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BACKGROUND

Nonophthalmologist physicians do not confidently perform direct ophthalmos-

copy. The use of artificial intelligence to detect papilledema and other optic-disk 

abnormalities from fundus photographs has not been well studied.

METHODS

We trained, validated, and externally tested a deep-learning system to classify 

optic disks as being normal or having papilledema or other abnormalities from 

15,846 retrospectively collected ocular fundus photographs that had been obtained 

with pharmacologic pupillary dilation and various digital cameras in persons from 

multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 coun-

tries were used for training and validation, and 1505 photographs from 5 other 

sites were used for external testing. Performance at classifying the optic-disk ap-

pearance was evaluated by calculating the area under the receiver-operating-

characteristic curve (AUC), sensitivity, and specificity, as compared with a reference 

standard of clinical diagnoses by neuro-ophthalmologists.

RESULTS

The training and validation data sets from 6779 patients included 14,341 photo-

graphs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks 

with other abnormalities. The percentage classified as being normal ranged across 

sites from 9.8 to 100%; the percentage classified as having papilledema ranged 

across sites from zero to 59.5%. In the validation set, the system discriminated 

disks with papilledema from normal disks and disks with nonpapilledema abnor-

malities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and 

normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the 

external-testing data set of 1505 photographs, the system had an AUC for the 

detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% 

CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1).

CONCLUSIONS

A deep-learning system using fundus photographs with pharmacologically dilated 

pupils differentiated among optic disks with papilledema, normal disks, and disks 

with nonpapilledema abnormalities. (Funded by the Singapore National Medical 

Research Council and the SingHealth Duke–NUS Ophthalmology and Visual Sci-

ences Academic Clinical Program.)
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E
xamination of the optic nerves is a 

fundamental component of the clinical 

examination, but direct ophthalmoscopy 

is usually avoided or poorly performed by gen-

eral physicians and nonophthalmic specialists.1-4 

Detection of papilledema, defined as optic-nerve 

edema from intracranial hypertension, and the 

ability to determine that the optic disk is normal 

are valuable in the evaluation of patients with 

headache and other neurologic symptoms. The 

findings on ophthalmoscopy influence diagnos-

tic strategy and treatment options.3-13 Failure to 

detect papilledema may result in visual loss and 

neurologic complications.2-8,13

Digital ocular fundus photography has been 

used to obtain optic-disk images for the purpose 

of detecting papilledema and other optic-disk 

abnormalities in a variety of clinical settings, 

including emergency departments, urgent care 

centers, and neurologic and general adult and 

pediatric clinics.1,4,7,12,14-18 In one study conducted 

in an emergency department,12 8.5% of patients 

presenting with headache had abnormal findings 

on fundus photographs. However, these photo-

graphs need to be interpreted by physicians on-

site at the time of photography15 or sent through 

tele-ophthalmology platforms for assessment by 

ophthalmologists or other experts.17,19,20

Artificial intelligence and deep learning have 

been developed for the automated detection of 

diabetic retinopathy and glaucomatous optic neu-

ropathy from ocular fundus photographs.21-30 

We investigated whether a deep-learning sys-

tem could aid in the diagnosis of optic-nerve 

abnormalities, particularly papilledema, from 

fundus photographs. We trained, validated, and 

externally tested a deep-learning system to 

identify and classify normal optic disks, disks 

with papilledema, and disks with other abnor-

malities from digital ocular fundus photographs 

collected from a large, international, multiethnic 

population.

Me thods

Study Design and Oversight

We conducted a training, validation, and external-

testing study on an artificial intelligence–based 

deep-learning system using digital color ocular 

fundus photographs, retrospectively collected by 

an international consortium (BONSAI: Brain and 

Optic Nerve Study with Artificial Intelligence) 

composed of neuro-ophthalmologists. (For details 

on study group organization and participating 

centers, see Section S1 in the Supplementary Ap-

pendix, available with the full text of this article 

at NEJM.org.)

We first trained and validated the deep-learn-

ing system using 14,341 fundus photographs ob-

tained at 19 sites in 11 countries; we then exter-

nally tested the system on 1505 photographs 

obtained at 5 other centers in 5 countries. The 

study was approved by the centralized institu-

tional review board of SingHealth, Singapore, and 

at each contributing institution and was con-

ducted in accordance with the principles of the 

Declaration of Helsinki. Informed consent was 

exempted, given the retrospective nature of the 

data collection and the use of deidentified ocu-

lar fundus photographs.

Image Acquisition

Retrospectively collected fundus photographs were 

obtained from one or both eyes after pharmaco-

logic pupillary dilation, with the use of various 

commercial digital fundus cameras. (For details 

on the cameras used in the study, see Section 

S2b and Table S1.) Images were centered on either 

the macula or the optic disk, but always includ-

ing the optic disk, at various fields of view (sub-

tending 20 to 45 degrees). Deidentified, unaltered 

images (size, 0.5 to 2 megabytes per image) were 

transferred to the Singapore Eye Research Insti-

tute for inclusion in the study.

Study Patients

The study included patients with optic-nerve dis-

orders and healthy persons of multiple ethnic 

groups from 24 centers in 15 countries. The 

ocular fundus photographs, including those of 

normal optic nerves and a variety of common 

neuro-ophthalmic conditions affecting the optic 

nerves, were collected in each center by neuro-

ophthalmologists who routinely obtain fundus 

photographs and who had access to the patients’ 

medical records (principal investigators from each 

of these centers are authors of this article). In ad-

dition, photographs of normal optic disks were 

randomly selected from 3 centers, including In-

dian, Asian, and non-Asian patients, which pro-

vided large sets of photographs of normal optic 

disks, as determined by general ophthalmolo-

gists. (For patient characteristics, see Section S2a, 

Fig. S1, and Table S2.)
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Definition of Optic-Disk Abnormalities

Neuro-ophthalmologists provided a specific diag-

nosis, gathered retrospectively from medical 

rec ords, for each fundus photograph at the time 

of clinical evaluation, considered for the purposes 

of this research to be the reference standard, on 

the basis of the appearance of the optic-nerve 

head as well as the medical evaluation, ancillary 

testing, and follow-up visits. All the patients seen 

by neuro-ophthalmologists underwent neuro-

ophthalmologic evaluations, including visual-

field and other tests, in order to obtain a final 

clinical diagnosis pertaining to each photo-

graph, according to standard diagnostic criteria 

that could include brain imaging and lumbar 

puncture in some cases. (For details on the di-

agnostic process and reference standards, see 

Section S2a.) Patients from the three centers that 

provided photographs of normal fundi also un-

derwent comprehensive evaluations by ophthal-

mologists.

Fundus photographs were classified by the 

study steering committee into three groups, 

consistent with the original reference diagnosis: 

normal optic disk; disk with papilledema due to 

proven intracranial hypertension; and disk with 

other abnormalities, including other visible ab-

normalities of the optic-nerve head such as ante-

rior ischemic and inflammatory optic neuropa-

thies, optic-disk drusen, optic atrophy, and 

congenital optic-nerve abnormalities. Patients 

with normal optic nerves were included only in 

the absence of any ocular conditions such as 

substantial media opacities, retinal disorders, 

or glaucoma. These three groups were considered 

reference standards for training, validation, and 

external testing.

Development of the Deep-Learning 

Classification Model

Our system consisted of a segmentation network 

(U-Net) to detect the location of the optic disk 

from fundus photographs and a classification 

network (DenseNet) to classify the optic disk 

into one of the three classes: normal disk, disk 

with papilledema, and disk with other abnor-

malities. To visualize optic-nerve abnormalities, 

we used a class-activation map (Fig. S2). A five-

fold cross-validation was performed on the pri-

mary data set to differentiate among normal 

optic disks, disks with papilledema, and disks 

with other abnormalities (Fig. S3). With the use 

of the same thresholds as on the primary data 

set, the diagnostic performance of the three-

class classification model was then assessed on 

the five independent external-testing data sets. 

(For details of the deep-learning system, see Sec-

tion S2c, Fig. S4, and Table S3.23,24)

Statistical Analysis

To determine performance characteristics, we 

used the one-versus-rest strategy and calculated 

the area under the receiver-operating-character-

istic curve (AUC), sensitivity, specificity, and ac-

curacy for the following three cases according to 

the results of our classification model: normal 

as compared with abnormal optic disks (includ-

ing disks with papilledema and disks with other 

abnormalities), disks with papilledema as com-

pared with those without papilledema (including 

normal disks and disks with nonpapilledema 

abnormalities), and disks with nonpapilledema 

abnormalities as compared with normal disks 

and disks with papilledema. Predictive values for 

the classification of papilledema and other optic-

disk abnormalities were also calculated for each 

external-testing site. Bootstrapping was used to 

estimate 95% confidence intervals of the perfor-

mance metrics, with the patient as the resam-

pling unit. (For details on statistical and boot-

strapping procedures, see Section S2d.)

R esult s

Characteristics of the Data Sets

A total of 15,846 photographs (from 7532 pa-

tients [71.0% with photographs of both eyes, 

17.6% with photographs of one eye, and 11.4% 

with repeat photographs during follow-up visits]; 

mean age, 48.6 years [range, 3 to 98]; 43.4% 

men or boys) were used to train, validate, and 

externally test the performance of the deep-

learning system, after the exclusion of 153 pho-

tographs because of poor quality or poor centra-

tion of the photograph, with the optic disk being 

cut off at the edge. (For details on the inclusion 

and exclusion of photographs, see Section S2 and 

Fig. S1.)

The system was trained and validated on 

14,341 photographs collected from 6779 patients 

in the first 19 sites of the BONSAI consortium, 

including 9156 images of normal optic disks, 

2148 of disks with confirmed papilledema from 

proven intracranial hypertension, and 3037 of 
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disks with other abnormalities. The percentage 

of images classified as being normal ranged 

across data sets from 9.8 to 100%; the percent-

age classified as having papilledema ranged 

across data sets from zero to 59.5%. A separate 

set of 1505 photographs that were collected 

from 5 other centers, including 613 images of 

normal disks, 360 of disks with papilledema, 

and 532 of disks with other abnormalities, was 

used for the external testing (Table 1).

Classification Performance in the Validation 

Data Set

In the validation data set, the system discrimi-

nated normal from abnormal optic disks (includ-

ing disks with papilledema and disks with other 

abnormalities) with an AUC of 0.99 (95% confi-

dence interval [CI], 0.99 to 0.99) and discrimi-

nated disks with papilledema from all other 

optic disks (normal disks and disks with non-

papilledema abnormalities) with an AUC of 

Table 1. Summary of Training, Validation, and External-Testing Data Sets, According to Diagnosis of Fundus Images.

Location of Center
Normal 
Disks

Disks with 
Papilledema

Disks with Other 
Abnormalities* Total

number of images

Primary training and validation data sets

Angers, France 116 369 701 1186

Atlanta, GA, United States 441 1146 340 1927

Baltimore, MD, United States 295 104 49 448

Bologna, Italy 43 13 264 320

Bordeaux, France 19 25 26 70

Chennai, India 169 124 423 716

Coimbra, Portugal 61 28 244 333

Geneva, Switzerland 66 15 59 140

Grenoble, France 130 6 78 214

Guangzhou, China 27 0 91 118

Hong Kong, China 722 16 316 1054

Lille, France 330 0 0 330

London, United Kingdom 234 40 159 433

Manila, Philippines 17 17 39 73

Nagpur, India 1911 0 0 1911

Paris, France 152 89 53 294

Singapore, Singapore 4053 42 83 4178

Sydney, Australia 351 86 95 532

Syracuse, NY, United States 19 28 17 64

External-testing data sets

Bangkok, Thailand 177 38 104 319

Copenhagen, Denmark 90 47 63 200

Freiburg, Germany 98 92 138 328

Rochester, MN, United States 92 95 97 284

Tehran, Iran 156 88 130 374

Total at all centers 9769 2508 3569 15,846

*  Other optic-disk abnormalities included nonarteritic anterior ischemic optic neuropathy (760 images), anterior inflam-
matory optic neuritis (390), other causes of optic-disk swelling (164), optic-disk drusen (570), optic-disk congenital 
abnormalities (56), and optic atrophy (1629).
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0.99 (95% CI, 0.98 to 0.99), a sensitivity of 93.2% 

(95% CI, 91.8 to 94.5), and a specificity of 95.1% 

(95% CI, 94.7 to 95.6). The system also discrimi-

nated disks with nonpapilledema abnormalities 

from normal disks and disks with papilledema 

with an AUC of 0.97 (95% CI, 0.97 to 0.97) (Ta-

ble 2 and Fig. S3).

Classification Performance in the External-

Testing Data Sets

In the external-testing data sets, the AUCs were 

0.98 (95% CI, 0.97 to 0.98), 0.96 (95% CI, 0.95 to 

0.97), and 0.90 (95% CI, 0.88 to 0.92) for the 

classification of normal disks, disks with papill-

edema, and disks with other abnormalities, respec-

tively (Table 2 and Fig. 1). Across the five exter-

nal-testing data sets, the AUCs ranged from 0.96 

to 0.99 for the discrimination of normal from 

abnormal optic disks and from 0.93 to 0.98 for 

the discrimination of disks with papilledema 

from all other optic disks. (For details on the 

classification performance of the system on the 

individual external-testing data sets, see Table S4.)

The overall accuracies of our deep-learning 

system for the detection of normal disks, disks 

with papilledema, and disks with other abnor-

malities in the external-testing data sets were 

91.8% (95% CI, 90.3 to 93.3), 87.5% (95% CI, 

85.5 to 89.3), and 81.1% (95% CI, 78.8 to 83.3), 

respectively. In the five external-testing data sets, 

the trained system had an overall sensitivity and 

specificity of 96.4% (95% CI, 93.9 to 98.3) and 

84.7% (95% CI, 82.3 to 87.1), respectively, for the 

detection of papilledema (Table 2). The mean 

estimated prevalence of papilledema in all the 

sets of data was 9.5% (Table S6), which resulted 

in an overall positive predictive value of the sys-

tem for papilledema of 39.8% (95% CI, 36.6 to 

43.2) and a negative predictive value of 99.6% 

(95% CI, 99.2 to 99.7) (Table 3). (The predictive 

values of the deep-learning system across a full 

prevalence range for the detection of normal 

discs, discs with papilledema, and discs with 

other abnormalities are provided in Fig. S5.)

Adjudication of Classification Errors

In a post hoc analysis, four expert neuro-ophthal-

mologists who were not involved in the original 

Table 2. Classification Performance of the Deep-Learning System on the Primary Validation and External-Testing Data Sets.*

One-vs.-Rest Classification Total Normal Papilledema Other
AUC 

(95% CI)
Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

number percent

Primary validation data set†

Normal vs. papilledema + other 14,341 9156 2148 3037 0.99 
(0.99–0.99)

93.5 
(92.9–94.1)

96.2 
(95.5–96.9)

94.5 
(94.0–94.9)

Papilledema vs. other + normal 14,341 9156 2148 3037 0.99 
(0.98–0.99)

93.2 
(91.8–94.5)

95.1 
(94.7–95.6)

94.8 
(94.4–95.3)

Other vs. normal + papilledema 14,341 9156 2148 3037 0.97 
(0.97–0.97)

93.0 
(91.9–94.0)

89.0 
(88.3–89.8)

89.8 
(89.2–90.5)

External-testing data set‡

Normal vs. papilledema + other 1,505 613 360 532 0.98 
(0.97–0.98)

86.6 
(83.8–89.3)

95.3 
(93.8–96.8)

91.8 
(90.3–93.3)

Papilledema vs. other + normal 1,505 613 360 532 0.96 
(0.95–0.97)

96.4 
(93.9–98.3)

84.7 
(82.3–87.1)

87.5 
(85.5–89.3)

Other vs. normal + papilledema 1,505 613 360 532 0.90 
(0.88–0.92)

85.7 
(82.5–88.8)

78.6 
(75.5–81.5)

81.1 
(78.8–83.3)

*  “Normal” indicates normal optic disks, “papilledema” indicates disks with papilledema, and “other” indicates disks with nonpapilledema 
abnormalities. AUC denotes area under the receiver-operating-characteristic curve.

†  The mean age of the patients included in the primary training and validation data set was 49.1 years (95% CI, 48.7 to 49.6), on the basis of 
94.5% of available patient demographic data. The male-to-female ratio in the primary training and validation data set was 0.79 (44.0% men 
or boys), on the basis of 94.4% of available patient demographic data.

‡  The mean age of the patients included in the external-testing data set was 44.4 years (95% CI, 43.1 to 45.8), on the basis of 99.7% of avail-
able patient demographic data. The male-to-female ratio in the testing data set was 0.61 (38.0% men or boys), on the basis of 99.6% of 
available patient demographic data.
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analyses and who were unaware of the initial 

reference-standard classification reviewed the 177 

fundus photographs (11.8% of the 1505 photo-

graphs) in the external-testing data sets that had 

discordant findings between the reference stan-

dard by site expert neuro-ophthalmologists and 

the classification by the deep-learning system. 

This analysis showed that of the 360 disks with 

papilledema, 15 (4.2%) were misclassified by the 

system as disks with other abnormalities but 

never as normal optic disks. (For details on the 

177 misclassified fundus photographs, see Sec-

tions S3a and S3b and Fig. S6A through S6C.) 

A review by the same neuro-ophthalmologists of 

the misclassified papilledema images at a patient 

level (i.e., both eyes of a patient viewed as a pair) 

disclosed only one patient with papilledema in 

both eyes missed by the system in the external-

testing data sets. In 10 of the 177 fundus photo-

graphs for which the system provided a classifi-

cation that differed from the reference standard, 

the four neuro-ophthalmologists, after review of 

the fundus photographs, agreed with the deep-

learning system.

Subsequently, arbitration was performed by 

contacting the neuro-ophthalmologists at the 

applicable external-testing sites and requesting 

that they reevaluate their initial reference-stan-

dard diagnosis. In these 10 discordant cases, the 

classification of the deep-learning system was 

considered accurate, and the discrepancies were 

found to be the result of labeling errors by the 

site investigators. We performed a post hoc re-

analysis of the corrected external-testing data 

set with the 10 reclassified images, which re-

sulted in a slightly improved average AUC for the 

overall classification performance of the system, 

from 0.941 to 0.948. Subsequently, we requested 

that the neuro-ophthalmologists at each of the 

five centers used for the external-testing data 

sets recheck all diagnoses in their respective 

series of patients; this led to the identification 

of an additional 3 mislabeled photographs. How-

ever, all 3 remained in the category of disks with 

Figure 1. Performance of the Deep-Learning System for the Detection of Normal Disks and Disks with Papilledema 

in the External-Testing Data Sets.

The external-testing data sets included ocular fundus photographs from five centers with diverse ethnic backgrounds. 

As shown in Panel A, the deep-learning system discriminated normal optic disks from abnormal ones, with areas of 

the receiver-operating-characteristic curve (AUCs) that ranged from 0.96 to 0.99 and an overall AUC of 0.98 (95% 

CI, 0.97 to 0.98). As shown in Panel B, the deep-learning system discriminated disks with papilledema from normal 

disks and disks with nonpapilledema abnormalities, with AUCs that ranged from 0.93 to 0.98 and an overall AUC  

of 0.96 (95% CI, 0.95 to 0.97).
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nonpapilledema abnormalities and therefore did 

not change our results.

Discussion

Our objective was to assess the performance of a 

deep-learning system to detect papilledema from 

fundus images taken at many international cen-

ters, from patients with a variety of ethnic back-

grounds, types of fundus pigmentation, and ages 

and using a variety of commercially available 

digital fundus cameras. Our main finding was 

that an artificial-intelligence algorithm using deep-

learning neural networks could discriminate 

among normal optic disks, disks with papilledema, 

and disks with other abnormalities. In our exter-

nal-testing data sets, the sensitivity for detecting 

papilledema was 96.4% and the specificity was 

84.7%. Negative predictive values were high, but 

positive predictive values were lower and varied 

considerably depending on the prevalence of 

papilledema and other optic-nerve conditions.

Several studies have suggested that direct 

ophthalmoscopy can be replaced by more user-

friendly ocular fundus digital cameras that pro-

vide high-quality photographs of the optic nerve 

and retina, even without pharmacologic dilation 

of the pupils,1,2,4,15,17,31,32 although our study used 

photographs taken after pupillary dilation. Most 

deep-learning research in ophthalmology has 

been for screening of retinal disorders and glau-

coma.24-30,33-35 Previous studies using fewer im-

ages than ours showed that deep-learning sys-

tems could recognize right from left optic disks 

in the presence of optic-nerve abnormalities on 

fundus photographs,36 could discriminate disks 

with papilledema from normal disks with an 

average accuracy of 93% (similar to the value in 

Table 3. Predictive Values of the Deep-Learning System in the External-Testing Data Sets.*

Center and Ophthalmic Condition
Estimated 
Prevalence

Positive Predictive Value 
(95% CI)

Negative Predictive Value 
(95% CI)

percent

Bangkok, Thailand

Papilledema 8.9 37.2 (30.9–43.9) 99.4 (97.7–99.8)

Other optic-disk abnormalities 63.3 89.7 (86.3–92.2) 72.7 (63.8–80.0)

Copenhagen, Denmark

Papilledema 3.6 26.3 (18.3–36.2) 100 (100–100)

Other optic-disk abnormalities 14.3 33.4 (27.8–39.4) 98.1 (95.7–99.2)

Freiburg, Germany

Papilledema 10.0 34.6 (29.2–40.5) 99.9 (98.9–100)

Other optic-disk abnormalities 40.0 78.6 (72.4–83.7) 90.6 (86.2–93.7)

Rochester, MN, United States

Papilledema 17.2 55.9 (47.7–63.8) 99.2 (97.7–99.8)

Other optic-disk abnormalities 32.8 62.5 (56.8–67.8) 96.6 (92.4–98.5)

Tehran, Iran

Papilledema 8.0 32.8 (27.1–38.9) 99.2 (98.3–99.6)

Other optic-disk abnormalities 32.0 60.6 (54.7–66.2) 87.9 (84.0–100)

All centers

Papilledema 9.5 39.8 (36.6–43.2) 99.6 (99.2–99.7)

Other optic-disk abnormalities 36.5 69.7 (67.0–72.3) 90.5 (88.6–92.2)

*  We calculated predictive values using the sensitivity and specificity of the deep-learning system in the five individual 
 external-testing data sets and overall, after taking into account the estimated prevalence of papilledema and other 
optic-disk abnormalities at each site. (For details on the calculation of predictive values, see Section S2d in the Supple-
mentary Appendix.)
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our study),37 and could differentiate true optic-

disk swelling from pseudo-swelling with an ac-

curacy of approximately 95%.38

Our study has limitations. First, it was retro-

spective, since the photographs were collected 

retrospectively over a period of several years 

from a large number of centers. This resulted in 

an imbalance in class distribution among groups 

(i.e., differing prevalence of different optic-disk 

conditions), a mix of consecutive series of patients 

and convenience samples, and labeling errors.

Second, we chose as a reference standard the 

final diagnosis of the appearance of the normal 

optic-nerve head given by an expert neuro-ophthal-

mologist at each center, based on the clinical 

examination and other findings, including brain 

imaging and lumbar puncture when appropriate 

for patients with suspected papilledema and 

follow-up data. The final diagnosis of the ap-

pearance of the optic-nerve head in healthy per-

sons was determined by neuro-ophthalmologists 

or ophthalmologists, on the basis of comprehen-

sive ophthalmologic evaluations. A total of 10 

labeling errors by the investigators were discov-

ered and correctly identified by our deep-learn-

ing system. Relabeling the 10 of 1505 images in 

the external-testing data set improved the overall 

performance of the deep-learning system only 

slightly. Although our deep-learning system mis-

classified 15 of 360 photographs of disks with 

papilledema (4.2%), it labeled them as disks with 

other abnormalities and never as normal disks.

Third, the abnormal photographs were ob-

tained after pharmacologic dilation of the pupils 

and may not reflect general practice. Fourth, our 

network was trained and calibrated primarily to 

identify normal optic nerves and those with pap-

illedema. Therefore, the threshold for diagnosing 

papilledema was low, in order to avoid false nega-

tives. Whether the results will be reproducible 

under other circumstances is not known.

We found that an artificial-intelligence, deep-

learning algorithm that was trained on ocular 

fundus photographs had high sensitivity and 

specificity for discriminating between papill-

edema and normal optic nerves. Negative predic-

tive values were high, but positive predictive 

values varied depending on the prevalence of 

papilledema in the population being studied. 

Further investigation is required in order to pro-

spectively validate the use of deep-learning sys-

tems in various settings, which may have differ-

ent prevalences of optic-disk abnormalities from 

those in our study.39
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