 
and development.

Transforming traditional computational 
drug design through arti�cial intelligence 
and machine learning techniques

For many years computational methods have played an 
essential role in drug design and discovery, which trans-
formed the whole process of drug design. However, many 
issues like time cost, computational cost, and reliability, are 
still associated with traditional computational methods [70, 
71]. AI has the potential to remove all these bottlenecks 
in the area of computational drug design, and it also can 
enhance the role of computational methods in drug develop-
ment. Moreover, with the advent of ML-based tools, it has 
become relatively easier to determine the three-dimensional 
structure of a target protein, which is a critical step in drug 
discovery, as novel drugs are designed based on the three-
dimensional ligand biding environment of a protein [72, 73]. 
Recently, Google’s DeepMind (https:// github. com/ deepm 
ind) has devised an AI-based tool trained on PDB structural 
data, referred to as AlphaFold, which can predict the 3D 
structure of proteins from their amino acid sequences [74]. 
AlphaFold predicts 3D structures of proteins in two steps: 
(i) firstly, using a CNN it transforms an amino acid sequence 
of a protein to distance matrix as well as a torsion angle 
matrix, (ii) secondly, using a gradient optimization technique 
it translates these two matrices into the three-dimensional 
structure of a protein [75]. Likewise, Mohammed AlQurai-
shi from Harvard Medical school has also designed a DL-
based tool that takes protein’s amino acid sequence as input 
and generates its three-dimensional structure. This model, 
referred as Recurrent Geometric Network (https:// github. 
com/ aqlab orato ry/ rgn), uses a single neural network to figure 
out bond angles and angle of rotation of chemical bonds con-
necting different amino acids in order to predict the three-
dimensional structure of a given protein [76].

Further, quantum mechanics is used to determine the 
properties of molecules at a subatomic level, which is used 
to estimate protein–ligand interactions during drug develop-
ment. However, sometimes with conventional computational 
techniques, quantum mechanics can be computationally 
very expensive and demanding, which can affect its accu-
racy [77]. However, with AI, quantum mechanics can get 
more user-friendly and efficacious. Schtutt et al. 2019 have 
recently developed a DL-driven tool, referred to as SchNOrb 
(https:// github. com/ atomi stic- machi ne- learn ing/ SchNO rb), 
which can predict molecular orbitals and wave functions of 

Fig. 2  Application of big data for drug designing and discovery: 
with the increase in biological and chemical data from the litera-
ture, in vitro, in vivo, clinical studies, genomics studies, proteomics 
studies, metabolomics studies, gene ontology studies, and molecular 
pathway data, different data repositories have been developed. For 
instance, ChemSpider, ChEMBL, ZINC, BindingDB, and PubChem 
are the essential databases for compound synthesis and screening 
in the drug designing and discovery process. The data stored in the 
above-said databases were curated and screened out for pharmaco-
logical and physicochemical properties of compound necessary for 
the drug discovery process instead of quantum mechanical calcula-
tions such as solvation energy and proton affinity the wave function, 
atomic forces, and transition state. The high-throughput screened data 
were subject to filtration based on drug-likeness, PAINS calculation, 
ADMET analysis, and toxicity. The filtered compounds were subject 
to artificial intelligence models such as deep learning, random forest, 
classification and regression, and neural networks for further analy-
sis. These compounds were then subjected to quantitative-structure 
activity relationship and pharmacophore models followed by molecu-
lar docking and molecular dynamics simulations studies. Afterward, 
the final predicted compounds were visualized for binding energy 
calculations and active site identification. Thus, the final compound 
was identified and underwent in vitro and in vivo experimental stud-
ies for validation. However, quantum mechanical properties play a 
crucial role in the process of drug discovery and designing, but these 
properties cannot directly hamper the process of drug designing. QM 
methods include ab  initio density functional theory and semi-empir-
ical calculations, where accurate calculations use electron correla-
tion methods. QM will become a more prominent tool in the reper-
toire of the computational medicinal chemist. Therefore, modern QM 
approaches will play a more direct role in informing and streamlining 
the drug-discovery process

◂
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organic molecules accurately. With these data, we can deter-
mine the electronic properties of molecules, the arrangement 
of chemical bonds around a molecule, and the location of 
reactive sites [78]. Thus, SchNOrb can help researchers in 
designing new pharmaceutical drugs. Moreover, molecular 
dynamics (MD) simulation analyzes how molecules behave 
and interact at an atomistic level [79]. In drug discovery, MD 
simulation is used to evaluate protein–ligand interactions 
and binding stability. One major issue with MD simulation is 
that it can be very arduous and time-consuming. AI has the 
capacity to accelerate the process of MD simulation [80]. In 
this regard, Drew Bennett et al. performed MD simulations 
to calculate free energies for transferring 15,000 small mol-
ecules from water to cyclohexane to train a 3D convolutional 
network and spatial graph CNN using these free energies and 
some other atomistic features. The researchers found that the 
trained neural networks predicted free energies of transfer 
with almost similar accuracy compared to MD simulation 
calculations [81]. This study shows that ML techniques can 
improvize and expedite MD simulations. However, a large 
amount of training data is required to achieve this.

Moreover, de novo drug design has also taken advantage 
of AI in recent years. For example, Q.Bai et al. 2020 have 
devised MolAIcal (https:// molai cal. github. io/), a tool that 
can design three-dimensional drugs in three-dimensional 
protein pockets [82]. MolAICal designs 3D drugs by action 
of two components: (i) first component uses DL and genetic 
algorithm trained on the US food and drug administration 
(FDA)-approved drugs, for de novo drug design, (ii) sec-
ond component combines molecular docking and DL model 
trained on ZINC database (https:// zinc. docki ng. org/) [83]. 
Likewise, Popova et al. 2018 designed a deep reinforcement 
learning-based algorithm, referred to as ReLeaSE (https:// 
github. com/ isayev/ ReLea SE), for de novo drug design. 
ReLeaSE achieves its desired outcome by integrating two 
deep neural networks (DNN), known as generative and pre-
dictive, where the generative model is used to produce new 
compounds, and the predictive model is used to predict the 
properties of the compound [84]. Further, in recent times, 
AI has been used to upgrade the process of synthesis plan-
ning as well, a process that is used to determine an optimal 
synthesis pathway for a molecule of interest. Recently, Grzy-
bowski et al. [85] developed a DT-based program, referred to 
as chematica, to design novel synthesis pathways for desired 
molecules. Similarly, Genheden et al. have implemented 
AiZynthFinder (https:// github. com/ Molec ularAI/ aizyn thfin 
der), an open-source tool for retrosynthesis planning built 
on Monte Carlo tree search, which is regulated by a neural 
network [86]. Likewise, Segler et al. [87] used the integra-
tion of three distinct neural networks in conjugation with 
the Monte Carlo tree search to discover novel retrosynthe-
sis routes. ICSYNTH (https:// www. deepm atter. io/ produ cts/ 
icsyn th/) is another tool that can produce novel chemical 

synthesis pathways by using a collection of chemical rules 
which are generated via ML models [88].

Additionally, various text mining-based tools have also 
been developed, which can aid the process of traditional 
drug discovery. Text mining uses methods like natural lan-
guage processing (NLP) to transform unstructured texts in 
various literature and databases into structured data, which 
can be analyzed appropriately to gain new insights. NLP is 
a branch of AI, which allows computers to process and ana-
lyze human languages like speech and text through AI-based 
algorithms. Taking advantage of this AI driven techniques, 
various text mining-based tools have been developed. For 
instance, Jang et al. 2018 developed PISTON (http:// datab 
io. gachon. ac. kr/ tools/ PISTON/), a tool that can predict drug 
side effects and drug indications, using NLP and topic mod-
eling [89]. Likewise, DisGeNET (https:// www. disge net. org/) 
is a text mining-driven database that contains a plethora of 
information on gene-disease and variants-disease relation-
ships [90]. Data in DisGeNET can analyze various biological 
processes like adverse drug reactions, molecular pathways 
involved in disease, drug action on targets. Further, STRING 
(https:// string- db. org/) is another text mining-driven data-
base containing a myriad of information on protein–protein 
interactions for various organisms [91]. In addition, STITCH 
(http:// stitch. embl. de/) is another text mining-driven data-
base, which contains information on interactions between 
proteins and chemicals/small molecules [92]. Information 
in STICH can also be used to ascertain binding affinities of 
drugs and drug-target association.

Arti�cial intelligence in primary 
and secondary drug screening

Today AI has come out as a very successful and demanding 
technology because it saves time and is cost-efficient [93]. 
In general, cell classification, cell sorting, calculating prop-
erties of small molecules, synthesizing organic compounds 
with the help of computer programs, designing new com-
pounds, developing assays, and predicting the 3D structure 
of target molecules are some time-consuming and tiresome 
tasks which with the help of AI can be reduced and can 
speed up the process of drug discovery [94, 95]. The primary 
drug screening includes the classification and sorting of cells 
by image analysis through AI technology. Many ML mod-
els using different algorithms recognize images with great 
accuracy but become incompetent when analyzing big data. 
To classify the target cell, firstly, the ML model needs to be 
trained so that it can identify the cell and its features, which 
is basically done by contrasting the image of the targeted 
cells, which separates it from the background [96]. Images 
with varying textured features like wavelet-based texture 
features and Tamura texture features are extracted, which 
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is further reduced in dimensions through principal compo-
nent analysis (PCA). A study suggests that least-square SVM 
(LS-SVM) showed the highest classification accuracy of 
95.34% [97, 98]. Regarding cell sorting, the machine needs 
to be fast to separate out the targeted cell type from the given 
sample. Evidence suggests that image-activated cell sorting 
(IACS) is the most advanced device that could measure the 
optical, electrical, and mechanical properties of the cell [99] 
[Fig. 3].

The secondary drug screening includes analyzing the 
physical properties, bioactivity, and toxicity of the com-
pound. Melting point and partition coefficient are some of 
the physical properties that govern the compound’s bio-
availability and are also essential to design new compounds 
[100], while designing a drug, molecular representation 
can be done using different methods like molecular fin-
gerprinting, simplified molecular-input line-entry system 
(SMILES), and Coulomb matrices [101]. These data can be 
used in DNN, which comprises two different stages, namely 
generative and predictive stage. Though both the stages are 
trained separately through supervised learning, when they 
are trained jointly, bias can be applied to the output, where 
it is either rewarded or penalized for a specific property. 
This whole procedure can be used for reinforcement learning 
[84]. Matched molecular pair (MMP) has been extensively 
used for QSAR studies. MMP is associated with a single 
change in a drug candidate, which further influences the 
bioactivity of the compound [102]. Along with MMP, other 
ML methods are used like DNN, RF, and gradient boosting 
machines (GBM) to get modifications. It has been observed 
that DNN can predict better than RF and GBM [103]. With 
the increase in databases, which are publicly available like 
ChEMBL, PubChem, and ZINC, we have access to millions 
of compounds annotating information like their structure, 
known targets and purchasability; MMP plus ML can predict 
bioactivity like oral exposure, intrinsic clearance, ADMET, 
and method of action [98, 104, 105]. Optimizing the toxicity 
of a compound is the most time-consuming and expensive 
task in drug discovery and is a crucial parameter as it adds 
significant value to the drug development process.

Applications of arti�cial intelligence in drug 
development process

The most arduous and desponding step in the drug discov-
ery and development process is identifying suitable and 
bioactive drug molecules present in the vast size of chemi-
cal space, which is in the order of  1060 molecules. Further, 
the drug discovery and development process are considered 
a time- and cost-consuming process. The most infuriating 
point is that nine out of ten drug molecules usually fail to 
pass phase II clinical trials and other regulatory approvals 

[106–108]. The above-said limitations of drug discovery and 
development can be addressed by implementing AI-based 
tools and techniques. AI is involved in every stage of the 
drug development process such as small molecules design, 
identification of drug dosage and associated effectiveness, 
prediction of bioactive agents, protein–protein interactions, 
identification of protein folding and misfolding, structure 
and ligand-based VS, QSAR modeling, drug repurposing, 
prediction of toxicity and bioactive properties, and identi-
fication of mode of action of drug compounds as discussed 
below.

Peptide synthesis and small molecule design

Peptides are a biologically active small chain of around 2–50 
amino acids, which are increasingly being explored for ther-
apeutic purposes as they have the ability to cross the cellular 
barrier and can reach the desired target site [109]. In recent 
years, researchers have taken advantage of AI and used it to 
discover novel peptides. For instance, Yan et al. 2020 devel-
oped Deep-AmPEP30, a DL-based platform for the identifi-
cation of short anti-microbial peptides (AMPs) [110]. Deep-
AmPEP30 (https:// cbbio. online/ AxPEP/) is a CNN-driven 
tool that predicts short AMPs from DNA sequence data. 
Using Deep-AmPEP30, Yan et al. identified novel AMPs 
from the genome sequence of C. glabrate, a fungal patho-
gen present in the GI tract. Likewise, Plisson et al. 2020 
combined the ML algorithm with an outlier detection tech-
nique to discover AMPs with non-hemolytic profiles [111]. 
In addition, Kavousi et al. developed IAMPE (http:// cbb1. ut. 
ac. ir/), a web server for the identification of anti-microbial 
peptides, which integrates 13CNMR-based features and phys-
icochemical features of peptides as input to ML algorithms, 
in order to identify novel AMPs [112]. Similarly, Yi et al. 
2019 devised ACP-DL (https:// github. com/ haich engyi/ ACP- 
DL), a DL-based tool for the discovery of novel anti-cancer 
peptides [113]. ACP-DL uses the LSTM algorithm, which is 
an improved version of the recursive neural network (RNN), 
for differentiating anti-cancer peptides from non-anti-cancer 
peptides. Moreover, Yu et al. [114] proposed DeepACP, a 
deep recurrent neural network-based model for identifying 
anti-cancer peptides. Likewise, Tyagi et al. 2013 developed 
an SVM-based platform for identifying new anti-cancer pep-
tides [115]. In addition, Rao et al. 2020 combined a graphi-
cal convolutional network and one-hot encoding to design 
ACP-GCN for the discovery of anti-cancer peptides [116]. 
Moreover, Grisoni et al. used an ensemble of four counter 
propagation ANN for identifying new anti-cancer peptides. 
Likewise, Wu et al. [117] proposed PTPD, a tool based on 
CNN and word2vec, for the discovery of novel peptides for 
therapeutics.

Moreover, small molecules are molecules that have very 
low molecular weight, and like peptides, small molecules 
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are too being explored for therapeutic purposes using AI-
based tools. For instance, Zhavoronkov et al. [118] devised 
generative tensorial reinforcement learning (GENTRL), 

a generative reinforcement learning-based tool for the de 
novo design of small molecules. With the help of GEN-
TRL (https:// github. com/ insil icome dicine/ GENTRL), 

https://github.com/insilicomedicine/GENTRL
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Zhavoronkov et al. discovered novel inhibitors of an enzyme, 
DDR1 kinase [118]. Likewise, McCloskey et al. [119] com-
bined DNA-encoded small molecule libraries (DEL) data 
with ML models like Graph CNN and RF to discover novel 
small drug-like molecules. Similarly, Xing et al. [120] inte-
grated XGBoost, SVM, and DNN to find small molecules 
for targets implicated in rheumatoid arthritis.

Identification of drug dosage and drug delivery 
effectiveness

Administering an improper dose of any drug to a patient 
can lead to undesirable and lethal side effects; hence, it is 
crucial to determine a safe drug dose for treatment purposes. 
Over the years, it has been challenging to ascertain the opti-
mum dose of a drug that can achieve the desired efficacy 
with minimum toxic side effects [121]. With the emergence 
of AI, lots of researchers are taking the help of ML and 
DL algorithms to determine appropriate drug dosage. For 
instance, Shen et al. [122] developed an AI-based platform, 
referred to as AI-PRS, to determine the optimum dose and 
combinations of drugs to be used for HIV treatment through 
antiretroviral therapy. AI-PRS is a neural network-driven 
approach, which relates drug combinations and dosage to 
efficacy through a parabolic response curve (PRS). In their 
study, Shen et al. administered a combination of tenofovir, 
efavirenz, and lamivudine to 10 HIV patients, and in due 
course, using the PRS method, they found out the dose of 
tenofovir could be reduced by 33% of the starting dose with-
out causing virus relapse. Hence, using AI-PRS optimum 
drug dosage can be found out for other diseases as well. 

Further, Pantuck et al. [123] developed CURATE.AI, to 
determine adequate drug dose, which uses a patient’s per-
sonal data and transforms it to CURATE.AI profile in order 
to ascertain optimum dose. The study was performed, where 
a combination of cancer drug enzalutamide and investiga-
tion drug ZEN-3694 was given to a patient with metastatic 
castration-resistant prostate cancer. Using CURATE.AI, in 
the course of time, they found a 50% lower than starting dose 
of ZEN-3694, which can achieve desired results and arrest 
the cancer growth.

Further, Julkunen et al. [124] devised comboFM (https:// 
github. com/ aalto- ics- kepaco/ combo FM), a novel ML-
driven tool, which ascertain appropriate drug combinations 
and dose in pre-clinical studies like cancer cell lines. com-
boFM determines appropriate drug combinations and dose 
by using factorization machines (https:// github. com/ geffy/ 
tffm), an ML framework for high-dimensional data analy-
sis. In their study, using comboFM, Julkunen et al. identi-
fied a novel combination of anti-cancer drugs crizotinib and 
bortezomib, showing promising efficacy in lymphoma cell 
lines. Similarly, Sharabiani et al. used the ML approach to 
determine the optimum initial dose of anticoagulant drug 
warfarin. They used relevance vector machines to classify 
different patients based on their dose demands, and then, 
regression models were used to predict appropriate doses for 
the patients [125]. Likewise, Nemati et al. [126] developed 
a deep reinforcement learning model trained on multipa-
rameter intelligent monitoring in intensive care II database 
(MIMIC II) to find an ideal dose of another anticoagulant 
drug, heparin. Likewise, Tang et al. [127] used ML tech-
niques like ANN, Bayesian additive regression trees, boosted 
regression trees, multivariate adaptive regression splines to 
determine the optimum dose of immunosuppressive drug 
Tacrolimus. Moreover, Hu et al. [128] performed ML analy-
sis with techniques like classification and regression trees, 
multilayer perceptron network, k-nearest neighbor to find 
out the safe initial dose of cardiac drug digoxin. In addition, 
Imai et al. [129] developed a DT model to find a safe starting 
dose of antibiotic drug vancomycin.

Predicting bioactive agents and monitoring of drug 
release

Designing and monitoring of drug-likeness is a tedious and 
time-consuming process. Lately, multiple online tools have 
been developed to analyze drug release and check account-
ability of selected bioactive compounds as a carrier. Bench-
mark data sets are later used to validate the computational 
analysis. For such evaluation’s pharmacophore based on 
the chemical feature suits the best. These models construct 
large 3D data sets developed via in silico experiments or in 

house compound collection [130]. To study ligand-based 
chemical features, various successful experiments have been 

Fig. 3  Artificial intelligence in primary and secondary drug screen-
ing: in drug discovery and designing pipeline, screening of potential 
lead is crucial, and artificial intelligence plays a great role in identi-
fying novel and potential lead compounds. There are approximately 
106 million chemical structure presents in chemical space from dif-
ferent studies such as OMIC studies, clinical and pre-clinical studies, 
in vivo assays, and microarray analysis. With machine learning mod-
els such as reinforcement models, logistic models, regression models, 
and generative models, these chemical structures are screened out 
based on active sites, structure, and target binding ability. The com-
plete drug discovery process through artificial intelligence will take 
about 14–18  years, which is comparatively less than the traditional 
drug discovery process. The first step in the drug discovery pro-
cess is lead identification, in which disease-modifying target protein 
is identified through reverse docking, bioinformatics analysis, and 
computational chemical biology. In the second step, primary screen-
ing of compounds is done to select potential lead compounds, which 
can inhibit target protein. This can be done through virtual screening 
and de novo designing. The next step in the drug discovery process 
includes lead optimization and lead compound identification through 
focused library design, drug-like analysis, drug-target reproducibility, 
and computational biology. Afterward, secondary screening of com-
pounds is performed, followed by pre-clinical trials. The drug discov-
ery process’s final step is clinical development through cell-culture 
analysis, animal model experimentation, and patient analysis
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established using the CATALYST program (www. accel rys. 
com), and a group of researchers was successful in predict-
ing 11β-hydroxysteroid dehydrogenase type 1 inhibitors 
using the VS experiments [131].

Determining bioactive ligands is a crucial step for select-
ing a potent drug for a specific target. Now, researchers are 
taking advantage of artificial intelligence in determining 
bioactive compounds that can be used for specific targets 
associated with a disease. For instance, Wu et al. integrated 
DL and RF methods to devise WDL-RF (https:// zhang lab. 
ccmb. med. umich. edu/ WDL- RF/) for determining bioactivity 
of G protein-coupled receptors (GPCRs) targeting ligands. 
Likewise, Cichonska et al. [132] developed pairwiseMKL 
(https:// github. com/ aalto- ics- kepaco), a multiple kernel 
learning-based method, for determining the bioactivity of 
compounds [133]. To test their model’s efficiency, they used 
to predict the anti-cancerous potency of compounds. Fur-
ther, Mustapha et al. [134] developed an Xgboost model to 
determine bioactive chemical molecules. In addition, Mer-
get et al. [135] created machine learning models like DNN, 
RF to determine the bioactivity of more than 280 differ-
ent kinases. Furthermore, Arshadi et al. [136] have devised 
DeepMalaria, a DL-based model for identifying compounds 
having Plasmodium falciparum inhibitory activity. Likewise, 
Sugaya et al. [137] created a ligand-efficiency-driven support 
vector regression model to ascertain the biological activity 
of various chemical compounds. Moreover, Afolabi et al. 
[138] used data from the MLD drug data report (MDDR) 
repository and applied it to a combination of boosting algo-
rithms to identify novel bioactive compounds. Additionally, 
Petinrin et al. [139] used the majority voting technique with 
an ensemble of different machine learning models to deter-
mine biologically active molecules.

Further, adverse drug reactions (ADRs) are unexpected, 
pernicious, fatal side effects caused by drug administration. 
ADRs are a major challenge in drug development, and it has 
become essential to identify possible ADRs during the nas-
cent stage of drug development to make the drug develop-
ment process more robust and efficacious. Lately, research-
ers have used AI to determine possible ADRs associated 
with different drugs before they are launched in the market 
for public use. For instance, Dey et al. [140] used DL-based 
model, which can predict ADRs associated with a drug and 
even identify chemical substructures responsible for those 
ADRs. In addition, Liu et al. [141] integrated chemical, 
biological, phenotypic properties of drugs to predict ADR 
associated with it via machine learning analysis. Likewise, 
Jamal et al. [142] combined biological, chemical, and phe-
notypic properties to predict nervous system ADRs linked 
with drugs through machine learning analysis. The authors 
also used their model to find out ADRs associated with 
current Alzheimer’s drugs. Further, Xue et al. [143] inte-
grated biomedical network topology with a DL algorithm to 

predict Drug-ADR correlation. Moreover, Raja et al. [144] 
used machine learning analysis to predict ADRs, which are 
a result of drug-drug interactions. They further used their 
model to predict ADR related to cutaneous disease drugs. 
Besides screening for an effective bioactive agent, another 
critical area to work with is drug likeliness and its interac-
tion post-release. Recently, a freely accessible, user-friendly 
graphical interface SwissADME (http:// www. swiss adme. ch) 
was developed to evaluate the compatibility of the drug and 
its pharmacokinetic actions [145]. Mathematical models 
such as Higuchi, Hixson–Crowell, Ritger–Peppas–Kormey-
ers, Brazel–Peppas, Baker–Lonsdale, Hopfenberg, Weibull, 
and Peppas–Sahlin have also been applied in drug discovery, 
and one of the most common practice has been the calcula-
tion of drug loading capacity of the selected or screened 
bioactive molecule.

Prediction of protein folding and protein–protein 
interactions

Analyzing protein–protein interactions (PPIs) is crucial for 
effective drug development and discovery. Most of the pro-
tein annotation methods use sequence homology that has 
limited scope. High-throughput protein–protein interaction 
data, with ever-increasing volume, are becoming the foun-
dation for new biological discoveries. A great challenge 
to bioinformatics is to manage, analyze, and model these 
data. Hence, computational models were developed that 
predicts multiple inputs at one place simultaneously [146]. 
Computational methods are implied to study both PPIs and 
protein–protein non-interactions (PPNIs), although PPIs are 
considered more informative than PPNIs. PPIs prediction 
can be identified as direct PPI, direct PPI with indirect func-
tional associations and PPIs for signal transduction path-
ways [147]. Machine and statistical learning approaches like 
K-nearest neighbor, Naïve Bayesian, SVM, ANN, DT, and 
RF are used to predict the hindrance in PPIs. Use of Bayes-
ian network (BN) has been applied to predict PPIs essen-
tially using gene co-expression, gene ontology (GO), and 
other biological process similarity. Data set integration using 
BN produces precise and accurate PPI networks illustrating 
comprehensive yeast interactome [148]. Another group also 
used BN to combine data sets for the yeast to study PPIs 
[149]. A novel hierarchical model PCA-ensemble extreme 
learning machine (PCA-EELM) to predict protein–protein 
interactions only using protein sequences information has 
appeared as a powerful tool that gives output with accuracy 
and less duration [150]. Further, DNNs PPIs prediction effi-
ciency was improved by a novel method known as DNN for 
protein–protein interactions prediction (DeepPPI) (http:// 
ailab. ahu. edu. cn: 8087/ DeepP PI/ index. html) [151]. In mam-
malian cells, signal transduction is mostly controlled by PPIs 
between unstructured motifs and globular proteins binding 
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domains (PBDs). To predict these PBDs across multiple 
protein families bespoke ML tool was developed, known as 
hierarchical statistical mechanical modeling (HSMM) [152]. 
Prediction of protein–protein interactions based on ML, 
domain-domain affinities and frequency tables, a novel tool 
referred to as PPI_SVM, was developed in 2011, which is 
freely accessible at (http:// code. google. com/p/ cmater- bioin 
fo/) [153]. Due to the increased number of solved complex 
structures, a multimeric threading approach, MULTIPROS-
PECTOR, has been developed. In this method, proteins with 
known template structures are rethreaded, and their interac-
tion with other proteins, their interfacial energy, and Z-score 
are established [154]. Structure-based threading logistic 
regression tool Struct2Net (http:// struc t2net. csail. mit. edu) 
to evaluate the probability of interaction is the first structure-
based PPI predictor apart from homology modeling [155]. 
Gene cluster-based methods calculate the co-occurrence 
probability of orthologs of query proteins encoded from the 
same gene clusters. This method is also named domain/gene 
co-occurrence. If two proteins’ genes are not close by in the 
genome, then this method cannot reliably predict an interac-
tion between these two genes [156, 157].

Structure-based and ligand-based virtual screening

In drug designing and drug discovery, VS is one of the cru-
cial methods of CADD. VS refers to the identification of a 
small chemical compound that binds to a drug target. VS is 
an efficient method to screen out the promising therapeu-
tic compound from a pool of compounds [158]. Thus, it 
becomes an important tool in high-throughput screening, 
which incurred the problem of high-cost and low-accuracy 
rate. In general, there are two important types of VS that are 
structure-based VS (SBVS) and ligand-based VS (LBVS) 
[159, 160]. The LBVS depends on the chemical structure 
and empirical data of both active and inactive ligands, 
which uses the chemical and physiochemical similarities of 
active ligands to predict the other active ligand from a pool 
of compounds with high bioactivity. However, the LBVS 
does not depend on the 3-D structure of the target protein, 
and thus, this method is implemented where target struc-
ture or information is missing, and the obtained structural 
accuracy is low [161]. On the other hand, SBVS has been 
implemented in such cases where 3-D structural informa-
tion of protein or target has been elucidated either through 
in vitro or in vivo experiments or through computational 
modeling [162, 163]. In general, this method is used to pre-
dict the interaction between the active ligand or its associ-
ated target and to predict the amino acid residues, which 
are involved in drug-target binding. In comparison with 
LBVS, SBVS possesses high accuracy and precision. How-
ever, SBVS is associated with the problem of an increasing 
number of disease-causing proteins and their complicated 

conformations [164]. To use ML for VS, there should be a 
filtered training set comprising of known active and inactive 
compounds. These training data are used to train a model 
using supervised learning techniques. The trained model is 
then validated, and if it is accurate enough, the model is used 
on new data sets to screen compounds with desired activity 
against a target [165]. After that, the shortlisted compounds 
can go for ADMET analysis, followed by various bioassays 
before entering clinical trials. Hence, ML has the power to 
speed up VS, make it more robust, and can even reduce false 
positives in VS. Docking is the main principle applied in 
SBVS, where several AI and ML-based scoring algorithms 
have been developed such as NNScore, CScore, SVR-Score, 
and ID-Score [166]. Similarly, ML and DL methods such 
as RFs, SVMs, CNNs, and shallow neural networks have 
been constructed to predict protein–ligand affinity in SBVS. 
Moreover, AI-based algorithms have been developed for 
molecular dynamic simulation assays in SBVS [167]. On 
the other hand, LBVS consists of several steps, and each step 
comes up with novel AI- and ML-based algorithms to speed 
up the process and increase reliability. For example, several 
ML- and DL-based algorithms have been constructed for 
the preparation of useful decoy sets such as Gaussian mix-
ture models (GMMs), isolation forests, and artificial neural 
networks (ANNs).

Further, ML models such as PARASHIFT, HEX, USR, 
and ShaPE algorithms have been constructed for LBVS 
[168, 169]. Currently, with the rise of AI algorithms in the 
healthcare and pharma industry, different tools and models 
have been developed for both LBVS and SBVS. For exam-
ple, tools such as MTiOpenScreen (http:// biose rv. rpbs. 
univ- paris- dider ot. fr/ servi ces/ MTiOp enScr een/) [170], 
FlexX‐Scan [171], CompScore (http:// bioqu imio. udla. edu. 
ec/ comps core/) [172], PlayMolecule BindScope (PlayMol-
ecule.org) [173], GeauxDock (http:// www. bryli nski. org/ 
geaux dock) [174], EasyVS (http:// biosig. unime lb. edu. au/ 
easyvs) [175], DEKOIS 2.0 [176], PL-PatchSurfer2 (http:// 
www. kihar alab. org/ plps2/) [177], SPOT-ligand 2 (http:// 
sparks- lab. org/) [178], Gypsum-DL (https:// durra ntlab. pitt. 
edu/ gypsum- dl/) [179], and ENRI [180] have been devel-
oped for SBVS. Moreover, mounting evidence validates the 
hypothesis that AI plays a critical role in SBVS, such as 
identification of non-peptide cysteine-cysteine chemokine 
receptor 5 receptor agonists [181], screening of partial ago-
nists of the β2 adrenergic receptor [182], identification of 
bromodomain-containing protein 4 inhibitors [183], discov-
ery of natural product-like signal transducer and activator of 
transcription 3 dimerization inhibitor [184], prediction of 
VHL and hypoxia-inducible factor 1-alpha inhibitors [185], 
and prediction of Kelch-like ECH-associated protein-nuclear 
factor erythroid 2-related factor 2 (Keap-Nrf2) small-mol-
ecule inhibitors [186]. Likewise, Liu et al. 2017 discovered 
low toxicity O-GlcNAc transferase inhibitors, whereas Dou 

http://code.google.com/p/cmater-bioinfo/
http://code.google.com/p/cmater-bioinfo/
http://struct2net.csail.mit.edu
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http://bioquimio.udla.edu.ec/compscore/
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http://biosig.unimelb.edu.au/easyvs
http://biosig.unimelb.edu.au/easyvs
http://www.kiharalab.org/plps2/
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et al. [187] identified novel glycogen synthase kinase 3 beta 
(GSK-3β) inhibitors through SBVS [188]. Different studies 
were conducted on cancer and leukemia through SBVS, such 
as the discovery of novel GSK-3β for treatment of acute 
myeloid leukemia [189], identification of novel protein argi-
nine methyltransferase 5 inhibitor in non-small cell lung can-
cer [190], identification of vascular endothelial growth factor 
receptor 2 potent compounds for the treatment of renal cell 
carcinoma [191], identification of multi-targeted inhibitors 
against breast cancer [192], and discovery of Mdm2-p53 
inhibitor [193]. Recently, novel corona virus became a huge 
problem worldwide, and thus, here also SBVS provides a 
great opportunity for chemical and biological scientists to 
identify novel drug compounds against disease-causing tar-
gets. For example, Gahlawat et al. 2020 identified that saqui-
navir, lithospermic acid, and 11m_32045235 were promising 
therapeutic compound against SARS-Cov-2 main protease, 
whereas Selvaraj et al. 2020 demonstrated that TCM 57,025, 
TCM 3495, TCM 5376, TCM 20,111, and TCM 31,007 
were therapeutic compounds that interact with the substrate-
binding site of N7-MTase [194, 195]. On the same trend, 
Cruz et al. 2018 concluded that ZINC91881108 was potent 
compound against RIPK2, whereas Simoben et al. 2018 
demonstrated eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-
alkylhydroxamate derivatives as smHDAC8 inhibitors with 
 IC50 values ranging from 4.4 to 20.3 µM against smHDAC8 
[196, 197] [Fig. 4].

Moreover, different algorithms and tools have been devel-
oped for LBVS such as SwissSimilarity (http:// www. swiss 
simil arity. ch/) [198], METADOCK [199], Open-source plat-
form [200], HybridSim-VS (http:// www. rcidm. org/ Hybri 
dSim- VS/) [201], PKRank [202], PyGOLD (http:// www. 
agkoch. de/) [203], BRUSELAS (http:// bio- hpc. eu/ softw 
are/ Bruse las) [204], RADER (http:// rcidm. org/ rader/) [205], 
QEX [206], IVS2vec (https:// github. com/ haipi ng1010/ 
IVS2V ec) [207], AutoDock Bias (http:// autod ockbi as. wordp 

ress. com/) [208], Ligity [209], D3Similarity (https:// www. 
d3pha rma. com/ D3Tar gets- 2019- nCoV/ D3Sim ilari ty/ index. 
php) [210], and GCAC (http:// ccbb. jnu. ac. in/ gcac) [211]. 
Emerging evidence suggests the potential implementation 
of AI algorithms in LBVS such as identification of aurora 
kinase A inhibitors [212], G-quadruplex-targeting chemo-
types [213], PI3Kα inhibitors [214], targeting dengue virus 
non-structural protein 3 helicases [215], potential selective 
histone deacetylase 8 inhibitors [216], and novel p-Hydroxy-
phenylpyruvate dioxygenase inhibitors [217]. Apart from 
these mentioned studies number of literature validated the 
possible implementation of AI in LBVS, such as identifica-
tion of HIV entry inhibitors and potent inhibitors of DNA 
methyltransferase [218, 219]. Like SBVS, LBVS also plays 
a crucial role in identifying potential therapeutic compounds 
against novel human coronaviruses. For example, Amin 
et al. 2020 demonstrated the molecular docking study of 
some in-house molecules as papain-like protease inhibitors, 
whereas Hofmarcher et al. 2020 through DNN identified 
30,000 compounds from the library across 3.6 M compounds 
as CoV-2 inhibitors [220, 221]. Similarly, Choudhary et al. 
2020 identified SARS-CoV-2 cell entry inhibitors, whereas 
Ferraz et al. 2020 identified bedaquiline, glibenclamide, and 
miconazole as potential therapeutic compounds against cor-
onavirus [222, 223]. Xiao et al. 2018 developed ligand-based 
big data DNN models for VS of compound libraries against 
six anti-cancer targets. The study integrated 0.5 M chemi-
cal compounds, and the models developed were evaluated 
by tenfold cross-validation [224]. With the growing size of 
chemical compound libraries, it is become so difficult to find 
a potential hit and it is like finding a “needle in a haystack.” 
Thus, SBVS and LBVS have huge role in minimizing the 
complexity in identification of potential therapeutic com-
pounds against the disease-causing target. Further, AI-based 
models in SBVS and LBVS make it simpler with high accu-
racy and precision. Table 1 discusses the different AI- and 
DL-based web tools and algorithms implemented in LBVS 
and SBVS.

QSAR modeling and drug repurposing

In drug designing and discovery, it is crucial to develop the 
relationship between chemical structures and their physi-
ochemical properties with biological activities. Thus, QSAR 
modeling is a computational approach through which quanti-
tative mathematical models can be created between chemical 
structure and biological activities. The main advantage of 
developing a mathematical model is identifying the diverse 
chemical structure from molecular databases, which can 
be used as therapeutic compounds against a disease target. 
Once the most promising compound is selected, it is sub-
jected to laboratory synthesis and in vitro or in vivo testing. 
QSAR models are broadly classified into two types that are 

Fig. 4  a Ligand-based virtual screening: in the drug design and dis-
covery process, ligand-based virtual screening is the most crucial 
step, which comprises different steps as shown in the figure. The 
initial step consists of database screening and the 3-D structural 
model’s prediction through the active site for a special target and 
X-ray structure of complexes. Later on, pharmacophore modeling of 
selected compounds with selected features is performed, followed by 
pharmacophore and docking-based virtual screening of compounds. 
The screened compounds are subjected to different toxicity and physi-
ochemical properties for further analysis. Finally, the lead compounds 
are subjected to in vitro and in vivo bioassays for validation. b struc-
ture-based virtual screening: it is another type of virtual screening 
applied in the drug discovery process, where target structure prepa-
ration and chemical compound library preparation are initial steps. 
Afterward, structural analysis and binding site prediction are done, 
followed by molecular docking of compounds with the selected tar-
get. Later on, molecular dynamics simulation studies are carried out 
to validate the screened compounds in silico, followed by experimen-
tal validation through bioassays

◂

http://www.swisssimilarity.ch/
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http://www.rcidm.org/HybridSim-VS/
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regression model and classification models. Gaussian pro-
cesses (GPs) are a type of QSAR building regression model, 
which is a robust and powerful method of QSAR modeling. 
GP methods can handle a large number of descriptors and 
identify the crucial ones. Recently, two classification models 
have been demonstrated using GP that is intrinsic GP clas-
sification methods, and the other is a combination of GP 
regression technique and probit analysis [235, 236]. Fur-
ther, the method is suitable for modeling nonlinear relation-
ships and does not require subjective determination of the 
model parameters [237]. Recent advancements and increas-
ing applications of ML algorithms such as neural networks, 
DL, and SVM provide a great avenue for QSAR modeling. 
Several web-based tools and algorithms have been devel-
oped for QSAR modeling such as VEGA platform (https:// 
www. vega- qsar. eu/) [238], QSAR-Co (https:// sites. google. 
com/ view/ qsar- co) [239], FL-QSAR (https:// github. com/ 
bm2- lab/ FL- QSAR) [240], Meta-QSAR (https:// github. 
com/ meta- QSAR/ simple- tree) (https:// github. com/ meta- 
QSAR/ drug- target- descr iptors) [241], DPubChem (www. 
cbrc. kaust. edu. sa/ dpubc hem) [242], Transformer-CNN 
(https:// github. com/ bigch em/ trans former- cnn) [243], Cloud 
3D-QSAR (http:// chemy ang. ccnu. edu. cn/ ccb/ server/ cloud 
3dQSAR/) [244], MoDeSuS and Chemception (https:// 
github. com/ Abdul k084/ Chemc eption) [245]. Karpov et al. 
2020 developed a novel algorithm for QSAR modeling based 
on ANN called transformer-CNN. The method uses SMILES 
augmentation for training and interference. Similarly, Wang 
et al. 2020 developed QSAR modeling web-based tools by 
integrating the characteristics features of molecular struc-
ture generation, alignment, and molecular interaction field. 
Jin et al. through Cloud 3D-QSAR discovered a potent and 
selective monoamine oxidase B (MAO-B) inhibitor. In this 
study, the authors concluded that (S)-1-(4-((3-fluorobenzyl)
oxy)benzyl)azetidine-2-carboxamide (C3) were more potent 
and selective inhibitor of MOB as compared to safinamide. 
Further, in vivo analysis revealed that compound C3 could 
inhibit cerebral MAO-B activity and rescue 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamin-
ergic neuronal loss [246]. On the same trend, Bennett et al. 
2020, through Chemception, predicted the small molecules 
transfer free energy by combining MD simulations and DL 
[81]. Moreover, the QSAR-Co tool was implemented in dif-
ferent studies such as the development of multi-target chem-
ometric models for the inhibition of class I phosphoinositide 
3-kinases enzyme isoforms, screening of ERK inhibitors 
as anti-cancer agents, prediction of K562 cells functional 
inhibitors, and prediction of antifungal properties of phe-
nolic compounds [247–250]. Likewise, Kim and Cho 2018 
developed a novel algorithm called PyQSAR (https:// github. 
com/ crong-k/ pyqsar_ tutor ial) for a fast QSAR modeling 
platform using ML and Jupyter notebook. PyQSAR is a stan-
dalone python package that combines all QSAR modeling 

processes in a single workbench [251]. A. S. Geoffrey et al. 
2020 conducted two different studies using PyQSAR, such 
as identification of potent drug candidates for novel corona-
virus and development of QSAR of quercetin and its tumor 
necrosis factor-alpha inhibition activity [252, 253]. Further, 
Zuvela et al. developed ANN-based QSAR models for pre-
diction of antioxidant activity of flavonoids. In this study, the 
authors integrated six methods such as PaD,  PaD2, weights, 
stepwise, perturbation, and profile for interpretation and 
elucidation of ANN-based models, which calculates trolox-
equivalent antioxidant properties. The results concluded that 
the ANN-based algorithm could eliminate the difficulties 
that arise due to poor interpretation of quantum mechani-
cal parameters describing the molecular structure [254]. In 
parallel, Ding et al. 2020 generated a web-based tool known 
as VISAR (https:// github. com/ Svvord/ visar) for dissecting 
chemical features through the DNN QSAR approach [255]. 
The mounting evidence demonstrates the implementation of 
QSAR modeling in drug designing and discovery process 
such as modeling of ToxCast assays relevant to the molec-
ular initiating events of AOPs in Hepatic Steatosis [256], 
development of dipeptidyl peptidase 4 inhibitors against 
dipeptidyl peptidase 8 and dipeptidyl peptidase 9 enzymes 
[257], the applicability of QSAR model on domain analy-
sis of HIV-1 protease inhibitors [258], and targeting HIV/
HCV coinfection [259]. A well-recognized problem of ML 
models is data imputation for missing values in the bioassay 
data for SAR model generation. Basically there are three 
major types of missing values: (i) Missing Completely at 
Random (MCAR), which occurs when the probability of 
missing values in a variable is the same for all samples; (ii) 
Missing at Random (MAR), which means that probability 
of missing values, at random, in a variable depends only on 
the available information in other predictors; (iii) Missing 
Not at Random (MNAR), which means when probability 
of missing values is not random and depends on the infor-
mation which is not recorded and the existing information 
predicts the missing values [260]. There are several ways 
to handle missing values like imputation using zero, mean, 
median or mode common value, imputation using a ran-
domly selected value, imputing with a model or imputa-
tion using Deep Learning Library–Datawig. Every data set 
has missing values that need to be handled wisely in order 
to build a robust model [261]. Moreover, the complexity 
of data should be removed, and data must be curated to 
increase the accuracy and precision of the models gener-
ated. Moreover, initially QSAR models were implemented 
for predicting the toxicity and metabolism of small mol-
ecules such as molecules having molecular weight (mw) less 
than 1500 m.w. However, the QSAR technology applied in 
the early 2000s comes with some sort of constraints such as 
accuracy and reliability [262]. With the growing applica-
tion of QSAR in drug discovery and design process such as 

https://www.vega-qsar.eu/
https://www.vega-qsar.eu/
https://sites.google.com/view/qsar-co
https://sites.google.com/view/qsar-co
https://github.com/bm2-lab/FL-QSAR
https://github.com/bm2-lab/FL-QSAR
https://github.com/meta-QSAR/simple-tree
https://github.com/meta-QSAR/simple-tree
https://github.com/meta-QSAR/drug-target-descriptors
https://github.com/meta-QSAR/drug-target-descriptors
http://www.cbrc.kaust.edu.sa/dpubchem
http://www.cbrc.kaust.edu.sa/dpubchem
https://github.com/bigchem/transformer-cnn
http://chemyang.ccnu.edu.cn/ccb/server/cloud3dQSAR/
http://chemyang.ccnu.edu.cn/ccb/server/cloud3dQSAR/
https://github.com/Abdulk084/Chemception
https://github.com/Abdulk084/Chemception
https://github.com/crong-k/pyqsar_tutorial
https://github.com/crong-k/pyqsar_tutorial
https://github.com/Svvord/visar
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VS, lead optimization, and target identification medicinal 
scientists and biologist were in constant efforts for devel-
opment of more reliable and dependable approaches [263]. 
AI/ML algorithms-based QSAR models have potential to 
eliminate the constraints imposed by early methods. AI/
ML-based QSAR model, namely hologram-based QSAR 
(HQSAR), group-based QSAR (G-QSAR), and Ensemble-
based, have accelerated the drug discovery process by sev-
eral folds [264, 265]. Further, apart from classical Hansch 
and Free-Wilson approaches, QSAR has gradually evolved 
over the past few years with newer refinementapproaches, 
new methods for descriptors calculations, implementation 
of methodical validation tests, and involvement of receptor 
structural information. Similarly, apart from classical lead 
optimization, QSAR have been applied in different emerg-
ing areas of drug discovery and designing such as peptide 
QSAR, mixture toxicity QSAR, nanoparticles QSAR, QSAR 
of ionic liquids, cosmetic QSAR, phytochemical QSAR, and 
material informatics [266] [Fig. 5].

Apart from QSAR modeling, the AI algorithm has also 
been implemented in drug repurposing or drug repositioning 
method. In drug designing and discovery, drug repositioning 
refers to the investigation of drugs that have already been 
developed for one diseased condition and reposition them 
for other diseased conditions. Repositioning drugs might be 
successful due to the possibility of multiple-target involve-
ment in multiple diseases [267–269]. On another note, the 
emergence of large data sets from genomics, proteomics, and 
pharmacological in vivo and in vitro studies provides a great 
avenue for drug repositioning. Recently, the emergence of 
AI-based tools and algorithms in drug discovery provides 

a platform for future research. ML algorithms replace the 
chemical similarity and molecular docking-based conven-
tional methods with new system biology methods, which 
can evaluate drug effects [270–273]. Thus, different AI-
based algorithm and web-based tools have been developed 
in recent times such as DrugNet (http:// genom e2. ugr. es/ 
drugn et/) [274], DRIMC (https:// github. com/ linwa ng1982/ 
DRIMC) [275], DPDR-CPI (http:// cpi. bio-x. cn/ dpdr/) [276], 
PHARMGKB (https:// www. pharm gkb. org/) [277], PRO-
MISCUOUS 2.0 (http:// bioin forma tics. chari te. de/ promi 
scuou s2) [278], and DRRS (http:// bioin forma tics. csu. edu. 
cn/ resou rces/ softs/ DrugR eposi tioni ng/ DRRS/ index. html) 
[279]. Moreover, Yella and Jegga et al. 2020 constructed 
a model for drug repositioning using a multi-view graph 
attention approach known as MGATRx [280], whereas Yan 
et al. 2019 constructed a novel algorithm for drug repurpos-
ing based on a multisimilarity fusion approach known as 
BiRWDDA [281]. Further, Fahimian et al. 2020 constructed 
a novel algorithm known as RepCOOL to identify promising 
repurposed drugs for breast cancer stage II. The results con-
cluded that doxorubicin, paclitaxel, trastuzumab, and tamox-
ifen were potential therapeutic agents against breast cancer 
stage II [282]. Likewise, Li et al. 2020 constructed a com-
putational framework of host-based drug repurposing for 
broad-spectrum antivirals against RNA virus. In this study, 
the authors investigated 2352 approved drugs and 1062 natu-
ral compounds against different viral pathogens and con-
cluded that the repurposed drugs were effective against zika 
virus and coronavirus [283]. Further, Wu et al. 2020 applied 
ML models, namely structural profile prediction model and 
biological profile prediction model, to predict anti-fibrosis 
drug candidates. The results demonstrated that the area 
under the receiver operating characteristics curve were 0.879 
and 0.972 in the training set, whereas 0.814 and 0.874 in the 
testing set. The results concluded that natural products pos-
sess anti-fibrosis characteristics and serve as potential anti-
fibrosis drug targets [284]. Recently, COVID-19 emerged as 
a global pandemic and researchers around the globe started 
the hunt for promising therapeutic agents. In this regard AI-
based drug repositioning plays a crucial role. For example, 
network-based drug repurposing identified 16 potential 
anti-HCoV repurposable drugs, whereas Hooshmand et al. 
2020 identified 12 promising drug targets for COVID-19 
based on the multimodal DL approach [285, 286]. In recent 
times, the development of neural networks, DL models, and 
pipelines for drug repositioning have increased to a great 
extent. For example, SNF-CVAE based on drug similarity 
network fusion identified promising therapeutic agents for 
Alzheimer’s disease (AD) and juvenile rheumatoid arthri-
tis, whereas DTI-RCNN based on neural network algorithm 
and integrates long short-term memory predicts drug-target 
interactions [287, 288]. PhenoPredict and SDTNBI are 
two other ML-based algorithms used to identify disease 

Fig. 5  a Quantitative structure–activity relationship workflow: the 
initial step comprises of data set compilation, where data from pub-
lic database and literature database are accumulated and compiled, 
which further divided into different subsets for investigation. After-
ward, data set processing is performed, where data pre-processing 
and curation followed by calculation of molecular descriptors are 
done. After description calculation, data set processing normalization 
of data and splitting of data into different sets are performed. In the 
third step, model construction is performed, where data sets such as 
internal data and external data are accumulated, and learning algo-
rithms are applied for QSAR modeling. Finally, the statistical calcu-
lation is done to measure the model robustness. The final step in the 
quantitative-structure activity relationship is model evaluation, where 
the model is evaluated by comparison from previous benchmark 
models, identifying characteristics features, performance evaluation, 
and interpretation of essential features. b Drug repurposing or repo-
sitioning workflow: the first step is collection of data and data pre-
processing followed by computational model generation. The models 
generated are support vector machines, logistic regression, random 
forest, deep learning, and matrix factorization. Afterward, the genera-
tion of proof-of-concept from a literature source is performed. Later 
on, evaluation of repositioning models through cross-validation, case 
analysis, and evaluation metrics is performed. Finally, validation of 
repurposed drugs is carried out through clinical trials, in vitro studies, 
and in vivo studies

◂
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phenome-wide drug repositioning for schizophrenia and 
prediction of drug-target interactions, respectively [289, 
290]. Zang et al. 2019 developed a DL-based model known 
as deepDR (https:// github. com/ ChengF- Lab/ deepDR) to 
predict in silico drug repositioning. In the study, the authors 
integrate 10 different types of biological networks such as 
drug-disease, drug-side effects, drug-target, and seven drug-
drug networks. The results concluded that deepDR predicted 
approved drugs such as risperidone and aripiprazole for the 
treatment of Alzheimer’s disease (AD), whereas methylphe-
nidate and pergolide for treatment of Parkinson’s disease 
(PD) [291]. Likewise, Chen et al. 2020 constructed an AI-
based novel algorithm called as iDrug (https:// github. com/ 
Case- esaC/ iDrug) for the integration of drug repositioning 
and drug-target prediction through cross-network embed-
ding. The efficiency and effectiveness of iDrug allow users 
to understand novel clinical insights of drug-target-disease 
mechanisms [292]. Studies demonstrated that drug repurpos-
ing through an AI-based algorithm can be implemented in 
cancer. For example, Li et al. 2020 integrated transcriptom-
ics data and chemical structure information using DL and 
identified that pimozide as a promising therapeutic candidate 
against non-small cell lung cancer [293]. Similarly, Kuenzi 
et al. 2020 predicted drug response and synergy using a DL 
model of human cancer cells. The results concluded that 
predicted combinations improve progression-free survival, 
and response predictions stratify ER-positive breast cancer 
patient clinical outcomes [294]. Another AI application 
in drug repurposing comes from the study performed by 
Wang et al. 2020, which used bipartite graph convolutional 
networks for in silico drug repurposing. The authors con-
structed a model known as BiFusion (https:// github. com/ 
zcwan g0702/ BiFus ion) through DL and heterogeneous 
information fusion. The results demonstrated that BiFusion 
achieved improved performance than multiple baselines for 
drug repurposing [295]. The examples mentioned above 
concluded the potential role of AI-based algorithms in drug 
repurposing. Further, with the advancement in technology, 
chemical scientists, biological scientists, and computational 
scientists search the methods for improving the accuracy and 
precision of AI-based models. Moreover, both QSAR and 
drug repositioning methods of drug discovery are incom-
plete without the involvement of molecular docking, which 
is used to analyze the interaction between the target mol-
ecule and a ligand molecule. Initially, in the early 2000s 
molecular docking was developed as a standalone tool that 
is used to determine the interaction between two molecules 
that is a target molecule and a ligand molecule. However, 
with the advent of AI technology the applicability of molec-
ular docking has changed. Now molecular docking is being 
used in conjugation with MD simulation and AI-based tools 
in different areas of drug discovery like VS, target identifica-
tion, polypharmacology, and drug repurposing [296]. The 

implementation of MD simulation and AI-based algorithms 
can increase the efficiency and accuracy of molecular dock-
ing. In addition, over the years, limitations in the use of 
molecular docking have also been addressed. For instance, 
in drug designing, molecular docking can be used only for 
those biological targets whose crystal structures are avail-
able as there are many targets whose structures are not avail-
able. Thus, a technique like homology modeling has been 
developed to overcome this hindrance [297]. Further, crystal 
structure data in PDB are increasing exponentially, enhanc-
ing the applicability of molecular docking in drug discovery. 
Table 2 discusses the tools and algorithm that have been 
implemented in in silico QSAR and drug repositioning.

Prediction of physicochemical properties 
and bioactivity

It is a well-established fact that every chemical compound 
is associated with physicochemical properties such as solu-
bility, partition coefficient, ionization degree, permeability 
coefficient, which may hinder the pharmacokinetic proper-
ties of the compound and drug-target binding efficiency. 
Thus, the physicochemical properties of compounds must 
be considered while designing a novel drug molecule [100, 
298]. For this, different AI-based tools have been developed 
to predict the physicochemical properties of chemical com-
pounds. The AI-based tools developed for predicting bio-
physical and biochemical properties of compounds include 
molecular fingerprinting, a SMILES format, Coulomb matri-
ces, and potential energy measurements, which are used in 
the DNN training phase [299, 300]. Recently, Zhang et al. 
developed a QSAR model to predict the six different physi-
ochemical properties of environmental agents extracted 
from environmental protection agency (EPA). Similarly, 
Lusci et al. 2013 constructed a neural network-based model 
to predict the molecular properties. In the study, molecules 
are described by undirected cyclic graphs, whereas the for-
mer approaches for predicting physicochemical properties 
use directed acyclic graphs [301]. Later on, six AI-based 
algorithms were constructed for the prediction of human 
intestinal absorption of compounds. The methods con-
structed are SVM, k-nearest neighbor, probabilistic neural 
network, ANN, PLS, and linear discriminate model. Among 
the above-said models, SVM has higher accuracy of 91.54% 
[302]. In 2016, Zang et al. developed an ML-based model 
for the prediction of physicochemical properties such as 
octanol–water partition coefficient, water solubility, boiling 
point, melting point, vapor pressure, and bioconcentration 
factors of environmental chemicals [303]. Moreover, differ-
ent AI-based tools have been developed such as ALOGPS 
2.1 (http:// www. vcclab. org/ lab/ alogps/) [304], ASNN 
(http:// www. vcclab. org/ lab/ asnn/) [305], E-BABEL (http:// 
www. vcclab. org/ lab/ babel/) [304], PCLIENT (http:// www. 

https://github.com/ChengF-Lab/deepDR
https://github.com/Case-esaC/iDrug
https://github.com/Case-esaC/iDrug
https://github.com/zcwang0702/BiFusion
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vcclab. org/ lab/ pclie nt/) [304], E-DRAGON (http:// www. 
vcclab. org/ lab/ edrag on/) [304], ChemSpider (http:// www. 
chems pider. com/) [306], SPARC (http:// sparc. chem. uga. 
edu/ sparc/) [307], and OSIRIS property explorer (https:// 
www. organ ic- chemi stry. org/ prog/ peo/) [308]. In 2020, a 
study was conducted to design, synthesize, and ADMET 
prediction of bis-benzimidazole as anticancer agents. In the 
same study, the author calculated molecular properties of 
compounds through Lipinski’s rule of five and predicted 
the pre-ADMET properties of the synthetic compounds 
[309]. Further, Puratchikody et al. 2016 used ORISIS prop-
erty explorer in their study to predict the quantitative struc-
tural toxicity of tyrosine derivates intended for safe, potent 
inflammation treatment. The results concluded that out of 
55 potent molecules, only 19 molecules were considered 
as potent cyclooxygenase-2 inhibitors [310]. On similar 
lines, RF- and DNN-based models were constructed to 
predict human intestinal absorption of different chemical 
compounds. Thus, from the examples, it must be concluded 
that the AI-based approach has a significant role in drug 
discovery and development through the prediction of phys-
icochemical properties.

Moreover, the therapeutic activity of drug molecules 
depends on their binding efficiency with the receptor or tar-
get, and thus, the chemical molecule, which are not able to 
show the binding affinity with the drug target, will not be 
considered as a therapeutic agent. For this reason, the pre-
diction of the binding affinity of a chemical molecule with 
the therapeutic target is vital for drug discovery and develop-
ment [311]. Recent advancements in AI algorithms enhance 
the process of binding affinity prediction, which uses simi-
larity features of the drug and its associated target. Several 
web-based tools have been developed, such as ChemMapper 
and the similarity ensemble approach (SEA). Further, ML- 
and DL-based models for the identification of drug-target 
affinity have been constructed, such as KronRLS, SimBoost, 
DeepDTA, and PADME [312]. The KronRLS predicts the 
similarity between a drug and its target to calculate the drug-
target binding affinity based on the ML algorithm. KronRLS 
considered both feature-based and similarity-based interac-
tion while predicting drug-target binding affinity [313]. DL 
approaches such as DeepDTA (https:// github. com/ hkmzt 
rk/ DeepD TA) [314], and PADME [315] predict drug-target 
binding affinity, which depends on the 3-D structure of a 
protein. Beck et al. 2020 conducted a study to predict com-
mercially available antiviral drugs as a potential therapeu-
tic agent against novel coronavirus (SARS-CoV-2) through 
DeepDTA [316]. Similarly, Lee and Kim 2019 predicted the 
drug-target interactions by DNN based on large-scale drug-
induced transcriptome data using PADME [317]. Another 
DL model that uses both RNN and CNN was constructed 
to predict drug-target binding affinity, which is called as 
DeepAffinity (https:// github. com/ Shen- Lab/ DeepA ffini ty) 

[318]. Jiang et al. 2019, using DeepAffinity, proposed a 
novel protein descriptor for identifying drug-target interac-
tion, whereas Born et al. 2020 with the help of Deep Affin-
ity, identified antiviral candidates for SARS-CoV-2 [319, 
320]. The above data validate the importance of ML and 
DL algorithms in physiochemical properties and bioactiv-
ity of drug molecules during drug designing. However, the 
validation and accuracy of such algorithms are still a signifi-
cant drawback from a research perspective. Thus, extensive 
research should be done to maximize the accuracy and preci-
sion of AI-based algorithms through curated and extensive 
data input. In Table 2, we have summarized the tools and 
databases for physiochemical and bioactivity prediction 
based on AI algorithms, including DL, neural networks, 
SVM, and others.

Prediction of mode of action and toxicity 
of compounds

Drug toxicity refers to the chemical molecule’s adverse effect 
on an organism or on any part of the organism due to the 
compound’s mode of action or metabolism. The extended 
scope of AI has the potential to predict the off-target and 
on-target effects of drug molecules along with in vivo safety 
analysis of chemical compounds before their synthesis has 
fascinated the scientists associated with the drug develop-
ment process. The involvement of AI has reduced drug 
development time, cost, attrition rates, and human resources. 
For this different web-based tools have been developed such 
as LimTox (http:// limtox. bioin fo. cnio. es/) [321], pkCSM 
(http:// biosig. unime lb. edu. au/ pkcsm/) [322], admetSAR 
(http:// lmmd. ecust. edu. cn/ admet sar2/) [323], and Toxtree 
(http:// toxtr ee. sourc eforge. net/) [324]. Srivastava et al. 2020 
used admetSAR to evaluate the toxicity of Withania somnif-

era as a therapeutic compound against COVID-19, whereas 
Uygun et al. 2021 incorporated pkCSM for the identifica-
tion of the therapeutic effect and toxicological properties 
of pyrazolo[1,5-a]pyrazine-4(5H)-one derivative on lung 
adenocarcinoma cell line [325, 326]. Advancements in AI-
based approaches led to the development of different toxic-
ity prediction software and web-based tools such as Tox21 
(https:// ntp. niehs. nih. gov/ whatw estudy/ tox21/ index. html) 
[327], SEA (http:// sea. bkslab. org/) [328], eToxPred (https:// 
www. bryli nski. org/ etoxp red-0) [329], and TargeTox (https:// 
github. com/ artem- lysen ko/ Targe Tox) [330]. Tox21 evalu-
ates the toxicity of 12,707 environmental compounds and 
drugs, whereas SEA forecasts the toxicity of 656 marketed 
drugs against 73 unintended targets. TargeTox predicts tox-
icity risk based on the target-drug biological network. In 
2016, Huang et al. predicted the in vivo toxicity profile and 
mechanism characterization of more than 10,000 chemical 
compounds through modeling Tox21, whereas, in the same 
year, Zhou et al. predicted the cancer-relevant proteins using 

http://www.vcclab.org/lab/pclient/
http://www.vcclab.org/lab/edragon/
http://www.vcclab.org/lab/edragon/
http://www.chemspider.com/
http://www.chemspider.com/
http://sparc.chem.uga.edu/sparc/
http://sparc.chem.uga.edu/sparc/
https://www.organic-chemistry.org/prog/peo/
https://www.organic-chemistry.org/prog/peo/
https://github.com/hkmztrk/DeepDTA
https://github.com/hkmztrk/DeepDTA
https://github.com/Shen-Lab/DeepAffinity
http://limtox.bioinfo.cnio.es/
http://biosig.unimelb.edu.au/pkcsm/
http://lmmd.ecust.edu.cn/admetsar2/
http://toxtree.sourceforge.net/
https://ntp.niehs.nih.gov/whatwestudy/tox21/index.html
http://sea.bkslab.org/
https://www.brylinski.org/etoxpred-0
https://www.brylinski.org/etoxpred-0
https://github.com/artem-lysenko/TargeTox
https://github.com/artem-lysenko/TargeTox
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an improved molecular SEA [331, 332]. Further, Gupta and 
Rana. 2019 employed eToxPred to predict the toxicity of 
small molecules of androgen receptor. The authors incor-
porated 1444 characteristics features of small molecules on 
10,273 drugs in which 461 are considered as active and 9812 
are inactive [333].

DeepTox (http:// bioinf. jku. at/ resea rch/ DeepT ox/ tox21. 
html) [334] and PrOCTOR (https:// github. com/ kgayv ert/ 
PrOCT OR) [335], are used for prediction of toxicity of new 
compounds and prediction of the toxicity probability in 
clinical trials, respectively. For example, Robledo-Cadena 
et al. 2020 predicted the effect of non-steroidal anti-inflam-
matory drugs on cisplatin, paclitaxel, and doxorubicin effi-
cacy against cervix cancer cells using PrOCTOR, whereas 
Gilvary et al. 2020 identified the novel indications for 2,576 
small molecules incorporated with 16 different drug fea-
tures for PD and Type 2 diabetes [336, 337]. Similarly, 
using DeepTox, Simm et al. 2018 analyzed and repurposed 
high-throughput imaging assay data to predict the biological 
activity of different chemical compounds that were targeting 
alternative biological pathways and processes [338]. Fur-
thermore, DeepTox was used for the development of several 
ML and DL algorithms, which predicts the toxicity proper-
ties and chemical characteristics features of drug compounds 
such as SMILES2Vec (predicts chemical properties) [339], 
Chemception (DNN-based prediction of chemical proper-
ties) [245], DeepSynergy (prediction of anti-cancer drug 
synergy with DL) [340], and deepAOT (prediction of com-
pound acute oral toxicity) [341]. However, the accuracy and 
precision of DeepTox and PrOCTOR could be increased by 
using large and refined data sets, which could be achieved 
with the pharmaceutical industry’s involvement. Recently, 
other ML-based tools such as SPIDER [342] and read-across 
structure–activity relationships (RASAR) [343] were devel-
oped, which are capable of analyzing β-lapachone targets 
and linking molecular structures and toxic properties of an 
unknown compound, respectively.

Zhang et al. [344] developed different toxicity predic-
tive models for drug-induced liver toxicity based on five 
ML algorithms combined with MACCS or FP4 fingerprint-
ing. The results demonstrated that the best model yielded 
an accuracy rate of 75% against an external validation data 
set [344]. Similarly, several toxicity evaluation algorithms 
were constructed based on ML methods such as relevance 
vector machine (RVM), regularized-RF, C5.0 trees, eXtreme 
gradient boosting (XGBoost), AdaBoost, SVM boosting 
(SVMBoost), RVM Boosting (RVMBoost). The constructed 
models were used to evaluate rat oral acute toxicity, respira-
tory toxicity, and urinary tract toxicity [345–348]. In recent 
years, the execution of deep-learning algorithms has led to 
novel approaches for the molecular representation of chemi-
cal compounds, making DL methods suitable for predicting 
compound toxicity. Further, the potential for DL algorithms 

for toxicity prediction depends on the quality and quantity of 
data sets. In short, more research should be done to make AI-
based algorithms reliable for toxicity prediction. However, 
the current ML-based predictors remain inappropriate to 
replace biological systems, but they are sufficient to extend 
the medicinal chemistry principles in the right direction, 
which reduces the number of synthesis cycles. Further, the 
detailed description of toxicity prediction AI-based algo-
rithms and tools is discussed in Table 2.

Identification of molecular pathways 
and polypharmacology

One of the significant outcomes of AI and ML algorithms 
in drug discovery and development is the prediction and 
estimation of overall topology and dynamics of disease net-
work or drug-drug interaction or drug-target relationships 
[349]. This methodology offers a vast avenue for the identi-
fication of novel molecular therapeutic targets for a particu-
lar disease. Text mining-driven databases like DisGeNET, 
STITCH, STRING are widely used to ascertain gene-dis-
ease associations, drug-target associations, and molecular 
pathways, respectively. For instance, Gu et al. 2020 used 
the similarity ensemble approach to identify targets for 197 
most commonly used Chinese herbs. Later, the DisGeNET 
database was used to associate those drug targets with dif-
ferent diseases, thus linking herbs with diseases in which 
they can be used [350]. Further, chen et al. 2019 used the 
STITCH database to find targets of potential drugs short-
listed for esophageal carcinoma [351]. Likewise, Taha et al. 
2020 used the STITCH database to find targets for active 
constituents of Nandina domestica, a plant used for treat-
ing various tumors. Later STRING database was used to 
construct compound-target pathways with the help of the 
cytoscape tool [352].

In medicinal chemistry, polypharmacology refers to 
designing a single drug molecule capable of interacting 
with multiple targets in a disease-related drug-target bio-
logical network. It is best suited for designing a promising 
therapeutic agent for more complex diseases such as cancer, 
neurodegenerative disease (NDDs), diabetes, heart failure, 
and many others [353–355]. ML-based methods have the 
potential to analyze guilt-by-association molecular networks 
due to strong mining capabilities and data analysis. Further, 
ML models assist in the rational design of multitarget ligand 
through the generation of chemical compounds with desired 
polypharmacological features as ML models generate a vast 
number of chemical structures with different chemical and 
topological features. Thus, the probability of discovering 
multi-target ligands increases. Furthermore, ML models help 
in the identification of multi-target ligands, where there are 
dissimilar binding pockets. Recent advancements in AI in 
drug discovery and development have led to the generation 

http://bioinf.jku.at/research/DeepTox/tox21.html
http://bioinf.jku.at/research/DeepTox/tox21.html
https://github.com/kgayvert/PrOCTOR
https://github.com/kgayvert/PrOCTOR
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of web-based tools and stand-alone software packages for 
polypharmacology prediction such as polypharmacology 
browser (PPB) (http:// www. gdb. unibe. ch/) [356], TarPred 
(http:// www. dddc. ac. cn/ tarpr ed/) [140], Self-Organizing 
Map Based Prediction of Drug Equivalence Relationship 
(SPiDER) (http:// modla bcadd. ethz. ch/ softw are/ spider) 
[357], Targethunter (https:// www. cblig and. org/ Targe tHunt 
er3D/) [358], PharmMapper (http:// lilab- ecust. cn/ pharm 
mapper/) [359], ChemMapper (http:// lilab. ecust. edu. cn/ 
chemm apper/) [360], and Swiss Target Prediction (Swis-
sTargetPrediction) (http:// www. swiss targe tpred iction. ch/) 
[361]. Poirier et al. 2018 conducted an experiment using 
PPB for the identification of lysophosphatidic acid acyltrans-
ferase β as a therapeutic target of nanomolar angiogenesis, 
whereas Ozhathil et al. 2018 identified potent and selective 
small-molecule inhibitors of cation channel transient recep-
tor potential cation channel subfamily M member 4 using 
PPB [362, 363]. Further, Vleet Van et al. 2018 implemented 
the TarPred tool for screening strategies and methods for 
improved off-target liability prediction, whereas, in the same 
year, Ratnawati et al. predicted the active compounds from 
SMILES codes using backpropagation algorithm [364, 365]. 
Among the above said web-based tools PharmMapper and 
ChemMapper were frequently used for current research. For 
example, synergistic mechanism of huangqi and huanglian 
for Diabetes Mellitus [366], investigation of blood enrich-
ing mechanism of danggui buxue decoction [367], and pre-
diction of multiple mechanisms of Hedyotis diffusa Willd. 
On Colorectal Cancer [368], used PharmMapper. Similarly, 
identification of human copper trafficking blocker in can-
cer [369], identification of multi-target ligands through 
chemical-protein interaction in AD [370], prediction of the 
anticancer mechanism of Kushen Injection against Hepato-
cellular carcinoma [371], and discovery of Pteridin-7(8H)-
one-Based as therapeutic compound against epidermal 
growth factor receptor kinase T790M/L858R mutant [372], 
were performed using ChemMapper. One major limita-
tion of AI algorithms for polypharmacology prediction is 
inadequate data or reliability of the data set. Thus, quantum 
chemical calculations, which provide fine-tuned data set, 
should be done and, thus, which can increase the accuracy 
of a predictive model.

Moreover, AI in drug development opened the gates for 
identifying molecular pathways or molecular targets for 
the treatment of human disease through genomics informa-
tion, biochemical features, and target specifications [373]. 
“OpenTargets” (https:// www. opent argets. org/) [374], a 
freeware and ML-based tool, used for prioritizing potential 
therapeutic drug targets with over 71% accuracy. Recently, 
Nabirotchkin et al.identified the unfolded protein response 
and autophagy-related pathways of common approved drugs 
against COVID-19, whereas Lopez-Cortes et al. identified 
allele frequencies in colorectal cancer [375, 376]. Further, 

GWAS studies conducted by Isac-Lopez et al. [377] pre-
dicted the multiple risk loci and highlighted fibrotic and 
vasculopathy pathways. The results demonstrated that 27 
independent genome-wide-associated signals and 13 novel 
risk loci were associated with systematic sclerosis. Martin 
et al. studied chromatin interactions to predict novel gene 
targets in rheumatic diseases. In the same study, the authors 
concluded that 454 high confidence genes were associated 
with rheumatic disease, in which 48 were drug targets, and 
11 were existing targets. Finally, they demonstrated that 367 
drugs were suitable for repositioning [378].

Implementation of arti�cial intelligence 
in de novo drug designing

The iterative process to design 3D structures of receptors to 
generate a novel molecule is termed as de novo drug design-
ing, which is intended to produce new dynamics. However, 
de novo drug designing has not seen a boundless use in med-
ication disclosure. Further, the field has seen some recovery 
recently because of advancements in the field of AI [421, 
422]. VS has emerged as a massive tool in the drug improve-
ment measure, as it conducts profitable in silico look in an 
enormous number of blends, further, extending yields of 
potential medicine leads. As a subset of AI, ML is a tech-
nique for coordinating VS for drug leads, which generally 
incorporates gathering a filtered set of compounds, contain-
ing known actives and inactive compounds to train a model 
[423, 424]. In the wake of setting up the model, it is tested 
and, if accurate enough, used on a previously unknown data-
base, to identify novel drug. In this section, we discuss how 
AI has proved to be a boon for drug designing using the de 
novo technique.

In one study, the researchers utilized the indolent space 
portrayal to prepare a model dependent on the quantitative 
estimate of drug-likeness (QED) drug-similarity score and 
the manufactured availability score synthetic accessibility 
score (SAS) [425]. In another distribution, the presentation 
of such a variational autoencoder was contrasted with an 
antagonistic autoencoder [426]. The ill-disposed autoen-
coder comprises of a generative model delivering novel 
compound structures. A second discriminative antagonistic 
model is prepared to differentiate genuine particles from pro-
duced ones, while the generative model attempts to trick the 
discriminative one [427]. The antagonistic autoencoder cre-
ated more substantial structures than the variational autoen-
coder in generation mode essentially. In mix with an in silico 
model, novel structures anticipated to be dynamic against 
the dopamine receptor type, 2 could be gotten. Researches 
utilized a generative ill-disposed organization (GAN) to pro-
pose mixes with putative anticancer properties [428].

http://www.gdb.unibe.ch/
http://www.dddc.ac.cn/tarpred/
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RNN has likewise been effectively utilized for de novo 
drug design. Since SMILES strings encode substance struc-
tures in a grouping of letters, RNNs have been utilized to 
generate compound structures. It was observed that RNNs 
have the potential to utilize SMILES strings for drug design-
ing [429]. A similar methodology was likewise effectively 
utilized for the development of novel peptide structures 
[430]. Neural network learning was effectively applied to 
inclination the created mixes toward wanted properties 
[431]. Similarly, transfer learning was utilized as another 
system to create novel synthetic structures with an ideal 
natural action. In the subsequent steps, the organization is 
prepared to get familiar with the SMILES syntax with a huge 
preparing set [432, 433]. In the subsequent advance, the 
preparation is proceeded with mixes having the ideal move-
ment. Moreover, additional epochs of training were adequate 
to reach the stage of novel combinations into a compound 
space involved by dynamic atoms. Five atoms were com-
bined in light of such a methodology, and the plan action 
could be affirmed for four particles against atomic, chemical 
receptors [434]. A few distinct designs have been proposed, 
which have created legitimate, important novel structures. 
The novel synthesis has been investigated by these strate-
gies, with the property dissemination of the created mol-
ecules or atoms being similar to the extensive training set 
used. The primary application for this strategy was adequate, 
with 4 out of 5 atoms indicating the ideal action [435]. Opti-
mization of AI and multi-objective has been a promising 
solution to bridge the chemical and biological phases. Novel 
pairs of multi-objectives based on RNN for the automated 
de novo design based on SMILES were developed to find 
the best possible match between physicochemical properties 
and their constrained biological targets. The results indicated 
that AI and multi-objective optimization allows capturing 
the latent links joining chemical and biological aspects, thus 
providing easy-to-use options for customizable design strate-
gies, which proved especially effective for both lead genera-
tion and lead optimization [436].

ML models like SVM, RF, DNNs, and many others have 
been used for drug discovery for analyzing the pharmaceu-
ticals applications from docking to VS [437]. Recently, drug 
repurposing has emerged as an innovative approach to mini-
mize drug development duration that usually involves data 
mining and AI [438]. A group proposed a question–answer 
artificial system (QAAI) that had the capability to repur-
pose drugs that used Google semantic AI universal encoder 
to compute the sentence embedding in the red brain JSON 
database. The study validated prediction for the lipoxyge-
nase inhibitor drug zileuton as a modulator of the NRF2 
pathway in vitro, with potential applications to reduce mac-
rophage M1 phenotype and reactive oxygen species pro-
duction. This novel approach has been proved to effective 
for reposition in NDDs [439]. With the rapid development 

of systems-based pharmacology and polypharmacology, 
method development for the rational design of multi-target 
drugs has to become urgent. The first de novo multi-target 
drug configuration program known as LigBuilder V3 (http:// 
www. pkumdl. cn/ ligbu ilder3/) has been devised to design 
ligands for different receptors, numerous coupling locales 
of one receptor, or different configurations of one receptor. 
LigBuilder V3 is again used for multi-target drug plans and 
enhancement, particularly for compact ligands for proteins 
with varying ligand binding sites [440]. De novo drug design 
actively seeks to use sets of chemical rules for the fast and 
efficient identification of structurally new chemotypes with 
the desired set of biological properties. Moreover, fragment-
based de novo design tools have been successfully applied in 
the discovery of non-covalent inhibitors. Herein a new pro-
tocol, called Cov_FB3D, has been devised, which involves 
the in silico assembly of potential novel covalent inhibitors 
by identifying the active fragments in the covalently binding 
site of the target protein [441].

Arti�cial intelligence: possible role 
in pharmaceutical manufacturing 
and clinical trial design

The use of computational methods is quite well established 
in the pharmaceutical industries. However, the introduction 
of AI has given a broader scope to develop new approaches 
that can improve and optimize drug discovery [442]. This 
has not only encouraged the scientific community but has 
also resulted in the growing partnership between the phar-
maceutical industry and AI companies [443]. A study stated 
that the overall success rate for 21,143 drugs was nearly 
5.2% in 2013, which was less than 11.2% in 2005. Thus, 
the use of AI is mainly associated with a need to reduce 
attrition and costs [444]. It usually takes 12 years to bring a 
new drug to the market, which can cost up to 3 billion USD 
[445]. Further, it is a huge task to find a new drug when there 
are ~  1060 existing drug-like molecules [446]. The current 
drug discovery challenges are related to the toxicity of the 
drug, its side effects, choosing the right target site, appropri-
ate dosages, and even intellectual property [447]. The phar-
maceutical industry mostly does not share pharmacokinetic 
and pharmacodynamic measurements of the drugs until they 
are approved. In addition to that, very less drug discovery 
data are available to train AI models [448]. There needs to be 
a community that can regulate and manage preclinical and 
clinical pharmacology data to accelerate the progress of AI 
in this field. Recent advances in AI have impacted clinical 
pharmacology in many ways like literature searching and 
processing, interactions with online predictive ML models, 
ML methods in framing policy to encourage healthcare in 
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many countries and also to get predictive analysis for drug-
related information [449, 450].

When a drug candidate successfully passes all preclinical 
tests, it is then administered to patients under clinical trials, 
which comprises of three phases: Phase 1, drug safety test-
ing with a small number of people; Phase 2, drug efficacy 
testing with the small number of human subjects affected by 
a particular disease; Phase 3, efficacy studies with a large 
number of patients and after passing the clinical trials FDA 
reviews it for approval and commercialization [451, 452]. 
Further, the failure rate of clinical trials adds up to the drug 
development process’s inefficiency, and each failed trial 
ruins the investment and impairs the costs of preclinical 
testing. The two main reasons behind high failure rates are 
improper patient selection and inefficient monitoring during 
trials. Furthermore, after the introduction of AI technology, 
the success rates of clinical trials have improved drasti-
cally [453]. A system for clinical trial matching has been 
developed by IBM Watson, which uses medical records of 
patients and an abundance of past clinical trial data to cre-
ate detailed clinical findings profiles. It could also be used 
to keep a check on patients enrolled [454]. AI models can 
also reduce the cost of clinical trials by enhancing the suc-
cess rate by analyzing toxicity, side effects, and other related 
parameters [455]. One such example, which predicted the 
outcome of phase I and phase II clinical trials, was based on 
DL and calculated the probability of possible side effects 
and pathway activation score, which was further used to 
train the model [456]. Similarly, another project named 
Visual Physiological Human was made to support in silico 
trials [457]. Further, development in AI technology will help 
in better management of clinical trial data, ultimately aiming 
to develop personalized medicines.

Involvement of arti�cial intelligence in drug 
development: a case of neurodegenerative 
diseases

NDDs are lethal, multifaceted, enervating disorders of the 
central nervous system and a major cause of death world-
wide. AD, PD, Amyotrophic Lateral Sclerosis (ALS), and 
Huntington’s disease (HD) are some of the most commonly 
observed NDDs, which can ultimately lead to the death of 
the neurons in different areas of the central nervous system 
[458]. The aggregation of toxic, misfolded, cytoplasmic pro-
teins in different brain regions is one of the primary reasons 
for the inception of these disorders [459]. Further, these dis-
orders can exhibit varying symptoms like cognitive decline, 
slow movement, tremors, memory loss, depression, speaking 
problems, muscle stiffness [460, 461]. The major challenge 
posed by NDDs is in the area of drug discovery as to date, 
no drug has been discovered, which can arrest and revert the 

progression of this disorder. Hence, there is a dire need for 
new drug targets and drug compounds, which can alleviate 
the symptoms and mitigate the diseased conditions of the 
central nervous systems [462]. Nowadays, ML is extensively 
used to find novel targets and biomarkers associated with 
NDDs. For example, Martínez-Ballesteros et al. 2016 com-
bined DT, quantitative association rules, and hierarchical 
clustering to determine potential risk genes with AD via 
gene expression profiling of patient and control samples. 
Further, [463] used a combination of protein–protein interac-
tion networks, autoencoder, and SVM to predict novel target 
genes associated with PD. Likewise, [464] used ML models 
like RF, DT, generalized linear model, and rule induction to 
find out risk genes of HD through gene expression profiling. 
Moreover, [465] used a CNN trained on an extensive GWAS 
data set to find novel risk single nucleotide polymorphisms 
and genes associated with ALS.

Moreover, ML techniques are also being used to find 
suitable inhibitors of target proteins implicated in NDDs. 
For instance, [466] applied a combination of VS, ML, and 
molecular docking to find class 1 and class IIb histone dea-
cetylase inhibitors, as HDAC enzymes have been reported 
to promote AD neurotoxicity. Here, ML was used for the 
classification of inhibitors and non-inhibitors post-VS. Fur-
ther, [467] used descriptors derived from MD simulation 
trajectories of the caspase-8 protein–ligand complex to train 
ANN and RF models to find inhibitors of caspase 8 protease, 
a protease that has been implicated in AD pathogenesis. In 
another study, [468] used data from a traditional Chinese 
medicine database, followed by VS, molecular docking, and 
ML techniques, including DL, to find inhibitors of GSK3β, 
an enzyme implicated in AD. Further, MD simulation was 
used to assess the stability of GSK3β-ligand interactions. 
Additionally, Ponzoni et al. 2019 made a QSAR model for 
finding inhibitors of the BACE1 enzyme, which is responsi-
ble for β-amyloid (Aβ) aggregation in AD. Here, the QSAR 
model was built using an optimum set of molecular descrip-
tors, which were sorted out using an amalgamation of ML 
algorithms, hybridization techniques, backward elimination 
strategy, and visual analysis [469]. Similarly, [470] used a 
cascade of Naïve Bayes networks to find potent and safe 
abelson tyrosine-protein kinase 1 (c-Abl) inhibitors, which 
promote neuroprotection in PD. Likewise, Shao et al. 2018 
used integration of SVM algorithm and Tanimoto similarity-
based clustering, followed by in vitro experiments, to find 
novel antagonists of both  A2A adenosine receptor as well as 
Dopamine  D2 receptor, as it has been observed that blocking 
these two receptors leads to neuroprotection in PD [471]. In 
addition, [472] implemented molecular docking, AI-QSAR, 
and MD simulations to find inhibitors of the NLR family 
pyrin domain containing 3 (NLRP3), an inflammasome 
involved in PD pathogenesis. Here, VS followed by dock-
ing was used to shortlist compounds from the traditional 
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Chinese medicine database, whereas AI and QSAR models 
were used to ascertain bioactivity of the compounds, fol-
lowed by assessing their binding stability via MD simula-
tions [472]. Similarly, [473] used molecular docking, AI, 
and MD simulations to discover inhibitors of Galectin-3 
a protein implicated for neuroinflammation in HD. Here, 
molecular docking was used for initial shortlisting, followed 
by evaluating the bioactivity of compounds through ML and 
assessing their binding stability through MD simulations. 
Further, different studies have used ML algorithms for drug 
repurposing in NDDs. Similarly, X. Zeng et al. 2019 devel-
oped a DL-based drug repurposing tool, called deepDR 
(https:// github. com/ ChengF- Lab/ deepDR), which is used to 
find new repurposed drugs for AD and PD [291]. Further-
more, [474] proposed telmisartan as potential repurposed 
drug for AD by using a genetic network-driven classifica-
tion model. In addition, [475] proposed a drug repurposing 
strategy for PD by scanning scientific literature through an 
integration of knowledge representation learning and ML 
algorithms .

Future challenges and possible solutions

At present, the major challenge for the pharmaceutical 
industry while developing a new drug is its increased costs 
and reduced efficiency. However, ML approaches and recent 
developments in DL come with great opportunities to reduce 
this cost, increase efficiency, and save time during the drug 
discovery and development process. Advances in AI algo-
rithms, especially in DL approaches along with improving 
architectural hardware and easy accessibility of big data, are 
all indicating toward the third wave of AI. AI approaches 
in drug development have aroused great interest among 
researchers, such that many pharmaceutical companies 
have collaborated with AI companies. Moreover, the num-
ber of startups in this field has also escalated and reached 
230 by June 2020 [476]. Further, DL approaches integrate 
data at multiple levels through nonlinear models, which is 
the shortcoming of the AI and ML approaches. However, 
integration of data at multiple levels makes DL algorithm 
advantageous as it provides great accuracy and precision. 
Moreover, in comparison with AI and ML algorithms, DL 
provides a much more flexible architecture to create a neu-
ral network for a specific problem [477–480]. Applications 
of AI like natural language processing, image, and voice 
recognition are easily doable these days, which has beaten 
humans in terms of performance [481]. So, it comes with no 
surprise that AI can very well be used in the drug discovery 
process. Today, AI is used in drug discovery for target iden-
tification, hit discovery, lead optimization, ADMET predic-
tion, and structuring clinical trials. Despite great success, 
there are many remaining challenges like high-quality data 

acquisition under which there are two significant concerns. 
Firstly, labeling cannot be binary as the action of drugs in 
biological systems is complicated; secondly, the amount of 
data available in drug discovery is infinitesimal compared 
to the enormous amount of information available. There-
fore, a community is required that not only provides quan-
tity but the quality of data. In the pharmaceutical industry, 
open data sharing is not common, and Pistoia alliance has 
taken the initiative to start a movement that has encouraged 
many companies to share their data with others. They also 
intend to establish a uniform data format, which is techni-
cally challenging [161]. A possible solution to deal with this 
problem is to develop an algorithm that can handle sparse 
data; one such has been developed by Stanford University 
named “one-shot learning,” which predicts properties of a 
drug on the basis of heterogeneous data [482]. Moreover, 
the accuracy and uncertainty of the experimental data can 
be used for model building, that is instead of establishing 
new ML technologies, one can put efforts in training the 
existing one by tuning large number of hyperparameters 
and optimizing it for good results, although some studies 
indicated that some reasonable parameters can be used to 
start the optimization [435]. Molecular representation is also 
a challenge as it is one of the governing factors in model 
building. Few recently developed models learn task-related 
features from the raw data and refine the molecular represen-
tation to a standard. Earlier, drug repurposing used to rely 
only on clinical observations. However, the current large 
amount of data comprising of scientific literature, patents, 
and clinical trial results can collectively be used to improve 
the screening process. Additionally, DL-based VS can make 
full use of the data and reduce false-positive rates obtained 
due to imbalance in positive and negative data. Lead opti-
mization is also a challenge in order to develop an efficient 
drug with good ADMET properties and target activities; 
however, these parameters are independent and at times 
mutually incompatible with each other. This problem can 
be solved by optimizing each parameter separately and fur-
ther improving the model. Pharmaceutical companies’ faces 
trouble recruiting sufficient number of patients for clinical 
trials. AI approaches will help identify and recruit target 
patients and will also help in managing the collected data. 
Regarding drug discovery for neurodegenerative disorders, 
the major problem is their unknown pathophysiology which 
makes drug identification even more challenging. The “black 
box” nature of ML models is an additional challenge where 
even experts cannot explain that how the model arrives at 
a result and comprehend the biological mechanism behind 
it. Furthermore, the escalating numbers of ML models and 
their claim to be latest have left non-professional helpless 
as they cannot decide which model to choose to solve their 
problem. Thus, it will be better if users and developers agree 
upon standard objective evaluation and thereafter check 
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the performance of the model. Further, it is important to 
note that most of the countries do not give patents to those 
inventions which are exclusively created by AI technol-
ogy. Moreover, companies who use AI technology for drug 
discovery has to go through vigorous process to copyright 
their work so as to secure patent rights. Security is also a 
major concern, as AI-driven personalized medicine requires 
person’s genetic code for which personal information will 
be required. Finally, faster computation will be required for 
handling big data and it is said that in future the current 
supercomputers will be replaced by quantum computers or 
another technology which will do the job in minutes rather 
than taking hours. Although AI has given many novel targets 
and novel compounds for different diseases, still there has 
not been any success story where a compound generated 
through AI made it to the market for public use. Recently, for 
the first time ever, a novel target and its novel inhibitor has 
been proposed through AI-based tools. In silico medicine, a 
biotechnology company, proposed a novel target involved in 
idiopathic pulmonary fibrosis and made its novel inhibitor 
from scratch, through their AI-based tools. The identified 
small molecule inhibitor has showed good efficacy in human 
cells and animal models. In December 2020, in silico nomi-
nated their small molecule inhibitor for investigational new 
drug (IND) enabling studies and they are targeting clinical 
trials by early 2022. If the trials are successful, then it will 
be, for the first time ever, where a novel target and its inhibi-
tor was proposed through AI-based tools and got approved. 
Though there are some unavoidable obstacles and tremen-
dous amount of work has to be done to incorporate AI tools 
in drug discovery cycle, there is no doubt that in the near 
future AI will bring revolutionary changes in drug discovery 
and development process.
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